Experimental design for the optimization of multi-residual analysis of oxygenated metabolites of PAHs (hydroxylated, quinones) in sediments

I. BERGER, N. MACHOUR, C. MORIN, F. PORTET-KOLTALO

University of Rouen France

ICCE 2017 - 21/06/2017

TABLE OF CONTENTS

- **1)** Presentation of contaminants and environmental matrix
- 2) Simultaneous MAE extraction and analyzes of two families of oxygenated PAHs
 - a) Choice of chromatographic analytical tools
 - **b)** Optimization of MAE extraction by experimental design
- 3) Conclusion and perspectives

Contaminants

Hydroxy-PAHs (OH-PAHs):

2- Naphthol 2

2- Hydroxyfluorene

9- Phenanthrol

1- Hydroxypyrene

Quinones:

uinone 1,2- Naphthoquinone

1,4- Naphthoquinone

9,10- Phenanthrenequinone

> No standardized methods for oxygenated PAHs (oxy PAHs)

Matrix

Sediment modelling a natural sediment from a Normand harbors

OBJECTIVES

Develop a method to extract simultaneously a mixture of four hydroxylated PAHs (OH-PAHs) and six carbonyl PAHs (quinones) from sediments (MAE)

Develop a method to analyze these compounds at trace levels (GC-MS and HPLC-FLD/UV)

2) Simultaneous MAE extraction and analyzes of two families of oxygenated PAHs

a) Choice of chromatographic analytical tools

Choice of analytical tools

GC-MS

Without derivatization (quinones)

With derivatization (quinones)

Acetylation

JINONES3ASIM.D\data.ms

8

Silvation of hydroxy-PAHs

Catalysts: Pyridine and ethyl acetate

Best conditions: BSTFA+ TMCS, pyridine and ethyl acetate in 5 minutes of reaction

Time(min): 5, 15, 30, 45 and 60

LOD: $90,0-220,0 \ \mu g/L$ LOQ: $300,0-720,0 \ \mu g/L \longrightarrow$ With derivatization \rightarrow Sensitivity improved by a factor 3LOD: $180,0-600,0 \ \mu g/L$ LOQ: $610,0-2000,0 \ \mu g/L \longrightarrow$ Without derivatization

Acetylation of quinones

2) Simultaneous MAE extraction and analyzes of two families of oxygenated PAHs

b) Optimization of MAE extraction by experimental design

	MAE	Soxhlet	Sonication		
Time of extraction	3- 30 min	3-48hrs	10-60min		
Sample amount	1-10g	1-30g	1-30g		
Solvent volume	10-40mL	100-500mL	30-200mL		
ADVANTAGES!!					

MAE never tested for quinones and hydroxy-PAHs

- 🔿 First trials
- Volume(mL): 10 and 20
- Temperature(°C): 80, 100 and 120
- Solvent:
- Acetonitrile
- 90%Acetonitrile/10%toluene*
- 90% Acetonitrile/10% dichloromethane
- 50% Acetone/50%toluene**

Time(min): 10, 20 and 30

Best results for hydroxy-PAHs

- Volume(mL): 10 and 20
- Temperature(°C): 80, 100 and 120
- Solvent:
- Acetonitrile
- 90%Acetonitrile/10%toluene
- 90% Acetonitrile/10% dichloromethane
- 50% Acetone/50%toluene
 Time(min): 10, 20 and 30

Acetonitrile/10%toluene- 100°C 20min 20mL

> Not the same conditions of extraction for the two families

First experimental design: fractional factorial design 2

Tests	Temperature Extraction	Volume solvent	Nature solvent	Time extraction
1	80°C (-1)	10mL (-1)	CH3CN/10%CH2CL2 (-1)	10min (-10)
2	80°C (-1)	10mL (-1)	CH3CN/10%toluene (+1)	30min (+1)
3	80°C (-1)	30mL (+1)	CH3CN/10%CH2CL2 (-1)	30min (+1)
4	80°C (-1)	30mL (+1)	CH3CN/10%toluene (+1)	10min (-10)
5	120°C (+1)	10mL (-1)	CH3CN/10%CH2CL2 (-1)	30min (+1)
6	120°C (+1)	10mL (-1)	CH3CN/10%toluene (+1)	10min (-10)
7	120°C (+1)	30mL (+1)	CH3CN/10%CH2CL2 (-1)	10min (-10)
8	120°C (+1)	30mL (+1)	CH3CN/10%toluene (+1)	30min (+1)
9 - 15	100°C (0)	20mL (0)	CH3CN (0)	20min (0)

- Screening design
- ➡ Influent factors and possible interactions?
- 2 levels + 0 center points
- <u>Results</u> (recovery yields):
- 1. Most influent factors: Temperature and volume
- 2. Not influent: Time set to 10 minutes
- Solvent: compromise for the two families → Acetonitrile/Dichloromethane 90/10

Second Experimental design: central composite design 2²

Tests	Temperature Extraction	Volume solvent	
1	80°C (-1)	15mL (-1)	
2	80°C (-1)	35mL (+1)	
3	120°C (+1)	15mL (-1)	
4	120°C (+1)	35mL (+1)	
5	72°C (-α)	25mL (0)	
6	128°C (+α)	25mL (0)	
7	100°C (0)	11mL (-α)	
8	100°C (0)	39mL (+α)	
9- 13	100°C (0)	25mL (0)	

- Surface response design only to temperature and volume studied
- 5 levels → non linear modeling

Second Experimental design: central composite design 2²

Second Experimental design: central composite design 2²

Second Experimental design: central composite design 2

4) Conclusion and perspectives

CONCLUSION

 Derivatizations before GC-MS improve the detection of the hydroxy-PAHs and quinones (particularly ortho-quinones)

HPLC-UV/FLD is more sensitive than GC-MS but GC-MS allows unknown compounds

■ The best conditions for the extraction of two oxygenated families were found for MAE (time, solvent, temperature and volume) → need to validate the method MAE- GC-MS

PERSPECTIVES

□ Modeling of MAE - HPLC-UV/FLD to do

□ Comparison of the two methods MAE – GC-MS and MAE – HPLC – UV/FLD

Thank you!

Questions?

Ingrid Brito Berger Doctorante Ingrid.berger@etu.univ-rouen.fr