

Sicherheit in Technik und Chemie

21.06.2017

MICROFLUIDIC PLATFORM AND FLUORESCENT SENSOR PARTICLES FOR THE DETECTION OF THE HERBICIDE 2,4-D IN WORLDWIDE SAMPLES

J. Bell, S. Wagner, M. Biyikal, K. Gawlitza and K. Rurack

Introduction

New analytical tools

- High sensitivity and selectivity
- Reliable and robust
- Embedded system
- Low or reasonable cost

Picture from: Scientific Reports doi:10.1038/s41598-017-03293-9

Introduction

Model analyte: 2,4-Dichlorophenoxyacetic acid (2,4-D)

- Small organic molecule soluble in water
- Active ingredient of over 1,500 herbicide products
- Endocrine disruptor
- Representative of emerging pollutants:
 - Carboxylic acid function
 - Aromatic unit with chlorines
 - Medium solubility in water
 - Worldwide distribution

2,4-D

Introduction

Molecularly imprinted polymers (MIP)

- Plastic antibodies
- Recognition based on chemical interactions and shapes
- Versatile technology
- Reversible and robust
- Possible combination with fluorescent molecular probes

➔ Ideal for extraction and detection of small organic molecules in aqueous samples

Phenoxazinone cross-linker integrated in a polymer shell

Core/shell SiO₂-MIP particles

Integration in a modular microfluidic system

- Two inlets:
 - Analyte / water at 20 $\mu L/min$
 - MIP / chloroform at 10 μ L/min
- Modular tubing system (PFA)
- Droplet generator:

Low pressure T-connector

Mixing by chaotic advection (30 s)

Integration in a modular microfluidic system

- Optomechanical cube
- Excitation: LED + filter
- Emission: USB spectrometer + filter + fiber bundle
- Recorded signals:
 - S_{LED}: 470-505 nm
 - S_{MIP}: 535-650 nm

Integration in a modular microfluidic system

Automation of the signal analysis

- Consecutive logical equations
- Can be replaced by electronic or algorithmic operations

- 5 10 droplets (10 s) to get an acceptable standard deviation
- Error: 1.5% (Milli-Q water)
- Dynamic range: 20 nM 5 µM

Surface water analyses

- Water from the Teltow Canal, Berlin, Germany
- No pre-treatment
- Standard addition method (spiking from 0 60 nM)
- Simulated concentrated sample (+ 200 nM)
- Teltow Slight matrix effects: + 200 nM 21 Error of 5% 18 **15**-Over estimation I_F (A.u.) 12 Comparable dynamic 9 Teltow 6 range 3 Detection of 20 60 40 0 concentrated sample [2,4-D] (nM)

Surface water analyses

Water samples	Concentrations (nM)		
	Found	Corrected	ELISA
Santa Fe River, USA	< 20	-	-
Mississippi, USA	< 20	-	-
Hàn River, VNM	22.3 ± 0.3	-	-
Lake Nghệ An, VNM	26.0 ± 0.4	-	13.7 ± 5.8
Teltow Canal, DEU	< 20	-	-
Teltow Canal, DEU + 200 nM	239.4 ± 13.6	194 ± 11.6	-
Rio Paranapanema, BRA	27.6 ± 0.1	17.8 ± 0.8	18.4 ± 2.3

Maximum acceptable concentration:

- EU: $0.1 \,\mu\text{g/L} = 0.5 \,\text{nM}$ (surrogate zero)
- WHO: 30 µg/L = 136 nM
- EPA: 70 µg/L = 317 nM

Conclusion

- Preparation of sensory SiO₂-MIP Core/shell microparticles
- Modular opto-microfluidic system with sensitive and selective fluorescence response
- Dynamic range for 2,4-D: 20 nM 5 μM
- Only traces of 2,4-D found in all samples
- Miniaturized laboratory prototype:

Conclusion

- Potential adaption for other small organic molecules of environmental but also pharmaceutical, food, chemical, biochemical or medical interest.
- Multiplexing possibilities:

Acknowledgment

Federal Institute for Materials Research and Testing

Division 1.9

Chemical and Optical Sensing

Sabine Wagner Dr. Knut Rurack Dr. Mustafa Biyikal Dr. Kornelia Gawlitza

and you for your attention