Volatile organic compound (VOC) emissions by marine plankton using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF/MS)

Cleo Davie-Martin, Stephen Giovannoni, and Kimberly Halsey Department of Microbiology, Oregon State University

NAAMES



## Marine carbon cycle and the global influence of VOCs

Estimated isoprene emission rates



What is the magnitude of this VOC cycle? What compounds are involved? What organisms participate?





### **Objectives**

To assess spatial and temporal patterns in the net rates of biological VOC production during different stages of the annual phytoplankton bloom





# Sampling region: North Atlantic Ocean





# Experimental set-up: dynamic stripping chambers



New approach for understanding when the ocean acts as a net **source/sink** of VOCs



VOCs are 'stripped' from seawater and directed into the PTR-MS





#### Theoretical considerations and net rates



Time

Magnitude of the net rate ≠ indicate the magnitude of production and consumption rates

| Production | Consumption | Net Rate |
|------------|-------------|----------|
| 100        | 99          | 1        |
| 1.01       | 0.01        | 1        |





#### **Results: Range of net rates**



- Methanol and acetone usually showed net consumption (negative net rates)
- Acetaldehyde usually showed net production (positive net rates)
- Isoprene and acetonitrile showed lower net rates and/or were more tightly coupled
- NAAMES\_2 rates generally more positive

Experiments for **5 m** seawater collected during **daylight hours** (dawn-dusk) and incubated in the **light** 



# Comparisons between NAAMES\_1 and NAAMES\_2

#### How to interpret bubble plots



 Sampling location is plotted as a circle (by latitude vs. longitude)

- Color shading indicates the magnitude and direction of the rate
  - $\rightarrow$  **purple** = net consumption
  - $\rightarrow$  green = net production
- Size of bubble indicates the absolute magnitude of the rate
- Large, brightly colored bubbles: system is uncoupled
- Small, pale bubbles: tighter coupling
- Large purple and green bubbles: high variability in the rates



#### **Results: Acetaldehyde**



 Tightly coupled but with a tendency towards production in the open ocean  Greater uncoupling and increased production relative to NAAMES\_1



#### **Results: Acetone**



 Tightly coupled near the coast tending towards net consumption in the open ocean  Large uncoupling at the coastal and northernmost sites (net consumption)



#### **Results:** Isoprene



• Tightly coupled

 Becoming more uncoupled at the coastal and more northerly sites (similar to acetone)



#### **Results: Methanol** —OH



Consistent net consumption, larger net rates

 Consumption at coastal and northern-most sites with greater production seen in the open ocean



## **NAAMES\_2:** Station 2-3 time course

#### Acetone



- Consumption increased in the late afternoon but we see tighter coupling at night and in the early morning
- Previous measurements in marine boundary air suggest acetone is taken up by the ocean, unless there is high light intensity and biological activity (Sinha et al. 2007)



## NAAMES\_2: Station 2-3 time course

#### Isoprene



- Appears to be a **diel cycle**: rates more positive during daylight hours and more negative at night
- Provides additional evidence that marine isoprene emissions are light-dependent



#### Further evidence for biogenic VOCs from cultures



Light intensity (µmol photons<sup>-1</sup> m<sup>-2</sup> s<sup>-1</sup>)

Halsey et al. 2017, Limnology and Oceanography, DOI: 10.1002/Ino.10596 Sun et al. 2016, Nature Microbiology, 1, 1-5, DOI: 10.1038/nmicrobil.2016.65 The light-dependent VOC metabolome of **diatoms** (*T. pseudonana*) is distinct from green algae (D. tertiolecta)



The globally abundant heterotrophic bacterium, *Pelagibacter,* simultaneously produces both dimethyl sulfide and methanethiol 15



#### **Next steps and conclusions**

- Correlations with other measurements in NAAMES to link biology to atmosphere:
  - Ocean properties
  - Community composition
  - VOC flux and air concentrations (biological vs. physical drivers)
  - Aerosol properties
  - Modelled or satellite parameters
- Non-targeted analysis using ToF/MS data to identify *new* biogenic marine VOCs
- Culture-based experiments to tease out organism-specific VOC profiles and relationships

- VOCs are a conduit for **carbon transfer** between phytoplankton and bacteria  $\rightarrow$  the remainder is available for escape to and reaction in the atmosphere
- This work will help to quantify biologically mediated sources and sinks of marine VOCs





### Acknowledgements

- Michael Behrenfeld (Chief Scientist)
- NAAMES Researchers
- R/V Atlantis Crew
- Staci Massey Simonich

- Martin Graus
- Todd Rogers
- Jing Sun
- Joost de Gouw













# **VOCs associated with the marine environment**

| VOCs            | Source(s)                                           | Biogeochemical roles in marine ecosystems   | Examples of metabolic roles                        | Seawater<br>concentrations | Net production rate                                                      |
|-----------------|-----------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------------------------------------------|
| Dimethylsulfide | Direct or stress-<br>induced release by<br>plankton | Climate-active gas                          | Oxidative stress<br>protection,<br>signal molecule | 2-200 nM                   |                                                                          |
| Isoprene        | Plankton,<br>terrestrial plants                     | Aerosol/cloud condensation nuclei formation | Chlorophyll synthesis                              | 10-200 pM                  | 3-25 μΜ (g Chl <i>a</i> h)⁻¹                                             |
| Acetaldehyde    | Photooxidation of DOM                               |                                             | Metabolic<br>intermediate                          | 2-37 nM                    | 13-35 nM d <sup>-1</sup> ,<br>60-160 μM (g Chl <i>a</i> h) <sup>-1</sup> |
| Methanol        | Plankton                                            | Rainwater acidification, $O_3$ formation    | Cell wall,<br>growth<br>substrate                  | 15-304 nM                  | 22-428 nM d <sup>-1</sup> ,<br>10-50 μM (g Chl <i>a</i> h) <sup>-1</sup> |
| Acetone         | Photooxidation of DOM                               | Tropospheric photochemistry (source of •OH) |                                                    | 2-20 nM                    | 2-26 nM d <sup>-1</sup> ,<br>15-60 μM (g Chl <i>a</i> h) <sup>-1</sup>   |
| Acetonitrile    | Biomass burning,<br>terrestrial plants              | Reactions with •OH                          |                                                    |                            | 18                                                                       |



#### **Results: Range of net rates**



- Methanol rates were much larger (uncoupled) with greater errors than the other VOCs
  - $\rightarrow$  Higher concentrations in seawater
  - $\rightarrow$  Analytical difficulties due to 'stickiness'

Experiments for **5 m** seawater collected during **daylight hours** (dawn-dusk) and incubated in the **light** 



#### **Results: Acetonitrile**



- Variable but very small net rates (i.e., tightly coupled)
- Difficult to expose trends large spatial scales (temporal dynamics on station...)