Novel microextraction capsule technique to extract personal care products from environmental water samples

<u>Núria Fontanals</u>¹, Sameer Lakade¹, Abuzar Kabir², Kenneth G. Furton²,

Rosa Maria Marcé¹, Francesc Borrull¹

¹Universitat Rovira i Virgili – Tarragona, Spain

²Florida International University – Miami, USA

SPME

SBSE

SPME

SBSE

Availability of different

fibers.

✓ Less volume of extracting

phase.

EXTRACTION TECHNIQUES

SPME

SBSE

- Larger extracting phase.
- Limitation of commercial available coatings.

EXTRACTION TECHNIQUES

SPME

SBSE

CPME

CAPSULE PHASE MICROEXTRACTION

Porous (0.2 µm) Tube

Cylindrical Magnet

Sol-gel Coated Fiber

A. Kabir, K. G. Furton, Microextraction Capsule, US Patent application 14/806100, 2017.

CAPSULE PHASE MICROEXTRACTION

Sol-Gel coating

CAPSULE PHASE MICROEXTRACTION

- Material 0,2 μm porous protected.
- High volume of sorbent in form of ultrathin porous film.
- Primary contact surface area (220 mm²).
- Strong covalent bonding between the fiber substrate and the sol-gel coating

Some material available:

- poly (dimethylsiloxane)
- poly (dilethyldiphenylsiloxane)
 - **C**₁₈

 \checkmark

 \checkmark

- **C**₈
- poly (tetrahydrofuran) (THF)
- poly (UCON)
- poly (PCAP-DMS-CAP)
- poly (ethylenglycol) (PEG)
- poly Carbowax 20M

CAPSULE PHASE MICROEXTRACTION

Optimisation of the conditions of CPME.

Evaluation of CPME in terms of recoveries and matrix effects

 Application in CPME/LC-MS/MS to determine PCPs in surface and sewage water samples

METHOD OPTIMISATION

CPME

Extraction	Liquid Desorption
pH Agitation speed Ionic strength Sample volume	Solvent Volume Time
Extraction Time	

LC-(ESI)-MS/MS

Chromatographic separation

MS/MS parameters

METHOD OPTIMISATION LC-MS/MS

LC CONDITIONS

Column	Kromasil C ₁₈ (150x4.6 mm, 5 μm)		
Mobile phase	A: H₂O, pH 3 (HCOOH) B: ACN		
Gradient	T (min) % B		
	0	15	
	12 90		
	20	100	
	22 100		
	25	15	
	30 15		
Flow-rate	600 μL/min		
Temp.	40 °C		
Inj.	50 μL		

Capillary voltage4000 VNeb. Pressure (N2)45 psiN2 flow12 L/minSource Temp.350 °C

MS/MS CONDITIONS

METHOD OPTIMISATION LC-MS/MS

		Ionia	Dressurger	Concella	Quanti	ifier	Qualifi	ier
Analyte	τ _R min	mode	lon (m/z)	(V)	Product Ion (m/z)	C.E. (eV)	Product lon (m/z)	C.E. (eV)
EPB	10.39	-	165	100	92	15	136	10
PrPB	11.59	-	179	100	92	15	136	10
DHB	12.05	-	213	130	135	15	169	10
BzPB	12.53	-	227	100	92	20	136	10
BuPB	12.69	-	193	100	92	15	137	10
DHMB	13.03	-	243	80	93	15	123	15
BP-3	14.79	+	229	100	151	15	105	15
тсс	15.41	-	313	130	160	10	126	15
TCS	15.62	-	287/289	18	35	5	35	5
OC	16.37	+	384	130	272	5	228	5
OD-PABA	19.94	+	278	130	166	20	151	20

SELECTION of the CPME material

Initial conditions

5 mL MeOH 5 mL water Stirred 5 min each

25 mL water at pH 3 Stirred 600 rpm 60 min Conditioning

Extraction

Liquid desorption

5 mL MeOH:ACN (1:1, v/v) Ultrasonic bath 10 min

Evaporation to 100 μL Redissolution with 1 mL MP

LC-MS/MS

SELECTION of CPME material

Analyte	CW-20M	UCON	PCAP-DMS- CAP
EPB	7	8	8
PrPB	13	10	9
DHB	24	22	20
BzPB	36	27	24
BuPB	29	29	29
DHMB	40	37	34
BP-3	58	47	44
тсс	60	22	28
TCS	74	62	62
OC	81	20	17
OD-PABA	89	39	42

Block polar-apolar

METHOD OPTIMISATION - CPME

CPME parameters	Range	Optimised conditions
Sample pH	3 - 5 - 7	
Agitation speed (rpm)	300 - 600 - 900	
Ionic strenght (% NaCl)	0 - 5 - 10 - 15 - 20	
Sample volume (mL)	25 - 50 - 100	
Extraction time (min) 3	80 - 60 - 120 - 180 - 240 - 30	00
Solvent volume (mL)	5 – 10	
Desorption solvent	MeOH – ACN – MeOH/ACN	
Desorption time (min)	5 - 10 - 15	

Е

L D

METHOD OPTIMISATION - CPME

CPME parameters	Range	Optimised conditions
Sample pH	3 - 5 - 7	
Agitation speed (rpm)	300 - 600 - 900	
lonic strenght (% NaCl)	0 - 5 - 10 - 15 - 20	
Sample volume (mL)	25 – 50 – 100	
Extraction time (min)	30 - 60 - 120 - 180 - 240 - 300	
Solvent volume (mL)	5 – 10	5 mL
Desorption solvent	MeOH – ACN – MeOH/ACN	MeOH/ACN
Desorption time (min)	5 - 10 - 15	10 min

METHOD OPTIMISATION - CPME

E X T R A C T I O N

E X T

R

Α

С

Т

| 0

Ν

METHOD OPTIMISATION - CPME

Range

Optimised conditions

E X T R A C T I O N

L D

METHOD OPTIMISATION - CPME

CPME parameters	Range	Optimised conditions
Sample pH	3 - 5 - 7	3
Agitation speed (rpm)	300 - 600 - 900	600 rpm
Ionic strenght (% NaCl)	0 - 5 - 10 - 15 - 20	15% NaCl
Sample volume (mL)	25 - 50 - 100	50 mL
Extraction time (min)	30 - 60 - 120 - 180 - 240 - 300	120 min
Solvent volume (mL)	5 – 10	5 mL
Desorption solvent	MeOH – ACN – MeOH/ACN	MeOH/ACN
Desorption time (min)	5 - 10 - 15	10 min

RESULTS - Evaluation

% RECOVERY – ULTRAPURE WATER

Analyte	CW-20M CPME
EPB	26
PrPB	47
DHB	56
BzPB	73
BuPB	71
DHMB	85
BP-3	90
тсс	64
TCS	67
OC	73
OD-PABA	77

RESULTS - Evaluation

% RECOVERY – ULTRAPURE WATER

Analyte	CW-20M CPME	SBSE Acrylate	SBSE EG- Silicone
EPB	26	n.a.	n.a.
PrPB	47	2	10
DHB	56	9	24
BzPB	73	14	39
BuPB	71	n.a.	n.a.
DHMB	85	9	26
BP-3	90	10	45
тсс	64	43	59
TCS	67	42	80
OC	73	n.a.	n.a.
OD-PABA	77	n.a.	n.a.

RESULTS - Evaluation

% RECOVERY & MATRIX EFFECT – SEWAGE WATER

	RIVER		EFFLU	IENT
Analyte	% R _{overall}	% M E	% R _{overall}	% ME
EPB	19	-26	11	-49
PrPB	27	-36	21	-42
DHB	30	-33	23	-38
BzPB	39	-38	29	-39
BuPB	39	-32	28	-40
DHMB	33	-28	27	-32
BP-3	40	-23	33	-28
тсс	60	-22	56	-14
TCS	57	-24	34	-32
OC	43	-33	54	-17
OD-PABA	37	-44	28	-33

RESULTS - Application

METHOD VALIDATION – SEWAGE WATER

	EFFLUENT SEWAGE				
Analyte ⁻	LODs (ng/L)	Linear range (ng/L)	Repeatability (%RSD, n=5)*	Reproducibility (%RSD, n=5)*	
EPB	5	20 – 5000	9	11	
PrPB	7	20 – 5000	5	12	
DHB	7	20 – 5000	5	7	
BzPB	5	20 – 5000	4	8	
BuPB	5	20 – 5000	6	6	
DHMB	7	40 – 5000	8	13	
BP-3	7	20 – 5000	10	17	
тсс	2	20 – 5000	7	10	
TCS	10	200 – 5000	6	9	
ОС	5	20 – 5000	12	15	
OD-PABA	5	20 – 5000	9	11	

*at 20 ng/L

RESULTS - Application

ANALYSIS OF SAMPLES

	Concentration (ng/L)		
Analyte	RIVER	EFFLUENT	
EPB	n.d.	n.d	
PrPB	n.d	26 - 43	
DHB	< LOQ	< LOQ	
BzPB	n.d	n.d	
BuPB	n.d	n.d	
DHMB	14 - 90	18 - 122	
BP-3	36 - 93	95 - 142	
тсс	n.d	n.d	
TCS	n.d	n.d	
OC	n.d	n.d	
OD-PABA	n.d	n.d	

EFFLUENT SEWAGE SAMPLE

- A novel sorptive extraction technique, capsule phase microextraction CPME have been proposed and successfully evaluated.
- The CW 20M material provided the best results for the extraction of PCPs.
- CPME provided better results than the commercially available SBSE with polar coatings.
- The CPME followed by liquid desorption with LC-ESI-MS/MS provided an efficient, simple and sensitive method for determination of PCPs.
- The analysis of river and effluent sewage samples revealed the presence of some PPCs.
- The proposed CPME technique might be extended to extract other target compounds in different sample matrices in future.

Abuzar Kabir Kenneth G. Furton

Sameer Lakade Rosa M. Marcé

Francesc Borrull

Project CTQ2014-52617-P

THANK YOU FOR YOUR ATTENTION !!!

Novel microextraction capsule technique to extract personal care products from environmental water samples

<u>Núria Fontanals</u>¹, Sameer Lakade¹, Abuzar Kabir², Kenneth G. Furton²,

Rosa Maria Marcé¹, Francesc Borrull¹

¹Universitat Rovira i Virgili – Tarragona, Spain

²Florida International University – Miami, USA

