# Using a GC based effect-directed approach for the analysis of AhR active contaminants on plastic litter





<u>Christine Schönlau<sup>1</sup></u>, Jeroen Kool<sup>2</sup>, Maria Larsson<sup>1</sup>, Magnus Engwall<sup>1</sup> and Anna Kärrman<sup>1</sup>

<sup>1</sup>Man Technology Environment (MTM) Research Centre, Örebro University, 701 82 Örebro, Sweden, <sup>2</sup>Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands

# **Background**

Why effect-directed analysis???

- Contamination in environment often by multitude of chemicals → complex samples
- Risk assessment: Traditionally chemical target analysis of contaminants, e.g. priority pollutants → modelling of toxicity based on individual compound toxicity data
- Key contaminants unknown?!!
- Basic idea: sequentially reduce complexity of an environmental sample by removing nontoxic components
  - $\rightarrow$  enable chemical identification of causative agents



# **Traditional EDA approach**





- How much of measured effects can be explained by identified compounds?
- How much is not explained by them?

## **Background of the project**



• Plastic pollution – chemical risk for marine ecosystems





ICCE Oslo 2017

#### **Fractionation in traditional EDA**



- Liquid chromatography preferably used
- > For analyzing the nonpolar POPs  $\rightarrow$  normal phase LC
- Usually GC used for nonpolar substances
- Fractionation after GC analysis requires complex setup

Drawback: Very time-consuming

## Principle of simultaneous analysis



Aim: rapid activity-directed screening of compounds by parallel coupling of liquid or gas chromatography with a reporter gene assay and mass spectrometry



# **GC fractionation**



7

- Gas chromatograph: Agilent 7820A GC-MS with PAL robotic system modified by Da Vinci Laboratory Systems (Rotterdam, Netherlands)
- PAL system programmed to pick-up and move a smart grip unit over a 96 or 384-well plate for fraction collection
- Agilent HP-5MS column (5% Phenyl-methylpolysiloxane), 30m length, 0.25 µm particle, 0.25 mm diameter



### **DVLS GC Fractionator**





- A) Y-piece for post column splitB) Inverted y-piece
- C) LC pump

- D) Heating element
- E) Transport capillary
- F) Smart grip unit

# **Samples**



- 2 g of beached plastic
- Polyethylene (PE) and polypropylene (PP)



Total of 86 compounds

| Compound    | Concentration in ng/g | Concentration in 0.5 |
|-------------|-----------------------|----------------------|
|             | plastic               | ml extract [ng]      |
| PAHs        | 2000                  | 333.33               |
| Pesticides  | 20                    | 3.33                 |
| PBDEs       | 7                     | 1.16                 |
| PCDD/DFs    | 5 - 25                | 0.83 - 4.16          |
| Planar PCBs | 2 - 20                | 0.16 - 1.66          |

# **Testing of DVLS Fractionator**



#### Injection of 2µl of extract



#### **Bioassay chromatogram**





ICCE Oslo 2017

#### **MS chromatogram**



ICCE Oslo 2017

### **Correlating bioassay and chemical results**





# **LC fractionation**



- Liquid Chromatography separation on a Shimadzu
  UFLC system with a photodiode array detector
- MS system: maXis<sup>™</sup> HD Ultra high resolution QTOF
- A Gilson 235p autosampler was modified for fraction collection in 96 or 384 well plates



#### **Bioassay chromatogram**



# **Conclusions and Outlook**





GC fractionation was successful in detecting bioactive substances in a fortified plastic extract

Bioassay demonstrated high sensitivity

- Analyze marine plastic extracts with fractionation system to identify causative agents
- ✤ Use HRMS
- Apply a battery of different bioassays







### Special thanks to: Jeroen Kool Maria Larsson Anna Kärrman



The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning



21 June 2017