

A new marine sediment certified reference material (CRM) for the determination of persistent organic contaminants: IAEA-459.

IMMA TOLOSA, ROBERTO CASSI, DAVID HUERTAS
IAEA Environment Laboratories,
4a Quai Antoine 1er, 98000 Monaco, I.Tolosa@iaea.org

ICCE_2017, Oslo

Sediment CRMs

- □ Sediments : relevant matrix for monitoring the water compartment (WFD)
 - ✓ Long-term trend assessment

There is a noticeable lack of natural sediment CRMs for Persistent Organic Pollutants (POPs) in marine sediments with very low concentrations (μg kg⁻¹)

- ✓ New Marine Sediment CRM for persistent organic contaminants with low concentrations
- Polychlorinated biphenyls (ΣPCBs~50 µg kg-1 dry weight)
- Chlorinated pesticides (ΣDDTs ~ 9 µg kg⁻¹ dry weight)
- Polybrominated diphenyl ethers (ΣPBDEs ~10 µg kg-1 dry weight)
- Polycyclic aromatic hydrocarbons (Σparent PAHs ~ 680 µg kg⁻¹ dry weight)

Sediment quality guidelines for POPs in marine sediments compared to concentrations of IAEA-459

ISQG ^a &	TEL ^D & FEQG	^c IAEA-459

PCBs and OCs pesticides

PAHs

PBDEs

	ISQG ^a & TEL ^b & FEQG ^c IAEA-459		
Total PCBs	21.5 ^{a,b}	55	
p-p'-DDE	2.07a,b	3.6	
p-p'-DDD	1.22 ^{a,b}	3	
p-p'-DDT	1.19 ^{a,b}	1.32	
Lindane	0.32 ^{a,b}	0.182	
Heptachlor epoxide	0.60a	0.15	
Dieldrin	0.71 ^a	0.1	
Acenaphtene	6.71a	1.8	
Acenapthylene	5.87ª	3.2	
Anthracene	46.9 ^a	6	
Benzo(a)anthracene	74.8 ^a	19.3	
Benzo(a)pyrene	88.8a	22.7	
Chrysene	108 ^a	27.5	
Dibenz(a,h)anthracene	6.22a	6.6	
Fluoranthene	113ª	37.3	
Fluorene	21.2 ^a	4.7	
2-Methylnapthalene	20.2 ^a	15.5	
Napthalene	34.6 ^a	20.9	
Phenanthrene	86.7 ^a	33.9	
Pyrene	153 ^a	46.3	
Σ16 PAHs	656ª	355	
total triBDE	44 ^C	0.1 ^d	
total tetraBDE	39 ^C	0.005 ^d	
BDE 99	0.4 ^C	0.12 ^d	
BDE 100	0.4 ^C	0.0145 ^d	
hexaBDE	440 ^C	0.06 ^d	
decaBDE	19 ^C	5.4 ^d	

CRM PRODUCTION PROCESS

produced according to the guidelines of ISO Guide 34:2009

- select the material
- prepare the units (e.g. bottles)
- labelling
- measure homogeneity
- measure stability
- characterization study
- assignment of reference values

Origin of the material

- ☐ Collected in Han River estuary, South Korea.
- This sediment was freeze-dried, ground and sieved at 125 μm.
- ☐ The sieved sediment was homogenized by mixing it in a stainless steel rotating homogenizer for three weeks.
- Then, aliquots of about 50 g were packaged into cleaned amber glass bottles with aluminium screw caps, labelled IAEA-459 and sealed with Teflon tape.

Credit: (Jpbarras at English Wikipedia)

Homogeneity assessment

The between-bottle homogeneity:

- DDTs
- PCBs
- PBDEs
- parent PAHs

10 bottle units randomly selected and analysed under repeatability conditions.

 $u_{c,bb}$ is the combined uncertainty of the between-unit experiment expressed as the uncertainty on a single unit

The within-bottle homogeneity

- DDTs
- PCBs
- PBDEs
- parent PAHs

6 determinations in one bottle

 s_{meas} is the intrinsic variability of the method (s_{method}) divided by the square root of n, the number of replicates per unit;

 $s_{bb}^2 = u_{c,bb}^2 - s_{meas}^2$ ANOVA-like approach

 $s_{\rm bb}$ is the estimate of between bottle variation in the material, named $u_{\rm hom}$ <11% for the certified analytes

Short-term stability test

Isochronous design over 4 weeks

- No slope for each selected analyte was detected that differed significantly from zero.
- ☐ Uncertainty associated with short term stability under transport conditions was taken as zero.

Characterization study

PARTICIPATING LABORATORIES

Ontario Ministry of the Environment and Cl	imate change	CANADA
CNEAC		CHINA
Molecular Science Institute (ISM), Talence		FRANCE
IFREMER-DCN/RBE/BE/LBCO, Nantes		FRANCE
Federal Maritime and Hydrographic Agency	, Hamburg	GERMANY
ISPRA, Laboratory of Organic Pollutants		ITALY
ISPRA – Istituto Superiore per la Ricerca e la	a Protezione Ambientale	ITALY
South Sea Institute, KORDI		KOREA
PI Center for ecotoxicological Research		MONTENEGRO
Institute of Marine Research (Havforskningi	nstituttet)	NORWAY
A.N. Severtsov Inst. Ecological & Evolution		RUSSIAN FEDERATION
Centre for Environment, Fisheries and Aqua	culture Science	UNITED KINGDOM
IAEA		MONACO

- Laboratories of demonstrated competence
- Selected based in results of previous interlaboratory comparisons
- Formal accreditation was not mandatory but meeting the requirements of ISO/IEC
 17025

Characterization-PCBs

Extraction	Solvent	Cleanup	Fractionation	Equipment
PSE	DCM/n-Hexane	Silica	none	GC x GC-ECD
Sohxlet	DCM/n-Hexane	Concentrated H ₂ SO ₄	Multilayer silica gel columns	GC-MS/MS
Microwave	DCM	Copper and Silica acidified wih sulfuric acid	no	GC-ECD
ASE	DCM	GPC & silica/alumina & sulphuric acid	HPLC	GC-HRMS
Microwave	Acetone/hexane	Silica & GPC	none	GC-MS/MS
Microwave	Hexane/acetone 90:10	Concentrated H ₂ SO ₄ & copper	none	GC-MS/MS
Sohxlet	DCM/n-Hexane	Silica		GC-ECD
ASE	DCM:n-hexane (1:1)	Copper	ABN silica 7,5 g	GC-MS
ASE	Toluene:methanol(9:1)	Acid/basic silica	none	GC-HRMS
Sohxlet	Other			GC-MS/MS
Microwave	DCM/n-Hexane		Florisil	GC-ECD
Microwave	DCM/n-Hexane	Copper	Florisil	GC-ECD

Characterization-OCS pesticides

Extraction	Solvent	Cleanup	Fractionation	Equipment
PSE	DCM/n-Hexane	Silica	none	GC x GC-ECD
Sohxlet	DCM/n-Hexane	Concentrated H2SO4	Multilayer silica gel columns	GC-MS/MS
Microwave	DCM	Copper and Silica acidified wih sulfuric acid	none	GC-ECD
ASE	DCM	GPC & silica/alumina & sulphuric acid	HPLC	GC-HRMS
Microwave	Acetone/hexane	Silica & GPC	none	GC-MS/MS
Microwave	Hexane/acetone 90:10	Concentrated H2SO4 & copper	none	GC-MS/MS
Sohxlet	DCM/n-Hexane	Silica		GC-ECD
ASE	DCM:n-hexane (1:1)	Copper	ABN silica 7,5 g	GC-ECD
ASE	Toluene:methanol(9:1)	Silica or acid/basic silica	none	GC-HRMS
Sohxlet	Other		Other	GC-MS/MS
Microwave	DCM/n-Hexane		Florisil	GC-ECD
Microwave	DCM/n-Hexane	Copper	Florisil/SPE	GC-ECD

Characterization-PBDEs

Extraction procedure	Solvent	Cleanup	Fractionation	Equipment
Sohxlet	Toluene	Silica multilayer	Alumina	GC-HRMS
Soxhlet	Hex:DCM(1:1)	Sulphuric acid	Multilayer silica/florisil	GC-MS-EI
Microwave	DCM	Copper and Silica acidified wih sulfuric acid	no	GC-MS-NICI
ASE	DCM	GPC & silica/alumina & sulphuric acid & HPLC	no	GC-HRMS
ASE	DCM:n-hexane (1:1)	Copper	ABN silica 7,5 g	GC-MS-NICI
ASE	Toluene:methanol(9:1)	Acid/basic silica	no	GC-HRMS
Microwave	Hex:DCM(1:1)	Copper	Florisil	GC-ECD

Characterization-PAHs

Extraction	Solvent	Cleanup	Fractionation	Equipment
ASE	DCM-Hexane	Florisil	none	GC-MS
Microwave	Dichloromethane	Copper/alumina	Silica	GC-MS
Microwave	Acetone-hexane	Silica/GPC	none	GC-MS/MS
Sonication	MeOH-acetonitrile	none	none	HPLC-FLD
Sohxlet	DCM-Hexane	Silica&alumina	GPC	GC-MS
Sohxlet	DCM-Hexane	none	Silica&alumina	GC-MS
ASE	DCM-hexane	Copper/silica	none	GC-MS
ASE	Toluene:MEOH (9:1)	Silica	none	GC-HRMS
Saponification & LLE	MEOH/pentane	Alumina	none	GC-MS
Microwave	Dichloromethane/n-Hexane	Copper	Silica:cyano SPE	GC-MS

Determination of assigned values and uncertainties

- The robust statistics approach:
- ➤ The robust average and robust standard deviation calculated using the Algorithm A:
 ✓ Annex C.1 from the ISO standard 13528

Iterative process

 x^* =median x_i (i= 1, 2,.., p)

The robust standard deviation s^* = 1.483 median $|x_i$ - $x^*|$ (i= 1, 2,.., p)

The final "cut-off" values used in the robust algorithm was estimated as: δ =1.5 s^*

<u>UNCERTAINTIES</u>

$$u_{char}=1.25 imesrac{s^*}{\sqrt{p}}$$
 ISO 13528

Where:

s* is the robust standard deviation p is the number of participating laboratories.

Uncertainty of the Assigned Value (U_{CRM})

U_{CRM} uncertainty of the average concentration after storage for time T and after transport

$$U_{CRM}$$
 [%]= k * $(u_{char}^2 + u_{hom}^2 + u_{stab}^2 + u_{short}^2)^{1/2}$

u_{char} uncertainty value characterization measurement

u_{hom} uncertainty bottle to bottle variation, homogeneity

u_{stab} uncertainty long term stability

u_{short} uncertainty short term stability (transport)

K = 2 for a confidence level of 95%

Certification procedure

The robust mean of the laboratory means was assigned as certified value,	
☐ for those compounds where the assigned value was derived from at leafuse datasets	st
☐ from at least two different analytical techniques	
☐ and its relative expanded uncertainty was less than 40 % of the assigned value.	d

Assigned mass fraction values that did not fulfill the criteria of certification are considered information values

Metrological Traceability and Commutability

The methods used by all participating laboratories were validated by using matrix standard reference materials (CRMs) from:

- NIST: (SRM1941b, SRM 1944),
- IAEA (IAEA-408, IAEA-159)
- QUASIMEME proficiency tests (MS3 polycyclic aromatic hydrocarbons in sediment, MS2 chlorinated organics in sediment).
- □ values reported by participants are based on calibration standard solutions of known purity, issued by accredited commercial companies with documented unbroken chain of calibrations,
 □ assigned values derived from combining the individual results are traceable to International System of Unis (SI).
 □ the agreement between the results generated by different analytical methodologies ensures the comparability of the measurement

results and shows commutability of the material.

Conclusions

Combination of different data sets from at least two different analytical techniques has allowed the assignment of certified concentrations

- 22 PCBs
- 6 OC pesticides
- 5 PBDEs

following the recommendation of ISO Guide 35

- 18 PAHs
- □ CRM 459 a valuable sediment reference material for use in the validation of analytical methods for the determination of a great number of POPs listed at the Stockholm Convention as well as other persistent and priority substances (PSs), such as PAHs included within the environmental monitoring programs.
- ☐ These target compounds in the reference material are very close to the environmental quality standards (EQS).

Acknowledgements

PARTICIPATING LABORATORIES

Ontario Ministry of the Environment and Climate change	CANADA
CNEAC	CHINA
Molecular Science Institute (ISM), Talence	FRANCE
IFREMER-DCN/RBE/BE/LBCO, Nantes	FRANCE
Federal Maritime and Hydrographic Agency, Hamburg	GERMANY
ISPRA, Laboratory of Organic Pollutants	ITALY
ISPRA – Istituto Superiore per la Ricerca e la Protezione Ambientale	ITALY
South Sea Institute, KORDI	KOREA
PI Center for ecotoxicological Research	MONTENEGRO
Institute of Marine Research (Havforskninginstituttet)	NORWAY
A.N. Severtsov Inst. Ecological & Evolution	RUSSIAN FEDERATION
Centre for Environment, Fisheries and Aquaculture Science	UNITED KINGDOM
<u>IAEA</u>	MONACO

The IAEA is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco.

THANK YOU FOR YOUR ATTENTION!