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Summary

As a deliverable of the applied environmental science project Eutropia, this thesis elaborates

on an interdisciplinary theme between two academic disciplines: limnology and modelling.

The main goal of my tasks in the project was to simulate the impact of nutrient loading on

the lake Vansjø using a lake model MyLake. In addition to documenting the model config-

uration, this thesis also presents novel parallel studies that I conducted with my colleagues.

Findings and conclusions from these studies include predictions of dramatic changes in lake

ice phenology and temperature during this century, a classification for model parameter un-

certainty typology, simultaneous calibration of multiple models, and importance of year-

to-year stochasticity in model inputs on lake simulation. These parallel studies assisted in

improving the relevance of the main modelling task at Vansjø.
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1 The thesis

As Stock and Burton (2011) summarise, integration of what used to be separate traditional

academic disciplines is now regarded as a fundamental instrument for addressing environ-

mental issues. This is also reflected in an increasing fraction of integrated disciplines in the

literature over the past decades (Figure 1). The Norwegian research community is not an

exception. The Research Council of Norway (RCN/NFR) for example runs the Miljø2015

programme (English: Norwegian Environmental Research Towards 2015), in which a focal

point is integration of various existing knowledge (physics, chemistry, biology, social sci-

ences and cultural studies). The University of Oslo has recently established seven new inter-

faculty research areas with the recognition that knowledge demands in society are complex

and require interdisciplinary collaboration in some fields of application, notably in environ-

mental and sustainability research. The building at the new research park in Oslo (Norwe-

gian: Forskningsparken) is even named as such: CIENS (pronounced ‘science,’ Oslo Centre

for Interdisciplinary Environmental and Social Research).

Many terms have been coined to describe integration of disciplines, e.g., multidisci-

plinary, interdisciplinary, transdisciplinary and crossdisciplinary. Whereas they seem to vary

in the extent of disciplinary integration and the ultimate goal, precise definition is not always

straightforward. Typological issues aside, the pertinent observation is that the interaction

is now called for on multitude of levels, from interaction among scientists to interaction

between a research team and policy makers.
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Figure 1: Frequencies of four discipline integration keywords in the literature index ISI Web of
Science as of 8 February 2013. Entries to the recent years are underestimated as they may not have
been registered yet in the database. Fraction of occurrence shows weighted representability of these
words in the literature, as the total number of entries has increased over the decades.
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This thesis is about integration between limnology and modelling, thus exemplifying the

interaction between the two natural science subjects, in an effort to provide remedial knowl-

edge for eutrophication at Vansjø (59.42◦ N, 10.86◦ E) in southeastern Norway (Figure 2).

Such integration is considered important, as new knowledge is expected to emerge by mixing

the two subjects. It is also challenging due to subject specialisation (own jargon, advanced

concepts and unfamiliarity), as discussed in the next sections. Nonetheless, successful inte-

gration is a key element in the funding project Eutropia. The RCN-funded Eutropia project

(full project name: Watershed Eutrophication Management through System Oriented Process

Modelling of Pressures, Impacts and Abatement Actions) has several goals revolving around

eutrophication issues at Vansjø. The research approach taken in this project is process-based

modelling, in particular modelling of effectiveness of abatement actions from both socioe-

conomic and natural science perspectives. Eutropia is a Miljø2015 project designated under

the Crosscut theme (Norwegian: Tvers), with the emphasis of knowledge integration from

all relevant sciences. In light of that, my contribution, namely the limnology-modelling con-

nection, is a pillar of the project, for the project is aiming to orchestrate interactions beyond

natural sciences and even beyond the research communities to the public.

In the next sections, I will introduce some key concepts in each of the two subject fields

that I have tried to integrate. These concepts may perhaps be so fundamental and so familiar

to subject experts that my following illustration may appear superfluous. On the opposite

extreme, my illustrations may appear over-simplistic on contentious research matters of the

subject today. This impression may of course reflect my shallow expertise in these sub-

jects, but in some cases I am doing this deliberately in order to effectively communicate

the relevant knowledge to non-experts. The need for easing communication is indeed the

challenge that all researchers involved in interdisciplinary studies face. Possibly, the type of

knowledge researchers in a particular discipline unanimously perceive interesting, novel and

valuable may not be pertinent when the discipline participates in an interdisciplinary study.

The summary given below is only my interpretation as to what is the most applicable and

useful in modelling eutrophication in light of interdisciplinarity.

2 Limnology and eutrophication

Limnology is defined in the Oxford English Dictionary as ‘the study of the biological, chem-

ical and physical features of lakes and other bodies of fresh water.’ Perhaps a more precise

definition that relates more strongly to the research community and working tendency of the

subject is given for example by Wetzel (2001): Limnology is the study of the structural and

functional relationships and productivity of organisms of inland aquatic ecosystems as they

are regulated by the dynamics of their physical, chemical, and biotic environments. These
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Figure 2: Map of the Vansjø catchment. The lake Vansjø consists of Storefjorden, Vanemfjorden, and
Mosselva in this map. Map production by A. M. Engebretsen.

definitions reveal themselves that the subject of limnology is in its own right interdisciplinary

(Duarte and Piro, 2001). Open a limnology textbook, and the reader will find that there is a

discussion of earth sciences, physics, chemistry, and of course biology throughout the book.
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Here, I would like to describe important advancements in limnological knowledge that con-

tributed to better understanding of the eutrophication phenomenon.

Eutrophication is a relative term for elevated nutrient status in water systems. Anthro-

pogenic eutrophication of freshwater ecosystem is often considered a form of pollution due

to reduced transparency, unpleasant appearance and odour, occurrence of potentially toxic

organisms, and their consequences for commercial and recreational use of the lake. Limno-

logical understandings helped identify the main mechanisms through which anthropogenic

eutrophication happens.

Very early times, lake researchers thought of intra-connections of players within the lake

community to be important (see, for example, Forbes, 1887). This microcosm view of the

lake ecosystem later became the basis of early development of ecology. Eventually the lim-

nological focus shifted from the lake as an isolated entity to its role as a landscape element,

demarcated by ecologically relevant geographical units defined by catchment, or drainage

area. It became evident by then that the externally sourced materials such as nutrients af-

fect the lake’s ecological conditions and that the flow of water is the major medium for

transporting nutrients. This was particularly relevant for eutrophication problems; in most

anthropogenically eutrophic lakes much of the phosphorus found in lake water originated

in the catchment. Most of phosphorus compounds that are biologically useful such as or-

thophosphate can bind to the fine mineral particles, such that much of the phosphorus trans-

port occurs when these mineral particles are transported. Erosion and particle transport are

linked to rainfall and runoff through complex and highly non-linear relationships. When

mineral particles enter the lake, their adsorbed phosphorus may be scavenged by algae or

sink with bound phosphorus. The phosphorus attached to the sinking particles may be per-

manently buried or reintroduced to the biologically active layers of lake water when these

particles are resuspended. Phosphorus may also be released from sediment particles to water

by dissolution under chemically reduced conditions.

Because phosphorus is one of the major essential elements for primary production, i.e.,

the basal level biological production, change in phosphorus supply is known to possibly

create drastic changes in the ecology of fresh waters. The paradigm of ‘phosphorus as the

limiting factor’ was strikingly demonstrated by a study at the Experimental Lake Area in

northern Ontario, Canada (Schindler, 1977). In this study a lake was separated into two parts

using an impermeable curtain and phosphorus fertiliser was added only to one part. Later,

algal bloom and eutrophication were observed only in the part of the lake with phosphorus

treatment, clearly supporting the paradigm. Generally, total phosphorus concentration is

positively correlated to chlorophyll concentration, which is a generally accepted proxy of

algal content in the water.

Increase of algae content has cascading impacts in the lake. First, algae are not trans-
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parent and therefore attenuate solar irradiance. This results both in selective heating of near-

surface water and in dimming of the deeper layers. The reduced light penetration will give an

advantage to planktonic algae suspended, which can trigger dramatic extinctions of bottom

vegetation. The excessive amount of algae will eventually be preyed upon by a member of

the upper trophic level, or die by themselves, sink to the bottom, and decompose. Oxygen

consumption by this decomposition process may eventually cause sufficient oxygen deple-

tion to make the lake bottom uninhabitable by important components of the lake’s fauna.

Algal bloom is often considered a nuisance to humans, and in case of dominance by toxic

cyanobacteria (blue green algae), animals including humans could be harmed.

Other limnological knowledge assists in understanding eutrophication by providing phys-

ical bases of lake systems. A key physical perspective is the thermal energy budget of the

lake. In lakes most thermal energy originates in shortwave radiation (visible and near in-

frared) from the sun and will be eventually lost back to the atmosphere as long-wave radi-

ation (thermal infrared). Thermal energy has a direct impact on many biological processes,

but it also has indirect impact of the whole-lake process by affecting its transport and storage

medium, water. From the physical chemistry point of view, water is a peculiar liquid; water

has an unusually high heat capacity and is able to store a large amount of heat. This is a

crucial consideration in understanding many lake processes. Perhaps more relevant, water

has a unique density characteristic; in contrast to most other substances, liquid water does

not attain maximal density at the melting point. From the molecular level point of view,

balance between two opposing processes explains this density characteristic of water. First,

as temperature of water increases, hydrogen bonds among water molecules that set them

apart break, and this makes the molecules come closer to each other and more compacted.

Second, increase in temperature causes molecules to move faster, thereby taking up larger

space and lowering the density of water. The end result of these two mechanisms working

against each other is the characteristic maximal density at a temperature (3.98 ◦C) that lies

between the melting (0 ◦C) and boiling (100 ◦C) points (under atmospheric pressure). In the

ordinary solid phase of water (i.e., ice), hydrogen bonds are arranged hexagonally in a sparse

and structured manner, which makes ice lighter than water.

This density characteristic of water has a significant consequence in seasonal tempera-

ture distribution in lakes. Let us take a lake that freezes in the winter as an example. Ice

being lighter than liquid water means that lake freezes at the surface and that the formed

ice insulates the rest of waterbody from the cold atmosphere. And, because the water at

0 ◦C is lighter than the water at 3.98 ◦C, bottom of the lake remains warmer than the top

of water column interfacing ice (0 ◦C). This density gradient and sheltering by ice cover

prevents mixing of layers until the ice is melted and the top part of water warms up to 3.98
◦C. In the summer, solar heating declines exponentially downward from the lake surface,
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which makes the surface layers lighter than the bottom layers, again separating the top wa-

ter from the bottom water. The thickness of the isothermal top layer is determined by the

balance of wind-driven mixing and the reinforcement of the density gradient by solar heat-

ing near the surface. Layers in a stratified water column do not mix very well, but there

is heat exchange due to turbulent diffusion, slowly warming the bottom part of the lake as

summer progresses. In the autumn, heat loss on the surface due to the thermal radiation

exceeds the input of solar irradiance on a diurnal basis. The corresponding density changes

cause convective mixing, which lowers the mixing depth. As the mixing depth increases,

the whole water column will eventually be mixed and become isothermal. This well-mixed

state will continue until the water temperature becomes less then 3.98 ◦C; at this point lighter

and colder water near surface reinforces its position by losing heat due to thermal radiation

and making itself even lighter. These physical phenomena, namely, freezing and thawing of

water, depth distribution of solar energy absorption, convection due to density differences,

wind-driven surface-water mixing, and diffusion of heat due to temperature gradients, are

precisely explained by physical laws and principles. In limnology, vertical separation of lake

water owing to density difference at depths is termed thermal stratification, and the transient

periods between winter cold stratification and summer warm stratification is referred to as

spring and autumn turnover. For a sufficiently deep lake this cycle is evident, and stratifi-

cation cuts deep sediment from the most of the biological happenings in the top part of the

lake. This is relevant, because sediment has been known as a source of nutrients and major

consumer of oxygen, with great significance to the cause and impact of eutrophication.

Limnology of course goes beyond the knowledge that I have just introduced. For ex-

ample, food web and biodiversity is a very highly researched area in freshwater systems.

Cycles of other elements than phosphorus, for example, nitrogen, silica, and sulphur are

also important for understanding of major chemical pathways and related processes. Many

complex combinations of chemical reactions and species interactions happen in the benthic

environment, and accumulated sediment could be sampled to study the past conditions of the

lake and the surrounding (paleolimnology). The phosphorus limitation paradigm that I in-

troduced also is recently more and more disputed with suggested alternative limiting factors

among others being nitrogen and light (Walz and Adrian, 2008).

3 History of lake models

Numerical models have been created in order to represent some subset of the processes

within a lake, although the intention of creating a model varied. Motivation for developing

lake models classified as either heuristic or utility purposes. Some models are developed in

order to test the conceptual connections among known processes that are felt important, and

8



are used to learn about the system (conceptual model). Other models are created and used

for real world purposes, in particular, to provide projection and prediction to help formulate

management plans.

Review papers such as the one by Mooij et al. (2010) summarise the development of lake

models, and their variety in approaches and degree of detail in description of lake (Table 1).

Briefly speaking, the earliest lake models are of static chemical model type (average, and

non-changing by time) that describes the balance of fluxes into or out of lake to determine

the steady-state pools of chemical constituents of the lake. From this type, we saw advance-

ment in modelling more biological and physical aspects of the lake, and most models are

now designed to be able to predict temporal changes by including the time dimension. These

are called dynamic models. Incorporating known processes into models was a logical way

forward, and models have become more complex. Increase in complexity is a rather common

phenomenon also seen in other domains of environmental modelling. Inflating complexity

unfortunately led also to operational hurdles; complex models in general take longer com-

puting time, require more details about lake and inputs, and may become ambiguous and be

able to explain everything, but possibly for wrong reasons. Today, a variety of challenges

are identified for lake modelling, from the need for geochemical and ecological knowledge

advancements to numerical and technical issues. Evidently, the question of what challenge

is the most urgent is often subjective. In my opinion, finding an optimal balance between

complexity and simplicity is the most critical. I find the question of optimal complexity of

lake models interesting, because it is something that is very difficult answer in the traditional

science framework. I also think that the question of optimal model complexity is critical in

providing useful information for the model user.
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4 The model

The model used in this thesis is called MyLake. The MyLake model is a ‘one-dimensional

process-based model code for simulation of daily vertical distribution of lake water temper-

ature and thus density stratification, evolution of seasonal lake ice and snow cover, sedi-

ment water interactions, and phosphorus-phytoplankton dynamics’ (Saloranta and Ander-

sen, 2007). Compared with other lake models, MyLake has a strong flavour of physical

representation of a lake, and a very basic and aggregated representation of biological pro-

cesses. The temporal and physical resolution is minimalistic: time and depth dimensions

only, on a rather coarse grid compared to many other physical models. The design principle

of the model is to keep the processes accountable, attempted by incorporating primarily es-

tablished physical laws and simplifying or avoiding processes that are less established. The

model is therefore not able to simulate certain processes such as trophic interactions among

species, resource competition among species at the same trophic level, or detailed chemical

speciation in the sediment under varying chemical reduction states.

The design and decision to simplify or exclude processes come from various grounds.

One primary reason for being simple is accountability; simple model construction reduces

the risk of unintentionally faking the fit during the calibration process. It has been known

that the more processes and details are added, the easier it becomes to appear consistent

with independently taken observation for model testing purpose (see next section). The

simple construction also makes it possible to explain deviations of model simulations, if

they appear to be governed by parts of the system that are excluded or simplified. One would

expect the model to operate poorly on these missing processes.1 Another primary reason for

the simple construction is the availability of independently taken observation to challenge

the model simulation. Modelling long-term processes such as the nutrient sourcing from the

sediment requires long-term observation data. In our case and in many other applications,

observation record for decades of change in sediment-water interaction is unavailable, and

therefore makes the application arduous and uncertain. Another advantage is MyLake’s

implementation of ice-heat dynamics (Fang and Stefan, 1996; Leppäranta, 1993), which is

not present in many lake models (an exception is the FLake model (Mironov et al., 2010)),

despite being an essential seasonal phenomenon in northern lakes. Because almost all the

lakes that were considered in the present thesis or the relevant projects freeze during the

winter, this was deemed a necessary constituent.

Also important, no model is perfect and it is impossible to fully justify the choice of the

model, or the model construction and design. Thus, with everything taken into consideration,

the choice of model remains subjective. In our case it is true that the model was chosen

1 One example quote describing such a situation is: ‘Models are often more interesting when they fail than
when they succeed’ (Aber and Driscoll, 1997). This perspective was used to provide depth in their discussion.
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also on the ground of familiarity. It is also true that the model does not explain variations

among different algae species, or their interactions with their predators. In addition, it is

true that model does not simulate horizontal gradients of the lake, nor does it manage water

level fluctuations; these were assumed to be negligible. Therefore, sincerely put, the model

choice must be considered a provisional decision. One way of reducing the subjectivity about

the model choice is to incorporate more than one model and use them in a similar manner

(for example, Solomon et al., 2007; Tominaga et al., 2010). But the logistic constraints in

the project regrettably hindered parallel applications of many other models. Nonetheless, a

limited model comparison study was conducted on the catchment models (see the relevant

section).2

The MyLake model is rather new compared with many other lake models, and applica-

tions had been so far limited only in Norway, Finland, and Canada (Dibike et al., 2012, 2011;

Kankaala et al., 1996; Saloranta et al., 2009). The main pedigree of MyLake is the Minlake

model (Riley and Stefan, 1988), which was developed and been applied in Minnesota, USA

many times.3 Overall, the model applications have shown that the model is reliable espe-

cially in the temperature and ice phenology dynamics. Some aspects of the model that we

feel needed challenges are addressed now in the present thesis.

5 Numerical modelling as a subject discipline

In our context, the word ‘model’ is used to represent the complex real world in a simplified

manner. The present thesis revolves around the concept of process-oriented dynamic models.

Contrasting process-oriented dynamic models with empirical stiatistical models, which are

perhaps more commonly used in ecology, is useful for clarification. Examples of empirical

models include traditional statistics, which are for example in biology more commonly used

to derive empirical relationships between variables by taking samples or conducting exper-

iments. Empirically based statistical models are useful in their own right; however, they do

2 There is also a community-based approach in model creation that are currently being developed so that

many different model choices could be more easily compared (Trolle et al., 2012).
3 MyLake was named as such in order to reflect an attitude among not all but some limnologists who

recognise that there are a vast variety of lakes with different processes and dominant phenomena, and say to

another limnologist, ‘Yes, your theory might be right in your lake but in my lake, the situation is different...’

The name also reflects its ability to model ice and snow on surface, as this enables simulation over winter,

hence the multi-year (my) lake modelling. Furthermore, the model name is a multi-lingual word play. MyLake

is based on a model Minlake from Minnesota. MyLake was developed in Norway, and in Norwegian one of the

first-person posessive pronoun forms (equivalent to the English word my) is min, so MyLake is indeed Minlake.

Although originally not intended by the model authors, there is one more inter-linguistic connection with these

two models. The state name Minnesota is named after a river of the same name, which derives the first part of

its name (minne) from the word in the Dakota language that means water (transcribed as mni, mini, or minne)

and is also used for various water bodies. In Norwegian, a typical word for water is vann or vatn, which is often

used for naming lakes. So the first part of the name MyLake (my) goes around a long way to come back to the

second part of the name (lake).
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not explain directly the mechanisms in the natural world. Process-oriented models instead

consist of mechanisms. Some of the processes in process-oriented models may also include

empirically derived relationships to represent an aggregated process, but the aim remains the

same: to describe the system by orchestrating processes.

Many types of process-based models exist, but they have common features; they have

temporal and spatial boundaries and within the boundaries there is a system. To a mod-

eller, a system means a set of state variables that are connected with processes. Processes

are mathematically described, i.e., by formulae, and these formulae come in many flavours.

Some formulae are arithmetic and some are differential equations describing rates of change.

For a model author it is important that these formulae are trustworthy (the best likely knowl-

edge) and not overly complex (Occam’s razor). Decisions about model design, from the

spatiotemporal dimensions to the degree of details, are author specific and subjective. So,

reductionistically put, any process-based model is a collection of deliberately chosen formu-

lae.

As such, the question of credibility arises when a model is used for a real-world appli-

cation. From the philosophical point of view, process-based models cannot be supported in

the same manner as a scientific hypothesis is supported through Popperian falsificationism

(but see Tarantola (2006) for a treatment of how a model application could be seen falsifi-

able). One way to gain confidence in model usage is instead through comparison between

the model output and independently taken observation counterpart. The common practice

is to accept the model if its output resembles separately taken observation. What is consid-

ered similar enough and therefore good enough for credibility is arbitrary decided. In this

paradigm, the observations are considered the absolute target although they must at least

include measurement errors. Perhaps even more frequently conducted is the parameter ad-

justment procedure (‘calibration’) where parameters governing the formula composite (i.e.,

model constituents) are varied until the model output better resembles the target observation.

With this, the acceptance level still remains arbitrary, and furthermore, the model user has to

decide when to stop adjusting. This approach may seem counterintuitive and unaccustomed

to a natural scientist, who often relies on the hypothetico-deductive scheme or Popperian

falsificationism. But this is currently the most common approach in applied environmental

modelling and most modellers characterise the problem as an inverse problem, in which a

model is chosen and its parameters are calibrated to reproduce the observation as close as

possible. The usual rationale is that a model should have predictive power for the future,

because the model itself is based on previously established mechanisms and is able to pro-

duce the observation counterpart after adjusting parameterisation of the mechanisms. It is

usually assumed that adjustment of parameters for process formulae does not undermine the

13



mechanistic representation.4

Today, the art of model calibration goes beyond subjective manual adjustment of model

parameters in an effort to ‘aim’ and ‘shoot’ the target observation. Here, I would like to de-

scribe popular techniques that are relevant to this thesis. For simplicity most of the descrip-

tion assumes that there is only one parameter that we wish to calibrate. But these methods are

all suitable even if we have multiple parameters to calibrate simultaneously for a particular

model, as conducted in the included papers.

In a Monte Carlo method (see, for example, Mosegaard and Tarantola, 1995), parameter

values are repeatedly taken randomly and a range of outputs are produced. This removes the

subjectivity about parameter value choices by allowing ambiguous (i.e., a range of) outputs.

The range of outputs represent uncertainty due to what we do not know precisely about the

parameters. Today, honest description of this uncertainty is increasingly appreciated. Re-

lating to this uncertainty, there is a concept of equifinality that describes the situation where

multiple different combinations of parameters in a highly non-linear and complex model pro-

duce equal or similar outputs (hence the word equi-final-ity) (Beven and Freer, 2001). The

Monte Carlo method therefore has a close affinity with the equifinality phenomenon and is in

principle capable of containing the equifinality of the model. The Monte Carlo method was

once a popular calibration method (and is still no less invalid today) because the range of

outputs could then be compared against the observation and a modeller could decide which

parameter value is most suitable for corresponding to observation, or choose a subset of pa-

rameter values that produce outputs that are within an acceptable level of correspondence.

But for the calibration purpose, the Monte Carlo method is now less preferred because of

its computational inefficiency. As the number of model parameters increases, the number

of all possible combinations of parameter values increases exponentially, even with a Latin

hypercube sampling.

The Markov chain Monte Carlo (MCMC) method (see, for example, Andrieu et al., 2003)

tries to circumvent the computational inefficiency of the ‘classical’ Monte Carlo method,

described above. MCMC is an automatic machine learning method for finding optimal pa-

rameter values. MCMC works in sequence; at each step the performance of a new parameter

4 Example demonstration of MyLake processes upon calibration is given here. Let us say we increase the

effectiveness of wind to mix the water column. It means that during the summer more heat will be distributed

to the deeper part of the lake, changing the temperature distribution at depths. The change of the temperature

affects algae growth. The model outputs (temperature and phosphorus concentrations) can then be compared

against the observation counterpart, such as temperature and algae concentration at depths, to see whether the

increase in effectiveness of wind mixing was appropriate. A relevant complication is that the temperature-

specific algae uptake rate also influences the phosphorus fractions in water and an increase in algae would in

turn increase the light attenuation, which again affects the heat distribution of solar radiation. So we have a

complex relation between the combination of parameter values to the set of model outputs that can be compared

to corresponding observations. The relation is dynamic (temporally changing) and non-linear (not just a matter

of scaling and summation). A typical model application of MyLake involves many more parameters for many

more processes resulting in many more output variables to be compared to multiple series of observations.
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value is tested against that of its preceding parameter and decision is made regarding whether

or not to accept and move to the new value. Sometimes the new parameter value that im-

mediately does not perform as well as the preceding value can be accepted and chain can

move to the inferior value (Metropolis-Hastings algorithm), in order to avoid getting trapped

in a local good value when the best value lies somewhere else (Metropolis and Ulam, 1949).

After a while the sequence becomes long enough and the sequence itself is a collection of

values that are optimised.5

One of the most recent developments in this direction is the DREAM (Differential Evo-

lution Adaptive Metropolis) method (Vrugt et al., 2009). DREAM is a variation of MCMC

and addresses a shortcoming of an ordinary MCMC, namely about determining chain conver-

gence (see footnote 5). A typical MCMC before DREAM had only one chain of parameter,

or in case where multiple parameters were varied at the same time, one set of parameter

chains. DREAM uses instead multiple sets of parameter chains, and these sets of parameter

chains at each step ‘communicate’ among each other to decide on acceptance, and propose

the new candidate parameters. Simply put, DREAM is operating multiple MCMCs at the

same time. Because DREAM runs multiple sets of chains at the same time, the parameter

range is more thoroughly searched and convergence can be more easily and confidently con-

cluded. This can be favourably contrasted to the ordinary MCMC, in which convergence is

hard to distinguish from interim stagnation of parameter chains. When model calibration is

in mind, multiple chains are gathered and parameter values are collected.

5 A more technical overview of a typical random walk Metropolis-Hastings algorithm MCMC variation

in environmental modelling, under the Bayesian inference paradigm, with the assumption that the observation

error is Gaussian distributed, is given in the following. A candidate parameter is drawn from the possible

value range (the proposal probability distribution) and the model output using the parameter value is produced.

By collecting the errors of these outputs against the target observation, one gains likelihood of that particular

parameter value, using the error distribution that was assumed beforehand. By keeping the parameter-likelihood

pair and using a proposal probability distribution, a new parameter is sampled. Using this new candidate

parameter we calculate the new corresponding model output likelihood in the same manner. We then make

a decision whether or not accept the new parameter, taking into account both i) how more probable the new

parameter is compared with the that by the old parameter according to a priori knowledge, and ii) how more

likely the model outcome using the new parameter compared with that using the old parameter. One way to

make the acceptance decision is to do it probabilistically using the prior probability and the likelihood that

have just been evaluated, but in such a way that the less probable and less likely results are accepted sometimes

(Metropolis-Hastings algorithm). Once the decision is made, we either adopt the new parameter or keep the old

parameter, and around the chosen parameter another new candidate parameter is sampled, and the procedure is

repeated until the chain of parameter appears converged. It is not always possible to know the variance of the

assumed Gaussian distribution of observation error that is required for likelihood calculation, and therefore this

can be sometimes included in a list of parameters to estimate (Gelman et al., 2003). If calibration of a model is

concerned, we can take the resulting chain and collect the values to use for the model parameter in subsequent

simulation analyses. Typically, if the parameter is sensitive and therefore changing its values changes the model

outcome substantially, the range of collected values from the converged chain (often referred to as the posterior

distribution) becomes narrower. Disadvantages of this type of MCMC are that the number of chain steps it

takes to truly converge depends on which parameter value to start with, and that one would never be completely

confident that the chain has converged, because the algorithm might not yet have searched everywhere possible.
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With all these advancements in calibration methods, one may get a false impression that

the models are becoming more accurate and more reliable. This is by no means implied

and not necessarily true. Let us remind ourselves that the term calibration is in fact a jargon

used by environmental modellers; the word choice is rather unfortunate because the word

calibration is in ordinary context used to describe adjustment of a high accuracy instrument

against some absolute standard. I write unfortunate because neither of these terms are very

prominent in the model calibration procedure. First, an environmental model is simply an

aggregation of formulae and mechanisms and as a whole it does not have the accuracy status

of instrument such as a thermometer; an environmental model may be partially consisting of

formulae that are not universally accepted among scientists in the particular field of study,

and they carry the equifinality issue as described above. Second, the model calibration is

done against real world observation, but it is impossible to avoid error in observation due

to inaccuracy in measurement and error due to inherent temporal fluctuation (e.g., weekly

samples may miss an episode that happens within the course of a few hours). Therefore, the

observed data to be matched against never have the status of an absolute standard. Hidden

jargons such as the terminology ‘calibration’ require extra attention in the context of inter-

disciplinarity because it may cause misunderstanding. The same precaution should be given

to even stronger words that implies confirmation, such as ‘verification’ and ‘validation,’ both

of which are frequently found in the literature in environmental models. Precise meanings of

these terms might be agreed among modellers, but these words are somewhat illegitimately

and unfortunately chosen, and they are misleading.6 See Oreskes et al. (1994) for a rigorous

examination of these words in the environmental models.

Thus, model calibration in any way does not verify the model itself and its application.

It is simply a popular practice whose sole purpose is to adjust the model to observations,

to address the parameter uncertainty of environmental models, and to explore the variation

in outputs due to the choice of parameter values. Other important sources of uncertainty in

environmental models are:

• Structural uncertainty: Uncertainty due to the way the system is represented (use en-

semble of models to minimise this, but still not possible to eliminate).

• Forcing data uncertainty (Vrugt et al., 2008): Uncertainty in the accuracy of the data

that are fed into the system (e.g., weather or nutrient loading in the case of MyLake).

If the models are used in a sequence, all the uncertainty in the upstream model will

cascade over to the downstream model.

6 Although he may or may not agree with every detail of these points here, I would like to acknowledge

my colleague J. Starrfelt, for my observations I have written here are a fruit of a casual but enlightening

conversation with him.
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• Projection uncertainty: Our inability to know the future conditions. If we use models

to predict future statuses of the environment, the conditions that we pose on the model

may be different in the real time future.

• Epistemological (Epistemic) uncertainty: Uncertainty due to the fact that we do not

know beforehand what we do not know, but we know that there exist something we do

not know.

• Technical error: There is always a possibility that the researchers and model users may

have made mistakes in creating the model code and in administrating the model.

We have seen the present modelling-specific issues that many limnologists and scientists

who are not modellers themselves may feel unfamiliar with. The art of modelling has very

different operating principles than the Popperian definition of science. In my opinion, the

most curious and striking about modelling in contrast to science is its arbitrariness. The de-

sign and formulation is arbitrarily chosen due to authors’ opinion or their familiarity (own

experiences or colleagues expertise) rather than scrutinising all candidate choices. The de-

cision for not using other equally applicable models is often not well justified either. The

‘calibration procedure’ is inherently arbitrary. However, despite these properties, environ-

mental models have been considered useful and have gained a strong share in the academic

literature. The core source of confidence in the model application remains the same (Knutti,

2008): the models are mechanistic themselves, and with calibration they are able to repro-

duce the observation counterparts. This thesis focuses much on the physical and chemical

processes of lakes, which are mostly based on first principles, or widely accepted ’laws’

of nature. At the same time, deliberately excluded are probably important knowledge and

concepts of community ecology, nitrogen limitation, and sediment interactions. We are dis-

regarding these processes either because they cannot be adequately formulated or because

we may be lacking adequate data to confront the model with. In the Eutropia project, the

biological response to change in lake’s physical and chemical conditions will be statistically

predicted using empirical models rather than from dynamical models.

6 Present challenges, approaches and findings

Within the framework of the Eutropia project, my role was to set up the MyLake model in

the two basins of Vansjø (Storefjorden and Vanemfjorden, Figure 2), connect the lake model

with two catchment models (INCA-P (Wade et al., 2002) and SWAT (Gassman et al., 2007)),

and improve the simulation. We identified challenges in achieving them, and our attempts

in addressing these were summarised in Table 2, and the details can be referred to in the

included papers (Papers I to IV).
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Figure 3: MyLake’s performance at Årungen for all seasons. The circles represent lake observations
whereas the lines are MyLake’s simulation after calibration. Winter in-lake data at Vansjø are scarse, so
a separate model test such as this increases confidence in the model through multiple years. Root mean
square error (RMSE) is a convenient statistic that shows on quadratic average how far a model simulation
is from the lake observations. RMSE has the same unit as the measurement unit. Lake observation data
and figure production mainly by A. T. Romarheim. I performed the calibration. This Figure is taken from
Paper I.
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Table 3: Forcasted climate change impacts on lake physical condition (median of 2070-2100 com-
pared to median of 1970-2000). These forecasts are based on generalised additive models from Paper II
and are produced using a generic lake type that resembles Vansjø Storefjorden at a grid location in the
lake. See the manuscript for details.

Variable Change
First ice-on 27 days later
Last ice-off 24 days earlier
Mean ice thickness between the first ice-on and the last ice-off 16 cm thinner
Duration of spring turnover 9 days longer
Duration of warm stratification 11 days longer
Duration of autumn turnover 28 days longer
Mean temperature for the top two metres in January 0.2 ◦C warmer
Mean temperature for the top two metres in February 0.1 ◦C warmer
Mean temperature for the top two metres in March 0.2 ◦C warmer
Mean temperature for the top two metres in April 0.8 ◦C warmer
Mean temperature for the top two metres in May 2.1 ◦C warmer
Mean temperature for the top two metres in June 3.6 ◦C warmer
Mean temperature for the top two metres in July 3.0 ◦C warmer
Mean temperature for the top two metres in August 2.5 ◦C warmer
Mean temperature for the top two metres in September 2.4 ◦C warmer
Mean temperature for the top two metres in October 2.8 ◦C warmer
Mean temperature for the top two metres in November 1.8 ◦C warmer
Mean temperature for the top two metres in December 0.8 ◦C warmer
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Figure 4: Ordination plot among the weather inputs (black), loading inputs (brown), and the model
outputs (blue) using annually based aggregations of a MyLake application at Årungen for 16 years.
Only the loadings from the first two principal components are shown. The variables that occur in the same
direction from the origin or in the opposite direction are closely related. This Figure is taken from Paper I.
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6.1 Other notable findings and relevance to other studies in the project

The Årungen application showed that MyLake was capable of simulating lake physics and

chemistry at all depths for all seasons (Paper I). The observation reproducibility was in fact

better than MyLake applied at the Vansjø basins. There can be many possible reasons for this.

First, Årungen has a much simpler bathymetry. Second, Årungen is much more eutrophic.

But in my opinion the most crucial reason is most likely because the loading estimate to the

lake was more relevant and accurate. In Paper I we used scaled up the volume-weighted total

loading data at the Skuterud observation site located upstream of Årungen. This provided

loading data that are accurate in the amount of phosphorus and sedimenting particles. In

Vansjø, such data are not available as river samples at Hobøl or Guthusbekken only represent

instantaneous concentration separated by periods of weeks (see Paper III). The catchment

models are therefore calibrated to data that may not be ideal for lake water quality, although

that was the best data available for us. Despite this, the monitoring data from the watershed

and the lake were indispensable for the modelling studies.

Because of the very design of the model, the simulation outcome honestly depicts the

limitation of included processes. In this sense, an apparent failure of the model can be con-

sidered a virtue. In case of an apparent success of the model, one will always need to keep

in mind the possibility of the model appearing to be correct for wrong reasons. From my ex-

periences, there were two notable deviations of MyLake simulations from lake observations:

the 2006 algae bloom in Vanemfjorden and the 2008 spike in inorganic particulate and total

phosphorus conentrations in Storefjorden (see Paper IV). In both cases MyLake honestly

showed where omission of unknown processes was significant. Many hypotheses have been

created to explain the 2006 algae bloom in Vanemfjorden. They may for example have the

perspectives of agricultural studies, biogeochemistry, lake ecology, algae physiology, mete-

ology or combinations of these. These explanations may focus on catchment processes or

in-lake processes. In the Eutropia project, many participants from the Department of Chem-

istry at the University of Oslo have been studying biogeochemical hypotheses (relating to

recent reduction in pH in surface waters and iron-phosphorus reduction-oxydation reactions,

for example). In principle, once these processes are scientifically identified, they can be in-

corporated in catchment models or lake models. However, it seems to me that at the moment

of writing this thesis there may not be relevant data to test a model construction using such

a newly identified processes in Vansjø and its catchments even if these hypotheses are well

supported. The 2008 spike in inorganic particulate phosphorus concentration is probably

caused by a major landslide happened along the river Hobøl. A record high total phospho-

rus observation gained much attention from the management bodies. However, this was not

coupled with a large algae bloom. These observations seem to point to a possibility that

much of phosphosrus introduced after the landslide may be detected in laboratory analyses
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and therefore reported, but may not be important in other in-lake phosphorus cycles, such

as algae growth. If this is the case, both catchment and lake models may improve simula-

tion by for example introducing a separate phosphorus variable that does not participate in

many phosphorus transformation processes but is still detected in chemical analyses. But the

difficulties remain in predicting such a sudden, accute, and abrupt incident by an ordinary

deterministic models such as those used in the project. In addition, we may lack relevant

data to test such a model construction. From the management point of view, accountability

of identified processes are important, in order to gain cooperation among the stakeholders.

Accountability of certain processes can be gained for example by quantification, mass bal-

ance, or knowledge conforming to studies from other similar systems. From this perspective,

the current modelling approaches in Eutropia such as the one presented in Paper IV or the

one to be presented using a Bayesian belief network should provide useful knowledge for

management purposes.

We also reckon that the project’s lifespan (three years) was short compared with the

actual changes we expect in the future, both owing to management measures and to the

short-term and long-term changes in the nature. Monitoring (Lovett et al., 2007), evaluation

of management measures, and improvement in modelling all require future commitments.

7 Concluding remark

I would like to end this thesis by stating that interdisciplinarity of the Eutropia project across

natural and social sciences was crucial in conducting these studies. It enabled my attention

on both the modelling and limnology disciplines, but it also gave me a rewarding feeling that

my findings have wider relevance to real world concerns.
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Abstract   

The simultaneous action of multiple environmental pressures limits our understanding of the 

impact of individual factors on the lake processes. In this model experiment, the MyLake model 

was used to disentangle the importance of year-to-year variations of meteorological forcing and 

nutrient loading on the eutrophic and particle loaded Lake Årungen, Norway. Daily 

meteorological and runoff input data were used to reconstruct the lake response for the period 

1994 to 2010, and to simulate the lake responses under different weather and loading scenarios 

for the same period. Both weather and loading exhibited year-to-year variation, and therefore 

affected physical, chemical and biological lake responses. Air temperature and precipitation were 

most variable during the winter. Variation in runoff volume was most prevalent during autumn 

and winter, while variation in phosphorus inflow was most extensive from late winter to early 

spring. Thermal related properties in the lake were highly determined by weather conditions, 

whereas loading was the most important factor for phytoplankton biomass and water 

transparency. Mild winters and increased input of suspended matter and phosphorus were 

followed by increased phytoplankton biomass and light attenuation. Thus, in lowland lakes 

surrounded by erosive soil, mild winters may promote summer blooms with low water 

transparency. Our study shows that future changes in the global climate may have important 

implications for local water management decision-making.  
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Introduction  

 

Nutrient enrichment of lakes may lead to high phytoplankton mass development, low water 

transparency, and fish mortality due to oxygen depletion (Smith et al., 1999). Mainly two factors 

affect the nutrient loading to lakes: 1) the soil and land use in the lake catchment, and 2) the 

hydrology of the watershed. Phosphorus is generally regarded as the determining nutrient for 

phytoplankton production in freshwater lakes (Schindler, 1977). Much effort has therefore been 

given to reduce phosphorus input to aquatic ecosystems, which has demonstrably lead to reduced 

phytoplankton production and increased water transparency in many lakes in Europe and North 

America (Jeppesen et al., 2005). On the other hand, many lakes have showed delayed or 

negligible improvements in water quality despite reduced nutrients loading (Jeppesen et al., 

2007a). 

Year-to-year weather variation has also been recognised to affect physical, chemical and 

biological processes in lakes (Bailey-Watts & Kirika, 1999; Blenckner et al., 2007; Jeppesen et 

al., 2007b, 2009; Whitehead et al., 2009). Increased air temperature has been shown to increase 

the water temperature (George et al., 2007) and the stability of thermal stratification (Straile et 

al., 2003a), change the phytoplankton community towards dominance of species adapted to 

warmer water (Weyhenmeyer et al., 2002), and may lead to earlier and higher phytoplankton 

production (Weyhenmeyer et al., 2002; Huber et al., 2008). The changes in thermal conditions 

and mixing regime can in turn influence the light, oxygen and nutrient dynamics in the lake, and 

thereby impact the phytoplankton primary production and community structure (Tirok & Gaedke, 

2007; Wilhelm & Adrian, 2008). Precipitation is also deemed as an important factor determining 

the water transparency, runoff intensity, and suspended matter discharge (Arheimer et al., 2005; 

Nõges et al., 2007; Ulén et al., 2007).  
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Norway has, generally, a low fraction of arable land (3%) and low population density (12 

persons km-2), so eutrophication is mainly recognizable in intensive agricultural districts at low 

altitudes. Lake Årungen is situated in a developed agricultural area south-east in Norway, and is 

one of the most nutrient rich lakes in the country. Geological studies suggest that the natural 

phosphorus concentration of lakes in this area is 7-8 mg m-3 (Borch et al., 2007). Eutrophication 

became a problem in the lake during the 1960s, with phosphorus concentration exceeding 400 mg 

m-3 in the 1980s (Løvstad & Krogstad, 1993). Algal blooms, low water transparency, malodorous 

water, reduced fish stocks, and occasional mass mortality of fish were observed in the lake in this 

period (Ensby et al., 1984). Heavy algal blooms still occur, despite investments in sewage 

treatment and extensive changes in agricultural practices since the 1970s to reduce nutrient 

leaching and erosion from the catchment. 

Predicting eutrophication responses to nutrient loading is a complex task due to the 

temporal dynamics of lake’s response to weather and runoff. This makes the traditional empirical 

approach to the problems unreliable. Thus, lake models based on system of processes have been 

identified as a primary tool for improving our understanding of recovery and progression of 

eutrophication (Mooij et al., 2010).  

The main aim of the current study is to evaluate the relative importance of year-to-year 

variation of two major factors, namely meteorological forcing and nutrient loading, contributing 

to lake’s physical, chemical and biological conditions. To this aim, 1) the MyLake model 

(Saloranta & Andersen, 2007) was calibrated against the lake data, 2) various meteorological and 

nutrient loading scenarios were then applied, and finally 3) the predicted lake responses were 

compared among different scenarios.  
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Material and methods 

 

Study site 

 

Lake Årungen is a dimictic lake with maximum and average depths of 13 and 8 m, respectively. 

The lake is located in south-east Norway, 25 km south of Oslo (59°41'18"N, 10°44'38"E; Fig. 1), 

and has a surface area of  1.2 km2. The catchment area covers 51 km2, where 53% is agricultural 

land, 34% forestry, 10% densely populated and 3% open water surfaces. The lake is highly 

exposed to agricultural runoff that causes high nutrient and particle loading. Runoff is mainly 

through 6 streams of 1.5 to 5 km length. The outlet connects the lake to the marine environment 

as Lake Årungen enters the Oslofjord through a 3 km long stream. 

 

MyLake model inputs and outputs  

 

MyLake is a one-dimensional lake model, adapted from MINLAKE (Riley & Stefan, 1988), 

which simulates daily changes in physical and chemical dynamics over the depth gradient 

(Saloranta & Andersen, 2007). The model simulates ice and snow dynamics in a mechanistic 

manner and it has been applied to winter-freezing lakes in Norway and Finland (Lydersen et al., 

2003; Saloranta, 2006; Kankaala et al., 2006; Saloranta et al., 2009). It was therefore considered 

as a suitable model for Lake Årungen. 
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MyLake requires input of meteorological forcing, runoff volume and temperature, and 

fluxes of suspended inorganic particles and total phosphorus (TP) to model phosphorus and 

phytoplankton dynamics in the lake (Table 1). Meteorological data for daily air temperature, 

global radiation, cloud cover, precipitation, relative humidity and wind speed were obtained from 

the nearby meteorological station located at the Norwegian University of Life Sciences 

(59°39'37''N, 10°46'54''E). Time series of daily runoff volume, runoff water temperature, and 

fluxes of suspended inorganic particles and total phosphorus are available for the period 1994 to 

2010 from the Skuterud monitoring station (Fig. 1) with a hydrovolumetric weir. The monitoring 

station is located at an inlet stream to Østensjøvann (59°41 18 N, 10°49 45 E), a small lake of 

0.4 km2 which drains into the Lake Årungen (Deelstra et al., 2007). Runoff from the other sub-

catchments was estimated by scaling up the Skuterud data. The up-scaling was based on 

previously determined flow and nutrient scaling factors that take into account differences in area 

and land use between sub-catchments (Askilsrud, 2010). A separate MyLake model was set up 

for Lake Østensjøvann to account for the buffering effects of this lake in the largest sub-

catchment of Lake Årungen. The simulated water properties of Lake Østensjøvann were 

combined with runoff from the other sub-catchments as an estimate of the total runoff to Lake 

Årungen.  

Six variables including whole-lake average TP pool, mean surface chlorophyll 

concentration, light attenuation coefficient, thermocline depth, epilimnion temperature, and ice 

thickness were calculated from unprocessed model outputs (Table 1) in order to ease 

interpretation of the statistical analyses for scenario experiment described below. 

  

Model calibration 
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Water temperature, TP, soluble reactive phosphorus (SRP), and chlorophyll a concentration from 

the deepest location in the lake were used to calibrate the model (Table 1). Vertical water 

temperature profile was continuously logged every hour at eight depths between 0.7 and 12.6 m 

by Hobo pendant temperature loggers (model 64K - UA-002-64; Onset Computer Corporation, 

Bourne, MA, USA) in the period from November 2008 to August 2010. Water samples for 

chemical and biological analyses were collected with a modified Rüttner water sampler at seven 

depths twice a month or monthly (n = 49) from January 2008 to September 2010. TP, SRP and 

chlorophyll a were determined spectrophotometrically (UV-VIS Spectrophotometer UV-1201, 

Shimadzu, Kyoto, Japan).  

We deployed the Markov chain Monte Carlo (MCMC) method (Andrieu et al., 2003) to 

calibrate the model. The calibration consisted of two stages. The first MCMC calibration stage 

involved three physical parameters (see Table 2) that only affect heat dynamics, in particular 

thermocline depth. This first calibration was run against daily temperature measurements, using 

2,000 MCMC steps with the first 1,000 for burn-in. The second MCMC calibration stage 

involving eight parameters (see Table 2)  that affect phosphorus and chlorophyll dynamics, but 

not temperature, was run against measurements of TP, SRP, and chlorophyll a in 30,000 MCMC 

steps with the first 10,000 for burn-in. For these MCMC applications, convergence was 

monitored visually. Linear interpolation was used to match model outputs on a 0.5 m vertical grid 

to the actual measurement depths. Although it was not used directly during the MCMC 

calibration, model goodness of fit was assessed by root mean squared prediction errors (RMSE). 

The medians of the posterior parameter distributions generated from both stages of the MCMC 

calibrations were used for the scenarios experiments described in the following. 
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Model scenarios 

 

The model was run for six nutrient loading and weather scenarios to quantify the impact of 

weather variation and loading conditions on phosphorus and phytoplankton dynamics (Table 3). 

These scenarios were based on input combination of observed data (original data, 1994-2010) 

and synthetic data, where the synthetic data were created by taking the year-to-year mean (n = 

16) of each of the day of the year. Synthetic data repeats the calculated mean year with 365 days 

sixteen times. The 29th of February is removed in year-to-year mean calculation, and 28th of 

February was repeated to account for the 29th in leap years.  

 

Statistical methods  

 

A two-way analysis of variance (ANOVA) was run on the 16 years of water year based 

simulation statistics (water year mean, see Table 1), among scenarios A, B, C and D (two weather 

factors by two loading factors, see Table 3). All annual averages are computed over the period 

from 1st October to 30th September, commonly used in Europe to refer on a hydrological year, or 

a water year (Otnes & Ræstad, 1978). Since treatment contrasts are nested within water years we 

factored out the between-year variances to gain a greater power in the statistical tests. Principal 

component analysis (PCA) was used to explore the relationships between meteorological and 

land-related forcing and their relevance for the simulated lake response. Four water years with 

extreme PCA scores were selected for studying contrasting lake responses in closer details. 

  

Results  
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Calibration  

 

The simulated water temperature and thermal dynamics of the lake were in agreement with the 

lake observed data. Observed water temperature measurements were well predicted by simulation 

and the RMSE was less than 2°C at all lake depths (Fig. 2). After the water temperature 

calibration, parameters controlling TP, SRP, and chlorophyll a were calibrated against observed 

data for the period from January 2008 to September 2010. The epilimnion TP, SRP, and 

chlorophyll a were well predicted by the model, although their prediction was less successful 

than the prediction of the water temperature. The TP and SRP were better predicted by the model 

in shallower water than in deeper water whereas the chlorophyll a showed the opposite pattern. In 

general, the model simulated well TP and SRP, although both phosphorus forms were 

overestimated in early spring and autumn at shallow depths, while underestimated in bottom 

water. Simulated SRP concentrations were also somewhat higher than observed in winters. 

However, the simulation succeeded in showing a decreasing trend of lake phosphorus in spring 

and midsummer, and in mimicking its increase during the autumn mixing of water. Although the 

simulated chlorophyll concentrations were lower than measured, the model was able to predict 

seasonal variation in phytoplankton primary production and to simulate high phytoplankton 

biomasses in the lake epilimnion during midsummer.  

 

Input variability  

 

Inter-annual variation was expressed as the standard deviation in inputs and outputs between the 

years. All weather inputs varied between years (Fig. 3), with air temperature and global radiation 

having the strongest seasonal pattern in inter-annual variation (i.e. greater 16-year variation as 
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compared to year-to-year variation on a day-of-year basis). The inter-annual variation in air 

temperature was strongest in the winter period, whereas global radiation varied most during the 

summer months. The variation in cloud cover, precipitation and relative humidity was generally 

similar across seasons. The year-to-year variation for precipitation was particularly high in 

December and in the period from July to September, the latter reflecting extreme precipitation 

events. Wind speed varied most in winters. 

Runoff input data on water flow and concentrations of TP and suspended matter all varied 

seasonally and between years. The variation in runoff volume was greatest in the period from 

October to May. No clear seasonal pattern in the degree of variability could be found for 

suspended matter and TP fluxes, although the variation of TP influx seemed to peak in February-

March. 

 

Output variability 

 

Differences in year-to-year variation among the scenarios (Fig. 4) and the annual statistics (Table 

4) illustrate the seasonal influence of the external forcing on the thermal regime and the 

phosphorus and phytoplankton dynamics in the lake. The lake responded differently between 

years; all simulated outputs, except ice thickness, showed large variation in the beginning and at 

the end of the phytoplankton growing season (Fig. 4). All simulated output variables were 

influenced by external forcing to some extent as they varied inter-annually for all model 

scenarios. Ice thickness was significantly affected by weather (P < 0.001) as both air temperature 

and winter precipitation highly contributed to its variation between years (Table 4; Fig. 4). The 

variation in thermocline depth in May and October was well revealed by the model, and seemed 

to be equally dependent on weather and loading. The epilimnion temperature during the whole 
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growing season was largely controlled by weather. The TP content in the lake was most variable 

in the period from November to January, and in April and July. Loading could mostly explain the 

inter-annual TP variation in the lake, whereas precipitation contributed to TP variation only in the 

spring, and air temperature only during the winter period. Loading was the overall most 

important factor in controlling the light attenuation coefficient (P < 0.001) and surface 

chlorophyll concentration (P < 0.001). Weather seemed to be important in controlling chlorophyll 

and light attenuation in early spring whereas loading was the most important factor controlling 

the both variables from June to September.  

The years 1996, 2000, 2006 and 2007 were the four most extreme years determined on the 

basis of the PCA analysis (Fig. 5). The year 1996 was characterized by relatively low average 

annual air temperature, a thin cloud cover and low precipitation, which resulted in low epilimnion 

water temperature, short lasting thermocline, low runoff volume, and TP in the lake. The year 

2007 represents an opposite to 1996, regarding weather characteristics and resulting model 

simulation with relatively high average annual air temperature and precipitation. Increased wind 

speed and low winter air temperatures and precipitation coincided with increased ice thickness 

and global radiation such as in 2003-2006, 2009 and 2010. These weather conditions resulted in 

lower suspended inorganic particles and TP in runoff which coincided with lower surface 

chlorophyll concentration and light attenuation. The year 2006 was identified as the extreme 

during this period, with a cold winter followed by a warm summer. In contrast, the year 2000 was 

characterized as a year with less global radiation, lower summer air temperature, and higher wind 

speed, but with higher winter temperature and precipitation. Such weather conditions pronounced 

higher TP and suspended particle in runoff compared with an average year, resulting in a high 

surface chlorophyll concentration and lower water transparency.  
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Discussion  

 

Year-to-year variability in lake responses 

 

Year-to-year weather variations, as well as the influence of catchment land-use and hydrology 

hinder our understanding of how individual stressors may affect the lake response (Blenckner, 

2005). Our model experiment, which involved the input of weather and loading data for 16 years, 

was able to outline the importance of year-to-year variation in external forcing on physical, 

chemical and biological response in Lake Årungen. The combination of high forcing variability 

and high lake response sensitivity made the inter-annual variation most dramatically expressed in 

spring and autumn.  

Air temperature, precipitation, and wind speed are the principal factors influencing 

freshwater ecosystems in a changing climate (Nickus et al., 2010). The lake thermal regime was 

to a large extent affected by weather conditions, particularly by air temperature. Variable winter 

air temperatures were an important factor influencing the heating and mixing processes during 

spring. A dynamic physical environment at the beginning of the growing season has considerable 

influence on the phytoplankton community structure and its dynamics (Weyhenmeyer et al., 

2002). Increased surface water temperatures in the English Lake District (George et al., 2007) 

and incomplete water mixing in Lake Constance (Straile et al., 2003a) have earlier been 

associated with mild winters. High inter-annual variation in winter air temperatures in Lake 

Årungen was reflected in the simulated ice thickness and phenology of ice formation, with ice 

forming in December-January and disappearing in March-April. Also in other lake studies, 
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decreased ice thickness and reduced duration of ice cover have been related to mild winters 

(Nickus et al., 2010). In this study, the time of thermocline formation varied among years by 

more than one month, from mid-April to mid-May. The large year-to-year variation in 

thermocline depth and duration could lead to changes in temperature, light, and nutrient condition 

in the lake, which further shape the phytoplankton community and determine its total biomass 

(Padisak et al., 2010; Zohary et al., 2010). For instance, early disappearance of diatoms and high 

development of cyanobacteria in European lakes has been related to winter warming and 

increased water temperature (Weyhenmeyer et al., 2002). Furthermore, increased water stability 

also favors the buoyant phytoplankton species such as bloom forming cyanobacteria (Reynolds et 

al., 1983; Winder & Hunter, 2008).  

Year-to-year variation in phosphorus content in the lake was highly influenced by loading 

which indicated that the external nutrient supply remains an important source of phosphorus in 

the lake. Although the changes in nutrient loading are primarily linked to anthropogenic activities 

in the catchment, particularly to practices in agriculture, the short-term variations in weather and 

runoff will also influence the nutrient supply from external sources. Lake Årungen is surrounded 

by agricultural land, and is especially sensitive to variable weather conditions that promote 

nutrient loading from the catchment. Air temperature and rainfall frequency and intensity, all 

affect the runoff and the soil erosion pattern, particularly during the winter period. Increased 

winter temperatures with frequent freezing and melting events increase the risk of erosion, which 

again will increase the nutrient loading to the lake (Bechmann et al., 2005; Nõges et al., 2007; 

Jeppesen et al., 2009). Although not statistically demonstrated in the present study, the indirect 

impacts of weather conditions on discharge may still be important in regulating the nutrient 

dynamics. Variable winter weather conditions, and the time of ice out were most important cause 

of year-to-year variable phosphorus content in the period from November to January and in April 
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in Lake Årungen. Enhanced phosphorus concentrations in streams during winter, and high 

phosphorus loading in early spring, both contribute to the total lake phosphorus concentration 

during the following summer in two Norwegian lakes with agricultural catchments (Bechmann et 

al., 2005). In addition, the variation in summer TP content could also be the result of between-

year variation in rainfall, especially due to extreme precipitation events as observed for particular 

days in July. High inter-annual variation in TP content can consequently result in variable 

phytoplankton biomass between years. 

Phytoplankton biomass and light were significantly affected by loading, although 

atmospheric forcing also contributed to their inter-annual variation in the lake. The effect of 

loading was pronounced during the whole algal growing season, whereas weather had the 

strongest effect in early spring and from mid-August to the end of the growing season. Thermal 

stratification is highly dependent on weather and may further influence water mixing as well as 

light and nutrient regimes, which are important in controlling the phytoplankton dynamics 

(Padisak et al., 2010; Zohary et al., 2010). Similar pattern of year-to-year variation in water 

temperature, chlorophyll concentration, and light attenuation indicates a close relationship 

between these variables. Increased air temperature promoted higher water temperatures and 

higher stability of the thermal stratification which enhanced phytoplankton production, 

particularly of bloom forming cyanobacteria (Reynolds et al., 1983; Weyhenmeyer et al., 2002). 

Increased runoff and soil erosion, caused by intense precipitation and frequent melting of snow 

and ice during mild winters, affect eutrophication and water turbidity (Bechmann et al., 2005; 

Jeppesen et al., 2009). Light, therefore, may limit phytoplankton growth more than nutrients in 

highly turbid lakes such as Lake Årungen (Dokulili, 1994). Reduced light availability may be 

crucial for the competitive success of cyanobacteria which are functionally adapted to low light 

conditions (Litchman, 1998). Particularly high dominance of cyanobacteria has been observed in 
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the Lake Årungen after mild winters followed by low light conditions in spring (Romarheim et 

al., unpublished). Therefore, the additional measures to control soil erosion should be considered 

in water management, not only to reduce the supply of nutrients, but also to avoid low water 

transparency which may favour development of potentially toxic cyanobacteria.  

 

Implications for lake management 

 

According to our PCA analysis, most of the 1990s were categorized by winters with higher 

temperatures and more rainfall.  The mild winters were related to a positive North Atlantic 

Oscillation (NAO) phase which has been shown to strongly influence physicochemical and 

biological responses in western European lakes (Weyhenmeyer et al., 2002; Straile et al., 2003b; 

George et al., 2007). The effect of climate condition on water ecosystems, however, should be 

considered individually as the lake response is also determined by the lake’s geographical 

position, landscape topography, and the lake’s morphometry and mixing regime (Nickus et al., 

2010). Our model experiment indicated that increased inflow of suspended matter and 

phosphorus to the lake Årungen may be expected after mild winters with high precipitation. 

Consequently, high chlorophyll concentrations and increased light attenuation were predicted 

after mild and wet winters such in the year of 2000. Mild winters may thus counteract measures 

aimed to reduce external nutrient supply and to control phytoplankton production in temperate 

lakes. On the contrary, cold winters were related to thicker ice layer, less inflow of suspended 

matter and phosphorus, and low chlorophyll and light attenuation. This was consistent with the 

observed increase in water transparency and reduction of phytoplankton biomass, particularly of 

cyanobacteria, in Lake Årungen after the cold winter in 2010 (Romarheim et al., unpublished). 

Special attention must therefore be given to management practices, which should minimize the 
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use of fertilizers and reduce the risk of nutrient runoff and soil erosion, especially in areas that 

drains directly into the lake. Increased annual air temperature coincided with warmer epilimnion, 

shallower thermocline and extended summer stratification such as for the year of 2007. In 

addition, high annual precipitation and runoff volume, particularly in summer, coincided with 

warmer years. The latest Intergovernmental Panel on Climate Change Assessment reported that 

all years in the period from 1995 to 2006, with exception of 1996, were globally among the 

warmest since 1850 (Trenberth et al., 2007). Similarly, the year 1996 was characterised with low 

average annual air temperature in our model experiment. Lower annual air temperature and low 

rainfall in 1996 lead to low epilimnion temperature, and a deep and short lasting thermocline. 

According to best available future climate predictions for Scandinavia, warmer winters and 

increased winter precipitation are expected in south-eastern Norway (Hanssen-Bauer et al., 

2005). If so, we should also expect more intensive soil erosion, higher phosphorus loading, 

reduced water transparency, and increased phytoplankton biomasses, primarily of cyanobacteira 

in the lakes. Global climate changes and inter-annual variations in the local weather both directly, 

and indirectly through an impact on the catchment, influence the physicochemical and biological 

processes in lakes. Therefore, the effect of climate should be considered in future decision-

making concerning water management. 
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Figure captions 

 

Fig. 1 Map of catchment draining into (1) Lake Årungen (59°41'18"N, 10°44'38"E), with the (2) 

weather station at Ås, (3) Lake Østensjøvannet and (4) the Skuterud monitoring station. Runoff 

data from the Skuterud sub-catchment (indicated by dark shading) are scaled up according to land 

area and usage of the rest of the catchment to estimate the total loading to Lake Årungen 

 

Fig. 2 Simulated (line) and observed (circles) lake state variables for water temperature, TP, SRP, 

and chlorophyll a concentrations at seven depths   

 

Fig. 3 Input variability shown as standard deviations on a water year scale (day-by-day, year-to-

year variation, n =16, curves), with the overall 16-year standard deviations indicated by 

horizontal lines  

 

Fig. 4 Output variability shown as standard deviations on a water year scale (day-by-day, year-to-

year variation, n =16) for scenarios A (top of the forward diagonal band), B (bottom of the 

forward diagonal band), C (top of the backward diagonal band), and D (bottom of the backward 

diagonal band). See Table 3 for scenario configurations 

 

Fig. 5 Principal component analysis (PCA) loadings for the two greatest components, together 

with the scores for the two components for 16 water years (letters). The arrows are scaled and 

therefore only meaningful for comparison within PCA axes 
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Fig. 3 
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Table 1 Input and output data, and observed lake data for the calibration of the MyLake model 

and statistics for the ANOVA and PCA analyses   

aDaily data 
bBiweekly data 
cAnnual mean  
dWater year basis (October through September) 
eVolume weighted above thermocline depth 
fInferred with data from Ås meteorological station 
(http://www.umb.no/fagklim/artikkel/meteorologiske-data-for-as) 
gInferred with data from Skuterud monitoring station and land use 
hDecember through March, mean 
iJune through September, mean 

MyLake inputs MyLake outputs (selected) Observed lake data 
Meteorologicala, f Calibration purposea Calibration purpose 

Air temperature  (every 0.5 m by depth) (at 7 depths) 
Global radiation Water temperature Water temperaturea 
Cloud cover TP concentration TP concentrationb 

Precipitation SRP concentration SRP concentrationb 
Relative humidity Chlorophyll concentration Chlorophyll a concentrationb 
Wind speed   

 Statistics calculated for PCA  
Runoff a, g (volume weighted mean 0-3.0 m)  

Flow volume TP content  
Water temperature Mean surface chlorophyll  
Suspended matter flux Light attenuation coeficient  
TP flux Thermocline depth  

 Mean epilimnion temperaturee   
Statistics calculated for PCA Ice thickness  

Global radiationc   
Cloud coverc   
Air temperaturec   
Wind speedc   
Precipitationc   
Flow volumec  
Winter air temperatured,h  

 

Summer air temperatured,i   
Winter precipitationd,h   
Summer precipitationd,i   
Suspended matter fluxd   
TP fluxd   



 

Table 2 Parameters involved in calibration based on two-stage Markov chain Monte Carlo 

(MCMC) application (first stage for three parameters using 2,000 MCMC steps with 1,000 steps 

for burn-in and second stage for eight parameters using 30,000 MCMC steps with 10,000 for 

burn-in). MyLake equation numbers refer to the original model description (Saloranta & 

Andersen, 2007). Median values were chosen among the posterior parameter distribution 

 Value MyLake 
equation 

Unit 

Physical parameters    
Open-water vertical diffusion coefficient 5.00E-01 eq. 10 m2 day-1 
Wind sheltering coefficient 7.96E-02 eq. 13  
Minimum possible stability frequency 9.31E-05 eq. 10 sec-2 

   
Biological and chemical parameters    

PAR saturation level for photosynthesis 2.04E-04 eq. 29 mol quanta m-2 sec-1 
Particle resuspension mass transfer coefficient 2.94E-05 § 2.7 m day-1, dry sediment 
Settling velocity for suspended matter 1.38E+00 eq. 20 m day-1 
Settling velocity for chlorophyll 7.31E-02 eq. 20 m day-1 
Specific mortality rate of phytoplankton  1.86E-01 eq. 26 day-1 
Max specific growth rate of phytoplankton  1.76E+00 eq. 27 day-1 
Half saturation inorganic phosphorus concentration 
for Langmuir isotherm 

9.99E+02 eq. 24 mg m-3 

Saturation level for inorganic phosphorus isotherm 4.96E+04 eq. 24 mg kg-1 
 



 

Table 3 Model scenarios. The scenarios comprise either original input data (denoted O), pseudo 

repeated average year based on 16-years of input data (denoted R), or a combination of O and R 

 Model scenarios 
Model inputs A B C D Dt Dp 
Weather       

Global radiation O R O R R R 
Cloud cover O R O R R R 
Relative humidity O R O R R R 
Wind speed O R O R R R 
Air pressure O R O R R R 
Air temperature O R O R O R 
Precipitation O R O R R O 

       
Runoff       

Flow volume O O R R R R 
Suspended matter flux O O R R R R 
Inflow water temperature O O R R R R 
TP flux O O R R R R 

 
 
 
 
 
 
 
 
 
 



 

Table 4 Summary results for six two-factor within-subject ANOVA (n = 16  2  2). 

Significance of additive and interactive effects of weather (two levels, original O or repeated 

average R) and loading (two levels, original O or repeated average R) inputs on the six selected 

model outputs. High P-values for interactive effects for all six tests indicate pure additive two-

factor model and test for each factor separately. P-values below 0.05 are highlighted (shown 

bold) and indicate significant differences between corresponding sample means 

 P-value 
Model outputs W L W × L 

Ice thickness, m < 0.001 0.839 0.560 
Thermocline depth, m 0.281 0.218 0.398 
Epilimnion temperature, °C 0.014 0.135 0.771 
TP content, kg 0.365 0.088 0.726 
Surface chlorophyll, mg m-3 0.699 < 0.001 0.791 
Light attenuation coefficient, m-1 0.360 < 0.001 0.836 
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Northern lakes are expected to respond strongly to changing climate, with severe 

consequences both for lakes as habitats and as providers of ecosystem services. Inferences 

about thermal responses of lakes to climate change based on extrapolation from empirical 

statistical relationships can obscure important interactions between atmospheric forcing and 

water body. Here, we present projections for thermal response of generic lake types with 

representative physical features based on a process-based lake thermodynamic model. As 

model input, we used regional synthetic weather for the reference period (1970 – 2000) and 

scenario period (2070-2100) based on a regional climate model under the IPCC A1B emission 

scenario. The simulations were applied to a grid covering major latitudinal, altitudinal, and 

oceanic climate gradients of the northern hemisphere, using Fennoscandia (Finland, Norway, 

and Sweden) as an example study region. Our simulations indicate that during the 21st 

century ice cover duration will shorten on average by 53 days, while summer mean 

temperature will increase by 2.4-2.5 C in the epilimnion and 2.0 to 2.3 C in the hypolimnion. 

These changes will be pan-regional and substantially faster than the already extensive change 

observed in the 20th century, with threshold impacts such as ice disappearance affecting many 

parts of the region. Our simulations also indicate that the magnitude of projected climate 

change impact is highly dependent on the physical feature of the lake, with depth and surface 

area being more important than water transparency.  
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Sensitivity of freshwater lakes to changing climate has been repeatedly demonstrated by 

significant trends in historical time series of seasonal phenology, water temperature, 

stratification patterns, and ice cover (e.g. Magnuson et al. 2000; Adrian et al. 2009; 

Weyhenmeyer et al. 2011). Such changes in thermal conditions are likely to have severe 

consequences for lakes as habitats and as providers of a vast array of ecosystem service, 

including fisheries, drinking water, local and global climate control, and recreational uses (e.g. 

Shuter et al. 2012; Helland et al. 2011; Schröter et al. 2005). Thermal changes in lakes can 

also affect primary production and other light-dependent ecological processes (O’Brien 1979; 

Finstad et al. 2004; Smol et al. 2005). These conditions signify that assessment of future 

climate change impact on lakes is becoming an increasingly relevant and urgent task under 

projected change in climate during this century. 

 

Prediction of lake responses to long-term alteration of atmospheric conditions can be based on 

empirical relationships dependent on climatic statistics (i.e., average weather) or on process-

based physical models that operate on daily weather conditions including extreme events.  

Empirical approaches provide advantages in the form of robustness, particularly when used 

on multi-lake estimations, such as regional approaches (e.g. Weyhenmeyer et al. 2011). On 

the other hand, because daily weather conditions control many physical mechanisms by which 

lakes respond, process-based models capable of representing intricate physical mechanisms 

can be advantageous. For example, deep, large, or clear lakes store more heat in the summer 

due to greater area-specific heat capacity, greater wind-driven vertical mixing, or deeper 

penetration of short-wave radiation, than shallow, small, or humic ones (Blenckner 2005), and 

such processes can be influenced by daily weather progression. Furthermore, process-based 

models are more immune to artifacts due to temporal data aggregation. For example, 
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empirical models may suffer from multicollinearity among predictors, which can mask 

regional variation in climate factors. 

 

In the present study, we present projected impacts of the climate change for generic lake types 

based on a process-based lake thermodynamics model (Saloranta & Andersen 2007), using 

atmospheric forcing by synthetic weather from an European regional climate model. We used 

Fennoscandia (Finland, Norway, and Sweden) as the example study area because the region 

has a compact geographical extent and at the same time broad gradients in boreal, oceanic, 

and altitudinal levels. Throughout this region, we systematically explored the significance of 

both physical lake types and geographical variations in atmospheric forcing on lake 

thermodynamics. Owing to Fennoscandia’s climate diversity, our conclusions should also 

pertain to boreal lakes in other regions of the northern hemisphere. 

 

 
The MyLake model. For simulating thermal responses of lakes to climatic forcing we 

employed a one-dimensional, process-oriented model for simulating mean diurnal vertical 

distribution of water temperature and density, and evolution of ice and snow cover (MyLake; 

Saloranta & Andersen 2007). The processes included in MyLake (e.g., surface heat balances, 

shortwave radiation penetration, vertical diffusion, wind mixing, and ice formation and 

breakup) are based on physical first principles; this design enabled mechanistic representation 

of the ways weather conditions influence the distribution of heat in lakes. The MyLake model 

has been previously applied to a number of locations and its heat balance simulation is well 

tested against separately taken observations (Saloranta et al. 2009; Dibike et al. 2011, 2012). 

The model is capable of simulating phosphorus dynamics through a simple algal growth 

model, but in the present study all chemical and biological processes were turned off. 
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Likewise, we ignored the often negligible contribution by catchment runoff to the lake heat 

budget. These simplifications reduced the computational load considerably and allowed 

greater spatial and temporal scope to the study. Physically-based models such as MyLake are 

often calibrated for a site-specific application (Tarantola 2006), but site-specific accuracy was 

considered irrelevant for the present study. 

 

Weather inputs.  The weather simulation used as the input to the lake model was generated by 

a regional climate model (RCM) application from the ENSEMBLES project (Van der Linden 

& Mitchell 2009). We used the HIRHAM5 RCM application, with boundary conditions given 

by the ECHAM5 global circulation model (GCM), conducted by the Danish Meteorological 

Institute (Van der Linden & Mitchell 2009). The GCM is forced under the Intergovernmental 

Panel on Climate Change (IPCC) A1B emission scenario (Nakicenovic et al. 2000). In 

northern Europe, the A1B scenario is anticipated to lead to an annual mean air temperature 

increase by 2.3 to 5.3 C, depending on the GCM (median 3.2 C), and a 9 % increase in 

precipitation by 2080-2099 compared with 1980-1999 (Christensen et al. 2007). The air 

temperature increase is expected be even more pronounced in the north-eastern part of the 

region when compared spatially, and in the winter when compared seasonally. 

 

Daily mean weather variables were calculated from instantaneous RCM outputs where 

applicable. We only used approximately a quarter of all the 25 x 25 km Gaussian grid points 

in Fennoscandia of the original RCM simulation, yielding a 50 x 50 km grid cell size. The use 

of synthetic daily weather data facilitated simulation of daily lake temperature during the 

critical phases of ice formation and establishment of summer stratification. The current study 

ran simulations in two 30-year scenarios: the reference scenario (1970-2000) and the future 

scenario (2070-2100). The same RCM was used for both scenarios to cancel out linear RCM 
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biases in the scenario contrasts. The 30-year weather inputs were preceded by a spin-up 

consisting of the first year repeated three times in order to thermally equilibrate the modelled 

lake to the local climate.  

 

Lake types. For each RCM grid cell, we simulated ice cover and daily vertical temperature 

profiles for 27 generic physical lake types (hereinafter simply ‘lake types’) comprising of all 

possible combinations of 3 levels of 3 key lake characteristics depth (6, 24, 96 m), surface 

area (1, 10, 100 km2), and vertical light attenuation coefficient (0.18, 0.90, 4.50 m-1) (Table 1). 

The chosen light attenuation levels approximately correspond to Secchi depths of 10, 2, and 

0.4 m (Kirk 1994). Lake bathymetry was assumed to be an inverted cone, such that the mean 

depth was one-third of the maximum depth, simply referred to as 'depth' in this study. Surface 

area also determined the parameterisations for wind-driven mixing and vertical diffusion 

processes, based on empirical relationships from a regional study of lakes in Minnesota, USA 

(Table 1; Hondzo & Stefan 1993). The levels of the different factors were chosen to cover the 

range of lakes in the region according to the classification system of the European Union 

Water Framework Directive; the light attenuation coefficient levels correspond with the clear, 

humic, and polyhumic lake categories (Carvalho et al. 2008). Use of generic lake typology 

allowed orthogonal design of the study, which increased the statistical power for assessing the 

general impact of climate change on lakes of varying type and interaction effects between 

typological factors. In addition, the variability represented by these generic lake types covers 

most of the actual lake population. 

 

Analyses and presentation of results. Our simulation study produced daily thermal profiles 

and ice and snow cover for 30 years using 27 lake types at 472 locations under 2 simulation 

periods (reference (1970-2000) and future (2070-2100)). Daily model outputs were 
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aggregated as monthly arithmetic means for each individual simulation run, and stored for 

post-processing. Most results presented here use the 30-year median for modelling for 

regional gradients, as well as contrasts between lake types and scenarios. Calculation of solar 

irradiance penetrating the water surface included the albedo and shading effects of ice if 

present. Epilimnion temperature was defined for the top metre for the shallow lake 

configuration (6 m) or the top two metres for the mid and deep lake configurations (24 m and 

96 m). Hypolimnion temperature was defined for the bottom metre for the shallow lake 

configuration or the bottom two metres for the mid and deep lake configurations. Each 

aggregated output variable had altogether 27 × 472 × 2 = 25 488 entries. 

 

Ice-on day was defined as the first ice covered day after the open-water period with the 

highest surface water temperature. Ice-off day was defined as the last ice-covered day before 

such an open-water period, in the following year. Ice duration was defined to be the number 

of days inclusive between the ice-on and ice-off days of year. For a multi-year contiguous ice 

cover period, the last year of the period received the remainder of the total ice duration time 

with the preceding years receiving the full year ice duration. Because winter is spanned 

through two consecutive calendar years, only 29 sets of these ice phenology variables were 

available from each 30-year simulation run. Intermittent thawing of ice cover was also 

modelled and recorded, but due to the way ice phenology variables were calculated this does 

not affect our presentation. 

 

Regional gradients of parameters affecting the surface heat fluxes of lakes were represented 

by principal component scores (PCs) of aggregations from the RCM-based weather data. The 

chosen climatic indicators variables for our context were: whole-year, summer (June and 

July), and winter (December and January) mean solar irradiance, air temperature and 
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precipitation, and whole-year mean air pressure, cloud cover, humidity, and wind speed 

(Table 2). All variables were averaged location-wise over the reference period (1970-2000) 

before principal component decomposition of the resulting column-centred and unit-scaled 

472 by 13 matrix.   

 

Process-based lake responses were summarized by generalized additive models (GAMs; 

Wood 2006) using spline smoothers to represent nonlinearities in climatic gradient effects and 

linear orthogonal contrasts for lake type factors, simulation scenarios, and their interactions.  

Effect sizes were computed as differences in explained variance caused by omitting a factor 

from the full model that includes all secondary pair-wise contrast interactions. These 

differential variance contributions were then normalised to the null model variance of the 

corresponding response parameter. We used the R package mcgv to create additive models for 

predicting the response parameters.  

 

Most of the computation was scripted and run on Amazon Elastic Compute Cloud under the 

Ubuntu Linux operating system, but our scripts do not use any operating system specific 

functions. Approximate scale of computation amounted to 850,000 MyLake simulation years, 

which alone took 1,500 CPU-hours at 2.5 GHz CPU-clock frequency (2.5 Elastic Compute 

Unit according to Amazon’s abstracted computing power metric). All simulations were 

performed deterministically, which ensures reproducibility of the results. The script files are 

available upon request. 

 

 
We assessed the realism of our simulations by comparing them against a proxy for 

observations: ice phenology projection by an empirical model (Weyhenmeyer et al. 2011). 
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The empirical model is based on geographical variation of recent northern hemisphere climate 

observations and statistically relates ambient air temperature and latitude to ice phenology. 

We applied the Weyhenmeyer model to the same synthetic weather data used as MyLake 

input, and compared the projected ice phenological events. Whereas this involves 

extrapolation beyond the temporal scope of the Weyhenmeyer model, the models correspond 

very well to each other (Fig. 1), with overlapping patterns under both simulation scenarios 

(1970-2000 and 2070-2100). The close relationship between our model predictions and an 

empirical model of ice phenology in Sweden supports the credibility of the un-calibrated 

MyLake model for this purpose. It also indicates that substantial parts of the residual variance 

in the Weyhenmeyer model, also discussed by the authors, can be explained mechanistically 

by taking additional lake attributes such as depth into account. 

 

The first four principal components (Table 2) accounted for 90% of the total variance in the 

regional climatic gradients (Fig. 2). PC1 (41% of total variance) can be interpreted as the 

boreal temperature gradient with greater values indicating colder climate. The lower values in 

the future scenario are a consequence of increased air temperature. PC2 (25% of total 

variance) mostly represents precipitation and is a proxy for the oceanic humidity and 

precipitation gradient. The greater values in the future scenario are an indication of increase in 

precipitation. PC3 (17% of total variance) mostly represents the heat transport effect from the 

North Atlantic Current. In the future scenario the scores are greater, which may suggest that 

the North Atlantic Current heating effect will be less important. PC4 (7% of total variance) 

appears to represent high elevation climate, with lower values for the future scenario 

suggesting that high elevation characteristics will be less pronounced. The four smoothed PCs 

were all significant (P < 0.001) in all GAM models, signifying how the geographical patterns 
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in lake ice and thermal dynamics are driven by the overlying climate. Significant coefficients 

for other independent variables are shown in Table 3. 

 

Relative importance of explanatory variables (regional climatic gradients and orthogonal lake 

type contrasts) on monthly aggregated simulation outputs are represented as GAM effect sizes 

(Fig. 3), with significant contrasts between the reference and future scenarios for all variables. 

The regional climate gradient effects are stronger for irradiance (Fig. 3a) than for epilimnion 

and hypolimnion temperatures (Fig. 3b,c), across all months. This decreasing trend follows 

the proximity to the surface, and is also reflected in the phasing of their summer extremes 

(Livingstone & Lotter 1998), with maximum solar radiation at midsummer, maximum 

epilimnion temperature in July, and maximum hypolimnion temperature in August. It is also 

noticeable that regional climatic effects on hypolimnion temperature (Fig. 3c) were higher in 

circulation periods (spring and autumn), than in periods with density stratification (summer 

and winter) when the hypolimnetic environment is practically isolated from atmospheric 

forcing. Summer stratification stability, represented by the density difference between 

epilimnion and hypolimnion (Fig. 3d), was clearly more influenced by lake type, especially 

depth, than regional climatic gradients and climate change scenarios.  

 

The GAM analyses can only explain variance due to additive contrasts between climate 

scenarios, while some effects are probably better modelled by non-linear terms. Fig. 4 shows 

the climate change effects in greater detail for one particular lake type with intermediate depth, 

area, and transparency (24 m, 10 km2, 0.9 m-1). While the climate change effect on ice 

duration is close to additive for this particular lake type (Fig. 4a), the effects on winter 

subsurface irradiance (Fig. 4b) and summer water column stability (Fig. 4d) are closer to 

multiplicative, and the summer epilimnion temperature effect is uni-modal (Fig. 3c). Ice cover 
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duration is projected to shorten for all lakes in the region from the reference scenario (1970-

2000) to the future scenario (2070-2100), with the greatest changes in lakes that currently 

have the shortest winters (Fig. 4a). Winter sub-surface irradiance is predicted to increase 

about 6-fold in the current darkest lakes, while the projected change will be less dramatic in 

lakes with better underwater light conditions in winter (Fig. 4b). Average summer epilimnion 

temperatures will increase less in the currently warmest lakes than the colder ones, with 

absolute increases up to 6 C at intermediate temperatures (Fig. 4c). Only a small fraction of 

the lakes will experience unchanged or reduced density stratification stability in the summer, 

while the majority is predicted to gain a 2.5-fold increase in the density difference between 

epi- and hypolimnion (Fig. 4d). 

 

Our simulations indicate that under present-day climate (1970-2000) 99.5 % of all 

combinations of lake types and simulation grid points develop ice cover in winter (Fig. 5a). In 

the future scenario (2070-2100), 6.2 % of these lakes are expected to have open water 

throughout the winter in an average year, with the southernmost part of Sweden being most 

affected (Fig. 6a). The risk of becoming ice-free varies with depth, with the deepest 

configuration (96 m depth) being the most vulnerable. For this configuration, lakes with ice 

duration shorter than 100 days in 1970-2000 are likely not to form ice by 2070-2100 (Fig. 5b). 

The other two lake type factors, namely surface area and light attenuation coefficient, were 

less important in determining lake ice phenology. The remainder of the lakes (93.3 %) are 

simulated to remain winter-freezing by 2070-2100. However, timing of ice-on will on average 

be delayed by 27 days and ice-off advanced by 24 days, when all lake types are taken together 

(Table S1). This also entails a substantial increase in the amount of solar radiation that 

reaches the water phase (Fig. 6b), due to the general thinning of the ice cover in addition to 
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the reduced duration. Winter underwater irradiance is thus predicted to increase 6-fold on 

average in the future scenario.  

 

The climatic changes projected by the IPCC A1B scenario will also cause lake water 

temperature to increase throughout the region (Fig. 6c). In the spring, these increases can be 

attributed to the shortening of ice duration; the earlier ice break in 2070-2100 allows earlier 

heating of surface water in the spring. In the summer, lake water temperature is predicted to 

increase during the 21st century by 2.4 to 2.5 C in the epilimnion and 2.0 to 2.3 C in the 

hypolimnion (Table S1). This is mostly due to the increase in air temperature, which reduces 

long-wave radiative heat loss from the lake surface.  

 

 
Local climate had a high impact on the heat balance of lakes, showed by large-sized effects of 

regional climatic gradient in all GAM models (Fig. 3). However, when adjusted for these 

regional climatic differences, there still remained substantial variance explained by both lake 

type contrasts and climate scenario effects. The climate sensitivity and succeeding 

consequences for lakes as habitats and providers of ecosystem services are therefore likely to 

vary considerably among neighbouring lakes differing in morphometric characteristics.  

 

The most important factor explaining seasonal cycles of physical dynamics among lake type 

variations was depth; the depth factor was as important as the simulation scenario contrast for 

explaining epilimnion temperature, and even more important for hypolimnion temperature. 

Future lake temperature changes will therefore be at least as large as current differences 

between nearby lakes of different depth classes. There is also a strong seasonal pattern in the 

effect sizes of lake depth (Fig. 3b,c). Deeper lakes provide greater heat storage during the 
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summer (June-September), thereby increasing the total heat content of the lake. This delays 

the ice formation for deep lakes, causing significantly higher epilimnion and hypolimnion 

temperatures during winter (October-March). Spring turnover is mostly explained by climatic 

gradients and simulation scenario, and therefore apparently resets the differences caused by 

the depth factor (April-May). The effect of surface area was smaller than for depth, although 

the effect of increasing surface area on the seasonal pattern was similar to increasing depth. 

This is likely due to larger lakes having deeper mixing and accordingly also higher summer 

heat storage.  

 

The effect of light attenuation was highest in summer, but always substantially lower than any 

of the other explanatory variables. Conceptually, one would expect that lakes with high light 

attenuation coefficient would have higher epilimnion and lower hypolimnion temperature 

than clearer ones, due to shallower penetration of solar radiant flux. Yet, relevant physical 

explanations are that water transparency only affects the visible part of the solar spectrum, 

while the near infrared component (usually close to 50% of solar energy flux) will in any case 

be dissipated very close to the surface. Heat is distributed vertically by both radiative and 

turbulent processes, whose relative importance scale with wind energy transfer efficiency, and 

thus with lake surface area. This offers an explanation why Fee et al. (1996) found stronger 

impact of water transparency on vertical temperature distribution in lakes smaller than 0.5 

km2 than in larger ones, and also why we see so little effect of water clarity in our simulations 

using a minimum lake size of 1 km2. The literature documents increase in humic content of 

freshwater systems observed recently (Roulet & Moore 2006) and projected continuation of 

this trend in the future (Larsen et al. 2010). This brownification trend may have numerous 

biogeochemical and ecological consequences, but its impact on ice cover and daily mean 

temperature of lakes are likely to be negligible, with a possible expiation for very small water 
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bodies not covered by the present study. 

 

The process-based understandings from the present study offer an insight into the pronounced 

residual variability of the ice-on prediction in the Weyhenmeyer et al. (2011) model. Apart 

from the regional and temporal climatic contrasts, our GAM results indicate that lake depth 

explains more of the residual variability in ice-on time and ice cover duration than the other 

two lake type factors (Fig. 3), in accordance with the discussion by Weyhenmeyer et al. 

(2011). This implies that the timing of ice cover formation is most crucially dependent on the 

heat storage capacity of the water column. The main process for heat loss is long-wave back 

radiation, which depends on the temperature difference between air and water surface. The 

deeper and the more homogeneously heat is distributed, the less heat is lost by surface long-

wave back radiation.  

 

Because ice and snow albedo dramatically affects subsurface light penetration, decreased ice 

cover duration will most likely increase annual primary productivity in northern lakes, simply 

by increasing the length of the growing season. The relative impact of changes in ice 

phenology on primary productivity will be strongest in the lakes that currently have the most 

extensive ice cover, i.e., arctic and alpine regions. Palaeoecological evidence from arctic lakes 

indicates that even modest lengthening of the growing season may entail dramatic changes in 

plankton community structure, as well as in the relative importance of benthic versus pelagic 

primary production (Smol et al. 2005). Empirical data suggest that earlier ice-off may not 

only change the timing of the diatom spring bloom but also increase its magnitude (Adrian et 

al. 1999). The same authors also showed that the spring bloom timing affected the seasonal 

succession of rotifers and daphnids, but found no direct effects on the timing and maximum 

of other major groups of autotrophs and herbivores. Shortening of the ice-covered season may 
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expand and dilate the post-spring bloom successional pattern by inducing phenological 

mismatches between prey and predator (Winder & Schindler 2004), extending phases of over-

grazing (Scheffer et al. 2001), and prolonging summer blooms of nuisance algae (Hyenstrand 

et al. 1998). 

 

The physical changes predicted in the present study will have dramatic consequences on lakes 

as habitats and ecosystems. Ice cover, water temperature, vertical density stratification, and 

underwater light field are important determinants of physical habitat. Northern freshwater 

lake ecosystems are populated by species with behavioural and physiological strategies 

shaped to deal with extended periods of ice cover. The projected change will progressively 

reduce the relative advantage that winter specialists have over more eurythermal species in 

interspecific interactions (Pörtner et al. 2006), decreasing local abundance and contracting 

distributional ranges (Finstad et al. 2011; Helland et al. 2011; Ulvan et al. 2012). The effect 

of shorter ice cover duration may also be intensified by difficulties cold-water fish such as 

salmonids will face under epilimnetic summer warming (Somero 2010), particularly in small 

and shallow lakes which may no longer offer hypolimnetic thermal refuges.  

 

Our findings that are based on the currently best available regional climate model for northern 

Europe support the results of earlier lake temperature modelling studies in North America 

(Fang & Stefan 1998, Hostetler & Small 1999). Lake thermal balances are predicted to be 

changing faster than the rates recently documented for northern freshwater systems 

(Magnuson et al. 2000), with magnitudes that are certainly alarming from ecological and 

human utility points of view. We urge bridging studies that bring process-based simulations 

such as ours to more ecologically and biologically oriented models in order to assess the 

pertinent impacts of the climate change on lake biota. 
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Table 1. Lake typology levels and derived quantities. The wind sheltering coefficient (*) 

refers to Saloranta and Andersen (2007), equations 13 and 14, and Hondzo and Stefan (1993). 

The diffusion coefficient scaling parameter (**) refers to Saloranta and Andersen (2007), 

equation 10, and Hondzo and Stefan (1993). Secchi disk transparency (***) is not used as a 

MyLake input parameter, but was used as a basis to determine the light attenuation levels in 

the lake typology. 
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Table 2. Loadings for principal components of climatic indicators. Principal component 

decomposition of mean daily RCM-generated weather data for the reference period (1970-

2000), standardised by mean centring and standard deviation scaling. Summer values refer to 

the arithmetic means for June and July, and winter values for December and January. The 

RCM results themselves are results from a European project ENSEMBLES.  
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Figure 1. Ice phenology simulated by MyLake compared with predictions based on the 

empirical model by Weyhenmeyer et al. (2011). Comparisons were made for the three 

variables most relevant in relation to historical records (Magnuson et al. 2000): a, ice-on day 

of year, b, ice-off day of year, and c, ice duration (days). Matches were made for 472 

locations under 2 simulation scenarios (1970-2000 and 2070-2100), using 2 lake types, i.e., 

shallow (6 m) or deep (96 m) configurations with the intermediate levels of surface area (10 

km2) and light attenuation coefficient (0.9 m-1). Different colours were used for contrasting 

simulation period and depth. The Weyhenmeyer model is not applicable for semi-freezing 

lakes that experience frequent thawing during the winter (Livingstone & Adrian 2009), but 

we nevertheless present the comparison (using open symbols) since MyLake also calculates 

ice phenology values for such lakes. 

 

Figure 2. Scores of the four first principal components of weather data for the reference 

scenario (1970-2000) together with scatter-plots showing the expected change in these 

gradients during the 21st century. Variable loadings are shown in Table 2. The future 

scenario (2070-2100) principal component scores were calculated with the same centring and 

scaling of variables as for the reference scenario in order to facilitate direct comparison.  

 

Figure 3. Relative importance of factors influencing underwater irradiance, water 

temperature, and water column stability. Monthly effect sizes expressed as fractions of 

explained variance in generalized additive models (GAMs) of 4 state variables: a, sub-surface 

solar radiation adjusted for ice cover albedo, b, epilimnion temperature, c, hypolimnion 

temperature, and d, density difference between epilimnion and hypolimnion. Effect sizes are 

represented non-cumulatively by fractions of explained variance on a square-root scale, with 
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inner circles spaced at every 0.2 unit. The outer thick line is the total explained variance by 

the full model.  

 

Figure 4. Predicted effects of climate change during the 21st century on underwater 

light and water columns stability for all RCM grid locations (n = 472). Scatter plots of the 

future scenario (2070-2100) against the reference scenario (1970-2000) for: a, ice cover 

duration, b, sub-surface solar radiation in winter (log-scaled), c, epilimnion temperature in 

summer, and, d, density difference between epilimnion and hypolimnion in summer. Winter 

values refer to averages for December and January, while summer values are averages for 

June and July. Only values for the lake type combining the intermediate levels of depth (24 

m), surface area (10 km2), and light attenuation coefficient (0.9 m-1) are shown. Dots are 

plotted with reduced opacity to give more weight to overlapping data points. Dashed lines 

indicate (a) 50 days absolute decrease, (b) 10-fold relative increase, (c) 5 C absolute increase, 

and (d) 2.5-fold relative increase.  

 

Figure 5. Ice cover durations under current and future climate, grouped by lake depth 

(n =  472). Ice durations for all lakes within a depth category were averaged and ranked 

among RCM grid locations. The resulting ranking was used to draw lines representing the day 

of year for ice-on (left curve) and ice-off (right curve), in the reference period (1970-2000; 

panel a) and the future climate scenario (2070-2100; panel b). 

 

Figure 6. Spatial distribution of predicted impacts of climate change during the 21st 

century on three key variables related to the heat balance of lakes. a, annual ice duration, 

b, mean winter (December and January) sub-surface solar radiation, and c, mean summer 

(July and August) epilimnion temperature, under the reference (1970-2000) and the future 
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(2070-2100) scenarios shown in the left and right panel, respectively. Only values for the lake 

type combining the intermediate levels of depth (24 m), surface area (10 km2), and light 

attenuation coefficient (0.9 m-1) are shown. Maps were generated by interpolating the 472 

RCM grid vertices by simple kriging with a linear semi-variogram model. 
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Abstract

Probabilistic parameter estimation methods such as Markov chain Monte Carlo are increas-

ingly used to estimate quantify uncertainty in poorly known parameters of dynamic process-

oriented environmental models. Although these methods are useful in illustrating the param-

eter uncertainty, cascading impacts of the parameter uncertainty of sequentially connected

models are poorly understood. We address this type of uncertainty first by classifying it

into three categories, and then by performing a case study on eutrophication to demonstrate

different sources of uncertainty. The results suggest that 1) calibration of the downstream

model are influenced by the choice of upstream model simulation, that 2) input uncertainty
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on the simulation of the downstream model can also be as important for the final forecast

as the parameter uncertainty of the downstream model itself, and that 3) it is possible to

combine these uncertainty types to produce overall parameter uncertainty of two connected

models in model projections. The scenario analysis is demonstrated by forecasting the ef-

fectiveness of an economically expensive measure against the eutrophication problem. The

present investigation forms a generic platform for carefully studying this type of sequential

modelling uncertainty also in other application fields of environmental modelling.

1 Introduction

Methods for probabilistically determining parameter uncertainty of dynamic process-based

environmental models became prominent in the past decades (see, for example, Andrieu

et al., 2003; Beven and Binley, 1992; Tarantola, 2006). These methods effectively summa-

rize the covariance structure of a high-dimensional parameter space, provide less subjective

calibration and reveal forcast uncertainty caused by ambiguously defined parameterization.

They have been utilized in many application fields of environmental modelling, and they are

increasingly favoured by resource managers for forecasting future changes that are ultimately

linked to probabilistic cost-benefit analyses (Barton et al., 2012).

Many of these methods work within an inverse problem, in which parameter values of a

model is estimated so that, with given forcing inputs, model output reproduces independently

taken observed measurements (Beven and Freer, 2001). It is increasingly recognized that

multiple combinations of parameter values can be considered equally likely to be a true

candidate, because they result in similar overall proximity to the target observations (i.e.

equifinality).

Recognition of the equifinality phenomenon has been an important step forward in pa-

rameter uncertainty study, though cascading impacts of this phenomenon on the true pa-

rameter uncertainty are often poorly treated. This is especially pertinent when two or more

models are connected and applied sequentially and their parameters were calibrated individ-

ually. Connecting one environmental model to another is now ubiquitous. For example, with

the forthcoming climate change (Solomon et al., 2007), forecasts by climate models can be

used as inputs to for example models of surface waters, forestry or agricultural systems to

determine possible impacts of the climate change on these landscapes. Connecting models

is also a common practice on a regional or local scale. For example in order to simulate

the water quality in lakes with short water renewal time, it is often necessary to model ma-

jor processes governing temporal variability in fluxes from the catchment. Outputs from

such catchment models are then used as an input to a lake model that eventually provides

the ultimate simulation results. In these cases, properly treating cascading impacts of the
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equifinality phenomenon can be crucial.

Here, we first define three forms of uncertainty in relation to equifinality of connected

models. Thereafter we discuss the extent of these uncertainties in an example case of catch-

ment and lake modelling in a eutrophication study.

2 Typology of calibration uncertainties in sequantial model
application

2.1 Own parameterization uncertainty

Probabilistic calibration methods such as Markov chain Monte Carlo (MCMC) reveal sets

of calibrated model parameter values yielding simulation outputs that are deemed equally

likely. This uncertainty is commonly referred to as “parameter uncertainty” or “calibration

uncertainty.” These designations are however not precise and specific enough for the present

discussion, and therefore we call it own parameterization uncertainty (OPU) in the present

study.

Let the model be a differential equation

dx
dt

= fx(x(t),u(t)|px),

where x(t) is a vector of state variables at time t, u(t) is a vector of forcing input variables

at t, and px is parameterization of model dynamics fx (Figure 1). Probabilistic calibration

methods provide a set of equally likely parameter vectors Px = {px}i. Then we make a set

of equally likely simulations {x(t,u(t),px,i)}i. OPU is contained in this simulation set and

is thus quantified. Arbitrarily chosen quantiles such as the 95-percentile might be used to

produce a confidence envelope of the simulation.

2.2 Calibration input uncertainty

As described earlier, modelling of nutrient budgets in freshwater systems may require con-

necting a hydrologically upstream model to a downstream model. However, use of output

from one model as input to another model creates new sources of uncertainty. When both

models require calibration, the upstream model’s OPU causes ambiguity in the inputs for the

downstream model. At the same time, calibration and hence the posterior parameter space of

the downstream model depend on the input data during calibration. In the present study, the

upstream model (catchment model or lake model) provides nutrient and suspended particle

loadings to the downstream model (lake model). In one case we may choose a particular
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model run of the upstream model that has simulated high nutrient loading to use as the in-

put for lake model during calibration. The lake model calibration then needs to strengthen

scavenging processes such as particle sinking in order to match with the target P concentra-

tion measured in the lake. In an alternative case, we could have chosen another catchment

model run which provides low P loading, which is yet equally likely as input for lake model

calibration. The lake model calibration would then respond by reducing the particle sinking

velocity. This creates a different but equally likely calibration. This type of impreciseness in

the downstream model calibration is not only inconvenient, but potentially has a significant

impact for the final simulation. We will call this type of uncertainty due to ambiguity in the

calibration input calibration input uncertainty (CIU).

CIU accounts for that the input to the downstream model is a result of the upstream model

that requires calibration and hence contains probabilistic ambiguity. Let the upstream model

be a differential equation
du
dt

= fu(u(t),v(t)|pu),

where u is the state variables to be used as input to the downstream model, v is the forcing

variables, and pu is parameterization of model dynamics fu (Figure 1). Let us say that

a calibration of the upstream model yielded a set of parameter vectors Pu = {pu} j with

corresponding simulations {u(t,v(t),pu, j)} j. This implies that the set of model parameters

from the calibration of the downstream model is a function of the particular parameterization

j of the upstream model such that

Px( j) = {px,i(u j)}i.

The ambiguity originating from the choice of the upstream model calibration j influences

the calibration of the downstream model, and this is the CIU.

CIU emerges also when one needs to make a choice for the input data among several

sources. As an example, the present study compares inputs from two catchment models of

different complexity which give different load estimates as outputs. We are interested in

how the difference in loading is realized in final lake model outputs. The downstream lake

model calibration is optimized to reproduce lake observation as close as possible, regardless

the loading input provided. The calibrated set of parameters of the lake model will thus be

different when different input sources are used. Details are discussed in chapter 3.

2.3 Simulation input uncertainty

Input ambiguity becomes even more critical when a simulation (e.g., hindcast, forecast, or

hypothetical management or climate scenarios) is run using a chosen calibrated model. The
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ordinary uncertainty propagation strategy is to include all combinations of uncertainty at

each iteration. However, simply combining OPU of the upstream model and OPU of down-

stream model that is based on a single choice of upstream model run input will misrepresent

the actual uncertainty. As discussed, we have multiple equally likely calibrations, each with

its own calibration input. Ideally, the corresponding calibration input u j or its variation u∗
j

should be used together with the matching calibration px(u j) to produce a simulated output

x. This demands that many sets of calibrations are run to couple with a variety of inputs.

This is unfortunately not practical due to the computational requirement of each calibration.

In this study we call this uncertainty stemming from the multiple choices of the input data

that feed into a single already calibrated model, the simulation input uncertainty (SIU). Al-

though the parameterizations of the two models do not correspond to each other, studying

how the downstream model reacts to varying runs from the upstream model is still useful in

order to quantify how the CIU of the upstream model can be substantiated in the output of

the downstream model.

Let us select a single calibration of the downstream model p̂x ∈ Px( j) = {px(u j)}i for

simplicity. This reduces the CIU (a single choice over j) and the OPU (a single choice over

i). For each calibration of the upstream model pu, j ∈ Pu, there is a corresponding simulation

u(t,v(t),pu, j) and x(t,u(t,v(t),pu, j), p̂x,i)

The aim may be to study the effectiveness of a hypothetical management scenario. De-

pending on the type of changes required in the hypothetical scenario we modify either the

parameters pu or the time series input v(t) to implement the scenario. In this paper we take

as an example the vegetative filter strip management (VFS) where streams are enveloped

with grassland to reduce phosphorus in surface runoff from the agricultural field, described

more in detail below. The modelled effect of this can be realized by changing the parame-

ters pu, j to p∗
u, j, where parameters that are not affected by the VFS management option are

inherited. This change creates an alternative hypothetical simulations u∗(t,v(t),p∗
u, j) and

x∗(t,u∗(t,v(t),p∗
u, j), p̂x,i). If we instead need to run a hypothetical simulation for example

under different weather inputs to simulate the impact of climate change, then we create cor-

responding simulations u∗(t,v∗(t),pu, j) and x∗(t,u∗(t,v∗(t),pu, j), p̂x,i), where v∗(t) is the

change in forcing inputs. For either situation the SIU underlines that the choice of param-

eterization pu, j of the upstream model generates ambiguity in the downstream simulation

x.

3 Case study: Nutrient status of lake Vansjø

Here we take as an example case an uncertainty assessment of the eutrophication status of

Vansjø in southeast Norway for the period 1993-2010 (Figure 2). The target waterbody

5



for the present case was the western basin (Vanemfjorden), which was monitored for water

quality and modelled by MyLake (Saloranta and Andersen, 2007). Upstream of this basin, 4

other hydrological elements (Vanemfjorden local catchment, Storefjorden lake basin, Store-

fjorden local catchment, and river Hobøl, Figure 3) were modelled using catchment models

INCA-P (Wade et al., 2002) and SWAT (Gassman et al., 2007), or the lake model My-

Lake (Table 1). The uncertainties in these upstream models cascaded over to MyLake at the

Vanemfjorden basin (Figure 3). This setup thereby examines CIU, OPU and SIU of mod-

elling of the Vanemfjorden basin, described in detail below. See Appendices for the details of

the site description, models, available data and calibration methods. We can then denote the

status of the Vanemfjorden basin as x(t,u(t,v(t),pu, j), p̂x,i), where t is days from 1 January

1993 to 31 December 2010, u(t,v(t),pu, j) is the daily input into Vanemfjorden, a function

of the choice of the model and the choice of calibration j, and p̂x,i is a particular own calibra-

tion i. After preparing calibration, we made multiple different model configurations (MCs)

to produce multiple final simulations in the Vanemfjorden basin. Various comparisons of

these MCs were then made (Table 2), with each comparison scheme having an intention of

studying a particular uncertainty.

From the perspective of the Vanemfjorden basin, there are many sources of uncertainty

in inputs to the basin that are related to the flux of P and suspended solids (Table 3). The va-

riety of equally likely inputs has implications to CIU and SIU of MyLake simulations at the

Vanemfjorden basin. For CIU we made two calibrations, instead of calibrating MyLake for

every possible combinations of inputs. These two calibrations are produced using two differ-

ent inputs that are created for the input from the Vanemfjorden catchment by two different

models (SWAT and INCA-P). The models have varying complexity levels and hence require

different amounts of effort for setting up. They also diffe a r in capability in implementing

certain land management practices. For example, SWAT enables policy related assessment

of land management options that is not possible with INCA-P. We restricted SWAT to the

Vanemfjorden catchment and used it in a very detailed manner while the rest of the catchment

was taken care of by INCA-P, such that we were able to set up the model for the larger catch-

ments to Storefjorden. The motivation of separating the catchment into two groups with dif-

ferent levels of details was also supported by the expectation that the upstream Storefjorden

basin most likely functions as a sedimentation basin, which stabilses the Storefjorden-origin

particle loading into the Vanemfjorden basin. The lower complexity does note imply that the

INCA-P is less accurate because model complexity does not directly translate to accuracy or

accountability, primarily due to inflation in the number of model parameters needed to pro-

duce plausible simulations. In addition, INCA-P’s calibrated parameters for the river Hobøl

at the Kure weir (Figure 2) were imported to the Vanemfjorden local catchment to produce

a parallel input to SWAT’s input. Thus, INCA-P’s simple simulation for the input from local
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Vanemfjorden catchment provides an alterntiave to a detailed SWAT simulation.

Below, we describe the specifics of the model comparison schemes.

The comparison scheme I studies the OPU of SWAT and how this realizes in the Vanem-

fjorden basin as the SIU of MyLake. The comparison scheme II studies the same uncer-

tainties for INCA-P connected to MyLake for the same basin. Three variations of each of

SWAT and INCA-P were taken to represent their respective parameter uncertainty. These

three represents variation in total P loading due to uncertainty in parameterization for each

model.

The comparison scheme III was designed to study the uncertainty associated with the

use two different models for different groups of catchments. MC 2 represents the “refer-

ence” or “best research effort” configuration using SWAT-based input for calibration and

the best SWAT parameterization for simulating input for the whole 18-year period. MC 5

uses INCA-P-based input for calibration and the median INCA-P run as input for the whole

period, representing the “low research effort” situation. MCs 2 and 5 use their respective

MyLake calibrations, and this should therefore reflect the comparison based on different

research effort levels. MC 7 is a combination of INCA-P inputs and MyLake’s “foreign”

calibration using SWAT input, and adds another dimension to the comparison. We expected

that the MC 7 to perform poorer during MyLake’s calibration period (2005-2010), that the

difference between MC 2 and MC 7 be greater than the difference between MC 5 and MC

7 in the earlier hindcast period, and that the difference between MC 5 and MC 7 account

for the inconsistency between the input used to calibrate the model and input used to make

simulations (namely the inconsistency between u1 and u2 in simulation x(t,u2(t),px(u1))).

The comparison scheme IV studies the uncertainty associated with the loading input

from Sundet, i.e., the water input from the Storefjorden basin. The Storefjorden basin water

is used as input to the Vanemfjorden basin, but modelling of Storefjorden basin itself depends

on the upstream model INCA-P for loading. From the perspective of studying the SIU of the

Vanemfjorden basin, we decided to only represent the OPU of MyLake at the Storefjorden

basin, although one could have examined the CIU and SIU of the connection between the

“grandparent model” INCA-P at Hobøl and the Storefjorden local catchment and MyLake

in the Storefjorden basin. In particular, the INCA-P simulation with median P loading was

used to calibrate MyLake in Storefjorden basin, and the the same INCA-P run was used for

hindcast to complete the 18-year period.

The comparison schemes V and VI take hypothetical approaches; this makes them model

based experiments rather than uncertainty studies. As such, they make a strong contrast to

the comparison schemes I to IV, where combinations of MCs were made to highlight a partic-

ular uncertainty. The comparison scheme V studies the effectiveness of vegetative filter strip

(VFS) in reducing the loading of phosphorus to the lake. See the relevant Appendix for the
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implementation of VFS in the current study. The comparison scheme VI simulates a hypo-

thetical situation where the two runoff contributions to the basin, namely the Vanemfjorden

local catchment and the water flow from the Storefjorden basin at Sundet, are separated and

used individually. We designed this experiment in order to elucidate the role each loading

source had on the phosphorus loading in a qualitative manner. For example, we expected

from available monitoring data that the input from Sundet water often has lower concentra-

tion of phosphorus than the local Vanemfjorden runoff, while the volume of water is approx-

imately a magnitude order greater. The Sundet water input should therefore make the water

displacement much faster, and is expected to reduce the impact of local runoff events on the

basin.

For all these comparisons, MyLake’s OPU in the Vanemfjorden basin was taken care of

by sampling the same 60 randomly sampled posterior calibration parameter combinations

(i.e., i = 1,2, ...,60), specific to each of the two calibrations: those using SWAT-based input

and those using the INCA-P-based input. The median and the 5- and 95-percentiles are taken

to aggregate the 60 samples of i.

4 Results

4.1 Calibration of MyLake

Because we assumed a Gaussian normal distribution for the observation error for each ob-

servation series, the sum of the squares of error

no

∑
k=1

(x̂o,k − xo,k(px))
2,

where xo,k is the k-th observation in the observation series o of length no, and x̂o,k(px) is

the corresponding model simulation given parameters px, was used during the calibration.

For each type of observation o, an error variance σ2
o was drawn using Gibbs sampling, see

Appendix for details. The formal likelihood was therefore calculated as following:

L (x̂|px) = ∏
o

no

∏
k=1

1√
2πσ2

o
× exp

(
−(x̂o,k(px)− xo,k)

2

2σ2
o

)
.

For presentation purpose we used instead root mean square error (RMSE) as model perfor-

mance statistic:

RMSEo =

√
1

no

no

∑
k=1

(x̂o,k(px)− xo,k)2.

RMSE has the same unit as the observed variable, and is thus an indication of the average
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deviation of the model predictions from the observations (Janssen and Heuberger, 1995).

4.1.1 Storefjorden basin

The calibration of MyLake at the Storefjorden basin captured well the seasonal variation

of Chlorophyll and phosphate-phosphorus concentration (Figure 4). The model missed the

impact of a landslide event early in 2008 that can be seen as high concentrations of to-

tal phosphorus and particulate phosphorus (Skarbøvik and Bechmann, 2010). This was a

response to INCA-P based input that also missed the event. Although INCA-P simulates

erosion and mobilization of particles, larger scale erosion events such as landslides are not

captured. Furthermore, this event occurred downstream of Kure where observation data used

for calibrating INCA-P were collected.

4.1.2 Vanemfjorden basin

Compared with the calibration at the Storefjorden basin, calibration was more challenging

for both cases at the Vanemfjorden basin (one using SWAT-based input and the other using

INCA-P-based input) (Figures 5 and 6). For example the algal bloom in the summer 2006

was not produced. Stratification that was observed at the deepest part of the basin was

not simulated either. However, the simple model structure of MyLake provides plausible

explanations for this discrepancy and hence gives suggestion regarding how the next research

efforts could be allocated, see Discussion.

The parameter variance structure of the two MyLake calibrations at the Vanemfjorden

basin appeared to be very similar, despite the difference in input from SWAT and INCA-P

(Figure 7). For both calibrations, parameters p2 and p3 (Table 4) that together control the net

sinking loss of suspended inorganic particles were positively correlated. The scope of these

parameters is slightly different: p2 applies to all depths but p3 applies only to epilimnion. p5

and p6 were also positively correlated as they have a cancelling effect on each other. p8 and

p9 were negatively correlated as they have complementing tendencies to each other. These

correlations were expected, but these parameters were included for calibration due to prior

knowledge that they represent processes that are dependent on different state variables. For

example, the value of p5 affects the impact of algae mortality given a temperature and algae

concentration. But p6 represents algae growth and it affects the impact of light and available

P in addition to temperature but not existing algae concentration; algae concentration indi-

rectly reduces the available light however. Given this information, our results illustrate the

relative significance of the various parameters. Between the two calibrations at Vanemfjor-

den basin, the only clear difference in the parameter space was the mode and median for p2,

such that the INCA-P-based input promoted particle resuspension from the sediments more

than the SWAT-based input (Figure 8). Despite the lower loading of suspended particles
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by INCA-P-based input during the calibration period (Figure 9), the calibration method set-

tled to keep suspended particle from quickly sedimenting in order to sustain the phosphorus

longer, as less phosphorus is provided by INCA-P-based input. Compared with these two

calibrations at the Vanemfjorden basin, the calibration at the Storefjorden basin had a more

complex parameter covariance structure (positive correlation between p2 and p4 (Pearson

product-moment correlation coefficient r = 0.65) and negative correlation between p1 and

p5 (r = −0.76)), in addition to the aforementioned correlation pairs (p2 and p3 (r = 0.80),

p5 and p6 (r = 0.89), p8 and p9 (r =−0.51)). This elucidates dissimilar dominant processes

that govern the physicochemical state of the lake water between the two basins. The complex

parameter structure at the Storefjorden basin indicates more intricate process combinations,

and this resulted in apparently better model performances, i.e., smaller RMSE values. The

model calibrations at the shallower Vanemfjorden basin suggests that the basin is more hy-

drologically governed, and the basin’s fully mixed nature during the summer in which cali-

bration took place left less room for the lake model to take control of in-lake dynamics that

depend on depth-gradient.

4.2 Uncertainty analyses: comparisons I-IV

From the management point of view the summer total P concentration is the most opera-

tionally relevant variable as it is considered a good proxy for bioavailable phosphorus which

is one of the necessary premises for nuisance algae blooms. We therefore review how the

difference in P loading due to various uncertainties (Figure 9) are realized in the lake sum-

mer total P concentration (Figure 10), although other notable differences will be discusses

in addition. In all cases OPU here represent the uncertainty due to MyLake’s parameter

equifinality in the Vanemfjorden basin.

4.2.1 Comparison I: SIU of SWAT input on MyLake

The best SWAT parameter set was identified by calibration at the Guthus subcatchment (MC

2). We also used two SWAT parameter sets that gave the 97.5- and 2.5-percentile phosphorus

loading (MC 1 and MC 3, respectively). MC 2 was close to lower range with respect to total

phosphorus loading but was close to higher range with respect to suspended particle loading.

There was little SIU for suspended inorganic particle concentration as all MCs 1, 2 and

3 gave similar summer concentrations for all simulation years. However, OPU was high for

suspended inorganic particle concentration in the summer. All other concentrations were

predicted to be the highest for MC 1. In case of the summer total phosphorus concentration,

there was little overlapping between MC 1 and MC 2, or MC 1 and MC 3. This suggests that

the lake simulation may become different depending on the SWAT parameter set. However,
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such difference could be made less pronounced if MyLake had been calibrated using the

MC 1 input or the MC3 input. In some years MC 2 forecast higher concentrations than MC

3 but the difference is small relative to the OPU. This contrast between MC 2 and MC 3

may be due to the differences in the sedimenting particle loading, despite that the model

calibration suggested little P sink in the Vanemfjorden basin. The decision of ranking the

input simulations according to phosphorus alone might reveal its limitation here because the

loading of sedimenting inorganic particles are also important in lake phosphorus simulations

in the lake water. However, when different parameters are compared, resulting loading input

of phosphorus and that of inorganic particles do not strongly correlate for either model.

Therefore, representation of the true runoff variability would have required attentions for

both variabilities for total P and sedimenting inorganic particles.

4.2.2 Comparison II: SIU of INCA-P input on MyLake

INCA-P gave little parameter uncertainty after calibration for the Vanemfjorden local catch-

ment, and therefore lake simulations yielded little differences. Because the calibration is

different, the size of OPU is different from Comparison I. This is described in the next sec-

tion

4.2.3 Comparison III: CIU of input model choice of MyLake at the Vanemfjorden
basin

For either input model choice (by SWAT or by INCA-P), the MyLake model were calibrated

during the period 2005-2010 such that the correspondence between the two calibrations is

tighter in this interval than earlier in the simulation run. Overall, SWAT-based-calibration

(MC 2) simulated higher total P concentrations before 2005 than INCA-P-based calibration

(MC 5). OPU was greater for summer total P concentration for MC 5 than that for MC 2.

This might reflect the simpler model structure of INCA-P and the use of externally calibrated

parameters from Hobøl. The combination of the SWAT-based calibration together with the

INCA-P-based input (MC 7) created the simulation that is furthest from the MC 2 for summer

total P concentration. This was expected as the calibration is not native to the simulation

input, see “comparison scheme III” in section 3. The size of OPU for MC 7 resembled MC

2, following the uncertainty in calibration, rather than the uncertainty in simulation input.

4.2.4 Comparison IV: SIU of loading from Sundet

The quantiles of total P loading from Sundet (input from the Storefjorden basin) were chosen

to represent the SIU from Sundet: median (MC 2), 5-percentile (MC 8) and 95-percentile

(MC 9). The ranking of the three according to total P loading (MC9, MC2, and then MC8)
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did not correspond with the ranking of sedimenting particle loading (MC9, MC8 and then

MC2). There was little difference in the summer total P concentration among the MCs, but

the other fractions of phosphorus were simulated differently.

4.3 Model experiments: Comparisons V and VI

4.3.1 Comparison V: Effectiveness of VFS under OPU and SIU

Both the OPU (shades in Figure 10) and SIU of SWAT (contrast among MCs 1, 2, and 3,

or among MCs 1v, 2v, and 3v) revealed comparable extent of uncertainty. The effective-

ness of the VFS implementation was contrasted for summer total P concentration in 2001,

which is a year after mild winter flooding that caused high P loading input, and 2010, which

is a recent year exhibiting one of the lowest levels of summer total phosophorus concen-

tration. Figure 11 shows the probability distribution of the summer total P concentration

when the combinations of the OPU of MyLake (i = 1 . . .60) and the SIU for SWAT-MyLake

connection ( j = 1 . . .3) were combined. According to the simulations, the summer total P

concentration should have been reduced upon implementation of VFS in 2001. However, the

effect size of VFS is small compared with the uncertainty range given by OPU and SIU. In

year 2010, when OPU and SIU were small, reduction of summer total P concentration by

VFS implementation appeared minor. A pair-wise comparison illustrates that VFS will never

increase lake total P concentration at any time of the year and will always reduce it when

it goes above 50 μg P L−1 (Figure 12). This means that VFS will systematically improve

the basin water quality above a certain threshold total P concentration, but there is a wide

uncertainty in the abosolute value in the simulations.

4.3.2 Comparison VI: Relative importance of loading from the Vanemfjorden local
catchment and loading from Sundet

Much higher concentrations of total P, chlorophyll, and phosphate-P were simulated for MC

10, which shut out the water flow from the Storefjorden basin at Sundet and only uses the

Vanemfjorden local catchment input modelled by SWAT. P loading in MC 10 is lowest

among the MCs in comparison here, but the low water flow increased the residence time

considerably. This observation suggests that the Vanemfjorden basin will always have a con-

dition that is worse than the Storefjorden basin, because the water from the Storefjorden

basin works as a diluting medium for the Vanemfjorden basin (c.f., MC 11).
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5 Discussion

The two calibrations of MyLake gave different simulations at the Vanemfjorden basin. The

differences were greater during the simulation period (before 2005) than in the calibration

period (2005-2010). As described in sections 2.2 and 2.3, the choice of the basis input is

crucial, and the importance is further pronounced when the model is used for forecast. In the

present study, MC 5 represents the low research effort situation, but it depends on more as-

sumptions than MC 2. First, landuse-type-specific characteristics of two catchments Hobøl

and Vanemfjorden local catchment are assumed to be very similar so that export of the pa-

rameters from Hobøl is acceptable. The fractions of landuse types are changed accordingly,

however. Second, INCA-P is a stream- or river-based model with surrounding land that feeds

into the stream. However, the Vanemfjorden local catchment does not have major streams

and most runoff is through other channels such as agricultural drainage pipes and surface

overflow. Furthermore, there is an island of a considerable size in the middle of the basin

that does not have easily visible streams. Therefore, application of INCA-P in the Vanem-

fjorden local catchment will have to assume that the model will perform similarly well even

in a catchment where the runoff is not accumulated into well defined outlet streams or rivers.

Ideally, multiple calibrations accounting for variation in input should be performed in order

to reduce this uncertainty. The results also suggest the importance of consistency between the

calibration basis input and the simulation forecast input. Furthermore, model assumptions

need to be communicated explicitely.

Poorer model performances in the Vanemfjorden basin, compared with the calibration in

the Storefjorden basin, can be explained from the process-oriented point of view. First, the

shallow bathymetry and the short residence time of the Vanemfjorden basin constrained its

capacity as a phosphorus sink, which can be clearly contrasted with the Storefjorden basin

calibration. The model did not manage to reproduce the thermal stratification in the summer

2010 at depth 8.3 and 9.4 metres. This implies underrepresentation of the net phosphorus

sedimentation, but the actual effect of it cannot be very large because only 5 percent of

the surface area is deeper than the 2010 thermocline depth. Therefore, as far as the total

phosphorus is concerned, the Vanemfjorden basin is primarily controlled by catchment hy-

drology, and the runoff input almost deterministically translates to the concentrations in the

lake. This is in particular reflected in the very small MyLake parameter uncertainty as shown

by the narrowness in the gray bands in Figures 5 and 6.

Second, properly calibrating the catchment model to represent the magnitude of each

rainfall event is difficult due to low frequency of stream and river samples that availed during

the calibration (the Guthus catchment and the Kure observation site on the river Hobøl, see

Appendices). Because these samples were taken quasisystematically following the calendar

weeks, they can only represent instantaneous snapshots of the catchment loading. Because
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of this observation stochasticity, calibration of the catchment models using many instanta-

neous observations may have represented the mean responses to rainfall events, which may

be temporally least variable. Thus, the calibrated paramter spaces of these catchment mod-

els may emphasize different processes that respond differently to environmental conditions.

For example, exaggeration of runoff to a particular rainfall event may be compromized by

making another rainfall event less exaggerated by adjusting another process. Such confu-

sion by the catchment model could be improved for example by deploying a flow weighted

automatic sampler, which produces a more precise and accurate representation of the actual

loading flux.

Third, the ecological reason for an algae bloom in the summer 2006 is still not understood

well, and as expected, models did not reproduce the algae bloom. Although the prediction

of algae bloom will be conducted using another tool (statistical model based on MyLake

prediction of physicochemical status of the lake), the discrepancy implies under represen-

tation of this event. The Figures 5 and 6 also shows that the year-to-year variability of the

seasonal succession was not large, suggesting that some other processes that are controlling

the chlorophyll concentration were not captured.

6 Perspectives

The present study tackles some of the previously overlooked uncertainties when a chain

of multiple calibrated models are connected. The example quantifications presented here

illustrated that these uncertainties now need a proper treatment. The assessment of the ef-

fectiveness of catchment management implementation such as VFS in reducing total P con-

centration in the lake needs to be contrasted with the full range of various uncertainties in

order to provide realistic conclusion. Transparent uncertainty communication is paramount

in modelling applications where public policy will depend on the results. Uncertainty quan-

tification such as the one presented in the current study also facilitates connection to proba-

bilistic knowledge aggregation tools such as Bayesian belief networks. Technical analogies

can be drawn in any other application field of dynamic modelling.

Appendix A: Site descriptions

The study areas are located in the southeastern part of Norway (Figure 2). The Vansjø-Hobøl

catchment area is 690 km2, and its land use is dominated by agriculture (16 %) and forestry

(80 %) (Bouraoui et al., 2009). The agricultural production around the Storefjorden basin

consists mostly of grain with a smaller fraction devoted to grass. Most of the catchment lies

below 200 m elevation and is covered by marine sediments deposited after the last graciation.
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The surface of the lake is situated 25 m above the sea level. Mean annual rain fall is 810

mm and the specific runoff is 14.4 L s−1 km2. The main inlet river to the Storefjorden basin,

Hobøl, has a catchment area of 337 km2, whereas the entire catchment area of the eastern

basin totals 580 km2.

The total area of the Vanemfjorden local catchment is 83.3km2, in which 13.5 % of

the area is agricultural land, 61.8 % is forested, 8.9 % urban and 15.7 % lake and water.

The top soils in the agricultural areas of the Vanemfjorden local catchment consist of 73

% clay or loamy clay soils and 22 % sand. Sandy soils in the south-western part of the

sub-catchment originate from a huge end moraine which was formed under the last ice age

when a colder period made the retreating ice front stagnant for a long time. The bedrock in

the Vanemfjorden local catchment is mainly Pre-Cambrian bedrock, predominately gneiss.

In the forested areas of the Vanemfjorden local catchment, the hill tops and slopes have

thin sandy beach deposits or thin humic cover, while the valley bottoms mainly have thick

clay marine deposits. About 3.2 % of the forested area is comprised of bogs or wetlands.

The areas dominated by clay loam soils are used mostly for cereal production, whereas

the sandy end moraine has a dominance of potato and vegetable production in addition to

cereal production. Animal production is limited in the catchment. The agricultural areas are

systematically tile drained and most of the subsurface drainage installed in the 50s and the

60s.

Due to the low prices of P fertilizers between the 1950s and 1990s and their positive

effect on crop production, an increased usage of P fertilizers has resulted in P acculation

in agricultural soils in most of the Western countries. In Norway this practice has led to

an increase in biologically available and mobile P in cultivated soils during the past few

decades (Øgaard, 1995). The buildup of large P-pools in agricultural soils increases the

export of P to receivingt waters (Sims and Sharpley, 2005). Abatement measures have been

implemented in the Vanemfjorden catchment. Most of these measures were implemented in

2007: no autumn tillage in areas with high erosion risk, installation of sedimentation ponds

in selected sub-catchments, vegetative filter strips along open water and a 47 % reduction in

P fertilization (Skarbøvik and Bechmann, 2010).

Lake Vansjø (59.42◦ N, 10.86◦ E) has a total area of 37 km2 and has complex morphology

with several distinct basins. In the current paper we divided the lake into two model unit

basins, Storefjorden and Vanemfjorden (Figure 3). The water level of the lake is managed at

a dam approximately 4 km downstream the outflowing river named Mosselva. We assume

that the channel connecting the Storefjorden basin and the Vanemfjorden basin, referred to

here as Sundet, has a unidirectional flow, such that water in the Storefjorden basin always

flows into the Vanemfjorden basin. The Storefjorden basin (25 km2) has a maximum depth of

41 m and a mean depth of 10 m, where as the Vanemfjorden basin (12 km2) has a maximum
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depth of 19 and a mean depth of 5 m. The theoretical water residence time for the whole lake

is 277 days, while the basin specific residence times are 242 days for the Storefjorden basin,

and 41 days for the Vanemfjorden basin. Other bathymetric and morphological information

has been published elsewhere (Saloranta, 2006). Vansjø, in particular the Vanemfjorden

basin, is eutrophic and has experienced nuisance cyanobacteria blooms over the past decades.

Because the lake and the downstream Mosselva has significant utility values (driniking water

supply, bathing, fishing, recreation), toxic algal blooms are considered a critical pollution

issue in the watershed.

Appendix B: Models and associated data

INCA-P

INCA-P is a process-based mass balance model designed for simulating the P dynamics in

catchments through the accumulation and export of P in the plant and soil systems of different

land use types (Wade et al., 2002). The water containing both P and suspended particles is

then routed downstream in the catchment while also including effluent discharges and in-

stream sedimentation. The input fluxes (farmyard manure, fertilizers, livestock wastes etc)

and P addition and removal processes are differentiated by land use type and varied according

to environmental conditions (e.g. soil moisture and temperature). The model also accounts

for accumulated pools of inorganic and organic P in the soil (in readily available and firmly

bound forms), groundwater and streams.

INCA-P requires daily time series of hydrological forcing, with hydrologically effective

rainfall and soil moisture deficit. These timeseries were generated using a newly devel-

oped hydrological model PERSiST, set up for the catchment using daily flow at the gauging

station 3.22.0.1000.1 Høgfoss obtained from the Norwegian Water Resources and Energy

Directorate (NVE). Water chemistry data come from the MORSA monitoring programme,

conducted by Norwegian Institute for Agricultural and Environmental Research (Bioforsk)

and Norwegian Institute for Water Research (NIVA). Total phosphorus and suspended sed-

iment data from the monitoring station Kure were used for calibration of INCA-P. General

land cover data are obtained from the Norwegian Forest and Landscape Research Institute,

whereas more detailed information about land use fertilization regimes on agricultural fields

are provided by Bioforsk. Nutrient outputs from sewage treatment plants are obtained from

Statistics Norway and the database KOSTRA. Outputs from scattered dwellings are provided

by Bioforsk’s information system GISavløp.

INCA-P simulates the daily dynamics of phosphorus mobilization and transport in the

catchment and was set up to predict daily discharge of water, phosphorus, suspended sedi-
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ment in addition to temperature of the discharged water as input into the lake. Hobøl river

was set up with 5 separate hydrological reaches (river sections with associated catchment

drainage area), while using observed water chemistry at the 4th reach for calibration. Sepa-

rate simulations for the Storefjorden local catchment and the Vanemfjorden local catchment

were also set up assuming parameterization similar to the upper parts of the Hobøl river.

INCA-P includes a large number of parameters (ca. 840 for this setup, much less with

same parameter values for different reaches and landuse classes). A selection of sensitive or

uncertain parameters mainly involved in partitioning and mobilization of phosphorus were

estimated using Bayesian inference and inverse modelling, similar to the methods presented

here for MyLake, see below.

SWAT

The Soil and Water Assessment Tool (SWAT) is a semi-distributed watershed-scale model

which runs in continuous time, on a daily time step (Gassman et al., 2007; Arnold et al.,

1998). SWAT is based on physical processes and is developed to quantify the impact of land

management practices in large, complex watersheds. Information about weather, soil prop-

erties, topography, vegetation, and land management practices in the watershed are required

to run the model. The physical processes associated with water movement, sediment move-

ment, crop growth, and nutrient cycling are directly modeled by SWAT using these input

data. The SWAT model is widely used to evaluate cultivate practices at watershed scale and

several hundred peer reviewed articles have been published of different SWAT applications

since the early 1990s. The present study utilizes SWAT’s ability to simulate improvements

due to Vegetative Filter Strips (VFS) (White and Arnold, 2009). The VFS model in SWAT is

able to predict sediment, nitrogen and phosphorus retention under uniform sheet flow con-

ditions as well as taking into account concentrated flow conditions. The VFS routines were

implemented at hydrological response unit level in SWAT.

Calibration of the SWAT model was performed using the SWAT Calibration and Uncer-

tainty Program (SWAT-CUP) with the Sequential Uncertainty Fitting (SUFI-2) procedure

(Abbaspour et al., 1997, 2007). In SUFI-2, uncertainty of parameter distributions are de-

picted as uniform distributions while output uncertainty is depicted by percentile aggrega-

tions of output variables through a stage-based repeated Monte Carlo simulation using Latin

hypercube sampling. In this study, 500 Latin hypercube sampled parameter sets were ob-

tained (i.e. the model was run 500 times per SUFI-2 iteration). SUFI-2 repeatedly performs

Monte Carlo simulations first by assuming a large parameter range, and narrowing the range

at each stage until the percentile aggregations were less than the sample standard deviation

of the observed data and signficant correlations were obtained. The best parameter set was

determined by the greatest sum of weighted Nash-Sutcliffe model efficiency coefficients for
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three observation variables, among the sampled parameter sets in the last iteration of Monte

Carlo simulation:

3

∑
o=1

⎛⎜⎜⎝wo

⎛⎜⎜⎝1−

no
∑

k=1
(uo,k − ûo,k(pu))

2

no
∑

k=1
(uo,k −uo)2

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

where uo is the sample mean of the observation series uo, and weights uo of value 0.7 for flow

volume and suspended inorganic particle concentration and the value 1.0 for total phosphorus

concentration.

MyLake

The MyLake (Multi-year Lake) model is a one-dimensional process-oriented model of daily

vertical distribution of heat and basic phosphorus dynamics (Saloranta and Andersen, 2007).

It also simulates a simple sediment-water interaction and ice and snow cover of the lake.

The ability of the lake model to simulate ice cover has been tested (Dibike et al., 2012,

2011; Saloranta et al., 2009) and this made it the strongest candidate among many other

water quality models (Mooij et al., 2010) for application at lake Vansjø, which is winter-

freezing and dimictic. Unlike many other lake models, MyLake does not consider food chain

dynamics, or competition among algal species. MyLake takes a minimaslistic approach in

model design, so that important physical laws and only selected aggregated biological and

chemical processes are included. We consider that this makes the model accountable for

model deviation when the modelled value and the target observation values do not coincide.

The model requires daily weather variables and runoff inputs to the lake. Weather ob-

servation data of the Norwegian Meteorological Institute at the Rygge Airport (59.38◦ N,

10.79◦ E) located between the two basins were used as the common atmospheric forcing

throughout the study. Missing data for cloud cover and wind speed were complemented us-

ing historical monthly means. Other missing data, which were not frequent, were linearly

interpolated between the available observations. Runoff data into the Storefjorden basin,

excluding preciptation on the lake surface itself, were provided by the INCA-P model. In

the Vanemfjorden basin, runoff data from the upstream Storefjorden through Sundet were

provided by MyLake, whereas runoff from the Vanemfjorden local catchment were provided

by INCA-P and SWAT. We assumed that Sundet allows water flow approximately down to

4 m depth with linearly diminishing flow for each metre below the surface. For the lake as

a whole, the vertical dimension was discretized into 1-m layers. Within these layers, water

quality determinands were considered uniform across the horizontal spread.

According to an earlier chemical analysis of sedimenting minerals of Vansjø in the sedi-

ment, 1 g of suspended inorganic particles contains 0.7 mg of phosphorus. It gives neverthe-
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less a minimum estimate of the P content of sedimenting inorganic particles, and thus also

the P burial rate. One can compare 0.07 % P of dry weight on inorganic particle with up to

1.25 % P of dry weight in organic particles, assuming the C:P ratio of 40:1 by weight and

50 % C of dry weight. In order to take this into account, the runoff input of a particular day

that receives an excess amount of the suspended inorganic particles more than the maximum

amount implied by the ratio (0.7 mg P in 1 g suspended inorganic particles) is removed from

the input. This is expected to occur during an event of high discharge in which most of large

inorganic particles with low surface to volume ratio and correspondingly low P adsorption

capacity enters the lake. When conducting the whole 18-year simulation (1993-2010), the

year 1993 was repeated three times before starting the simulation from 1993, in order to spin

up the model.

10 MyLake parameters (Table 4) were calibrated at each basin. In Storefjorden, we in

addition calibrated a temporarily constant value to what the model regards as “dissolved or-

ganic phosphorus (DOP)” concentration. DOP is the fraction of allochthonous phosphorus

species of unknown or variable identity, which were assumed not to be involved in transfor-

mations of P within the lake. Since little is known about the dynamics of this fraction of P,

the assumption of DOP as a conservative substance is purely operational and therefore only

provisional. The same concentration of DOP as applied for the Storefjorden simulation was

used as input for the Vanemfjorden basin. Finally, MyLake assumes that 1 g of chlorophyll a

is produded for every g P retained by algae. This relationship has been empirically noted for

many decades (Sakamoto, 1966; Vollenweider, 1976), but it also reflects MyLake’s principle

of keeping the model simple; its design choice excluded representing light acclimation of

chlorophyll content or luxury consumptionof P, for example. As described earlier, two cal-

ibrations were produced for the Vanemfjorden basin: one using the best SWAT simulation

together with the median Storefjorden simulation as runoff input, and the other using the me-

dian INCA-P simulation together with the median Storefjorden simulation. Calibration fol-

lowed a variation of Markov chain Monte Carlo methods that use multiple chains (DREAM,

Differential Evolution Adaptive Metropolis) (Vrugt et al., 2009). There were 16 chains in

a calibration, and 200 iterations (Storefjorden basin) or 400 iterations (Vanemfjorden basin

with either SWAT-based input or INCA-P-based inputs), where the first 100 or 200 iterations

were considered as the burn-in and excluded from the posterior parameter space, respec-

tively. This resulted in 1600 parameter set samples for the Storefjorden basin and 3200×2

parameter sets for the Vanemfjorden basin (3200 each for SWAT-based and INCA-P based)

although the number of unique parameter combinations were less due to chain stagnation.

In order to calculate the likelihood of a particular parameter set, we assumed that the model

error (predicted minus observed) is distributed approximately according to the error distri-

bution of the previous iteration (Gibbs sampling, see e.g., (Gelman et al., 2003; Vrugt et al.,
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2009)).

The MyLake model produces daily depth profiles of temperature and phosphorus concen-

trations. In-lake observed data were used to compare against the model simulations. Temper-

ature measurements were available at 7 depths (Vanemfjorden) and 8 depths (Storefjorden)

at every 30 min for May through August 2010. A preliminary assessment indicated that di-

urnal temperature fluctuations appeared to be mostly less than 1 degree and occasionally up

to 2 degrees. Hence, daily mean temperature was used (n = 99). Chemical measurements

were available for many of the 18 years of simulation, but in order to keep consistent mea-

surement quality, only data from the period 2005-2010 (analysed at the Norwegian Institute

for Water Research) were used for the calibration purpose. We noticed during the calibra-

tion that a model run may seem to capture the observed time series after 2005, or the one

before 2005, but not both at the same time. We reckon that this is probably due to systematic

bias between two data series, especially at the low concentrations. From the 2005-2010 data

set, fortnightly observation during the most of the ice-free period for 5 determinands (to-

tal phosphorus, total particular phosphorus, chlorophyll a, PO4-phosphorus, and suspended

inorganic particles) with varying sample sizes ranging from 84 to 153 for the period 2005

through 2010 were used for calibration. These measurements were based on composite sam-

ples from 0-4 m from the surface at the deepest part of each basin (shown in Figure 2 as

VAN1, and VAN2).

What is often known as model validation was not conducted for MyLake on the basis

that it is not useful for validating the model, see also Oreskes et al. (1994). Model validation

is a two iteration calculation where data available for calibration are split into two parts, one

of them is used for calibration, and the other for post-calibration comparison. We reckon

that the model validation methodology leaves too much room for arbitrary judgement for the

lake model, and the methodology was in particular not relevant for the present study.
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Figure 2: Map showing the relevant hydrological elements of the Vansjø watershed in the

case study. Red lines are the deliniations of the catchment domains used by the catchment

models. Lake Vansjø is shown near the bottom of the map and includes three sub-waterbodies

with the same water level (Mosselva, Vanemfjorden and Storefjorden), although it could be

divided in more or less arbitrary choices of basin demarcation schemes.
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study.
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Figure 4: Calibration performance of MyLake at the Storefjorden basin using INCA-P input,

for all 13 variables that the formal likelihood calculations were based on. The posterior

parameters were resampled (n = 60) and daily quantile statistics (median, shown as solid

black line, and 10- and 90-percentiles, shown as gray shaded area) together with observation

data shown in blue circles or blue daily line are shown.
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Figure 5: Calibration performance of MyLake at the Vanemfjorden basin using SWAT input,

for all 12 variables that the formal likelihood calculations were based on. The posterior

parameters were resampled (n = 60) and daily quantile statistics (median, shown as solid

black line, and 10- and 90-percentiles, shown as gray shaded area) together with observation

data shown in blue circles or blue daily line are shown.
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Figure 6: Calibration performance of MyLake at the Vanemfjorden basin using INCA-P

input, for all 12 variables that the formal likelihood calculations were based on. The posterior

parameters were resampled (n = 60) and daily quantile statistics (median, shown as solid

black line, and 10- and 90-percentiles, shown as gray shaded area) together with observation

data shown in blue circles or blue daily line are shown.
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Figure 7: Parameter covariance structure of two calibrations at the Vanemfjorden basin: cal-

ibration using SWAT-based input (orange), and INCA-P-based input (blue). Pair-wise cor-

relation coefficients of the parmaeters are shown for both calibration in the top-right triange

of the figure. Posterior contour lines are based on two-dimensional kernel densities. Only

one contour line that represents the probability density that is one-fifth of the prior density

(two-dimensional uniform distribution) is shown.

29



1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p1

m
ed

ia
n:

 0
.1

4
m

od
e:

 0
.8

5
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
.0

m
ed

ia
n:

 0
.4

7
m

od
e:

 0
.7

6
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
.3

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p2

m
ed

ia
n:

 0
.2

2
m

od
e:

 0
.2

2
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
3.

1
m

ed
ia

n:
 0

.2
6

m
od

e:
 0

.3
2

pr
ob

ab
ilit

y 
ra

tio
 a

t m
od

e:
 1

1.
9

0.
5

0.
0

0.
5

1.
0

024681012

p3

m
ed

ia
n:

 0
.9

9
m

od
e:

 0
.9

9
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 4
2.

0
m

ed
ia

n:
 0

.9
8

m
od

e:
 0

.9
9

pr
ob

ab
ilit

y 
ra

tio
 a

t m
od

e:
 1

9.
5

1.
0

0.
5

0.
0

0.
5

024681012

p4

m
ed

ia
n:

 
0.

88
m

od
e:

 
0.

97
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 6
.6

m
ed

ia
n:

 
0.

90
m

od
e:

 
0.

97
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 6
.7

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p5

m
ed

ia
n:

 
0.

42
m

od
e:

 
0.

42
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 4
.5

m
ed

ia
n:

 
0.

36
m

od
e:

 
0.

27
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 3
.7

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p6

m
ed

ia
n:

 
0.

92
m

od
e:

 
0.

97
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 1
2.

4
m

ed
ia

n:
 

0.
82

m
od

e:
 

0.
93

pr
ob

ab
ilit

y 
ra

tio
 a

t m
od

e:
 5

.0

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p7

m
ed

ia
n:

 0
.3

9
m

od
e:

 0
.9

2
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
.5

m
ed

ia
n:

 0
.7

3
m

od
e:

 0
.9

3
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 4
.0

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p8

m
ed

ia
n:

 0
.8

7
m

od
e:

 0
.9

8
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 8
.8

m
ed

ia
n:

 0
.9

0
m

od
e:

 0
.9

8
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 1
0.

9

1.
0

0.
5

0.
0

0.
5

1.
0

0246810

p9

m
ed

ia
n:

 
0.

26
m

od
e:

 
0.

33
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 6
.9

m
ed

ia
n:

 
0.

27
m

od
e:

 
0.

25
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 1
3.

8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

010203040

p1
0

m
ed

ia
n:

 0
.4

3
m

od
e:

 0
.3

5
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
.2

m
ed

ia
n:

 0
.4

4
m

od
e:

 0
.3

5
pr

ob
ab

ilit
y 

ra
tio

 a
t m

od
e:

 2
.6

F
ig

u
re

8
:

P
ar

am
et

er
d
en

si
ty

d
is

tr
ib

u
ti

o
n
s

o
f

tw
o

ca
li

b
ra

ti
o
n
s

at
V

an
em

fj
o
rd

en
:

ca
li

b
ra

ti
o
n

u
si

n
g

S
W

A
T

-b
as

ed
in

p
u
t

(o
ra

n
g
e)

,
an

d
IN

C
A

-P
-

b
as

ed
in

p
u
t

(b
lu

e)
.

T
h
e

b
la

ck
b
o
x

re
p
re

se
n
ts

th
e

p
ri

o
r

p
ro

b
ab

il
it

y
d
en

si
ty

.
T

h
e

co
lo

u
r

o
f

th
e

in
-p

lo
t

st
at

is
ti

cs
co

rr
es

p
o
n
d

w
it

h
th

e
co

lo
u
r

o
f

th
e

p
ro

b
ab

il
it

y
d
en

si
ty

fu
n
ct

io
n
.

30



Co
m

pa
ris

on
 I

Co
m

pa
ris

on
 II

Co
m

pa
ris

on
 II

I
Co

m
pa

ris
on

 IV
Co

m
pa

ris
on

 V
Co

m
pa

ris
on

 V
I

Annual runoff
volume (mega m3)

Annual total P
runoff flux (tonne)

Annual suspended
particles runoff
flux (kilotonne)

F
ig

u
re

9
:

A
n
n
u
al

ag
g
re

g
at

ed
in

p
u
t

fl
u
x
es

fo
r

th
re

e
m

ai
n

v
ar

ia
b
le

s
th

at
w

er
e

ta
k
en

fr
o
m

o
u
tp

u
t

o
f

u
p
st

re
am

m
o
d
el

(I
N

C
A

-P
,

S
W

A
T

o
r

M
y
L

ak
e)

to
b
e

u
se

d
as

in
p
u
t

to
M

y
L

ak
e

fo
r

V
an

em
fj

o
rd

en
.

T
o
ta

l
o
f

1
4

d
if

fe
re

n
t

in
p
u
t

co
m

b
in

at
io

n
s

o
r

m
o
d
el

co
n
fi

g
u
ra

ti
o
n
s

(M
C

s)
ar

e

sh
o
w

n
b
y

co
m

p
ar

is
o
n

sc
h
em

es
in

o
rd

er
to

cl
ea

rl
y

sh
o
w

th
e

in
te

n
d
ed

d
if

fe
re

n
ce

in
m

o
d
el

si
m

u
la

ti
o
n

in
p
u
t.

31



Co
m

pa
ris

on
 I

Co
m

pa
ris

on
 II

Co
m

pa
ris

on
 II

I
Co

m
pa

ris
on

 IV
Co

m
pa

ris
on

 V
Co

m
pa

ris
on

 V
I

Summer mean 
total P concentration
(μg L-1)

Summer mean 
Chla concentration
(μg L-1)

Summer mean 
PO4-P concentration
(μg L-1)

Summer mean
suspended inorganic
particle
concentration (mg L-1)

F
ig

u
re

1
0
:

C
o
m

p
ar

is
o
n

o
f

o
u
tp

u
t

o
f

M
y
L

ak
e

at
th

e
V

an
em

fj
o
rd

en
b
as

in
u
si

n
g

to
ta

l
o
f

1
4

m
o
d
el

co
n
fi

g
u
ra

ti
o
n
s

(M
C

s)
.

T
h
e

so
li

d
li

n
es

ar
e

M
y
L

ak
e’

s
m

ed
ia

n
ar

o
u
n
d

th
e

O
P

U
.

T
h
e

sh
ad

es
ar

e
th

e
5
-

an
d

9
5
-p

er
ce

n
ti

le
s

o
f

th
e

sa
m

e
O

P
U

ar
e

sh
o
w

n
b
y

sh
ad

ed
ar

ea
o
f

th
e

sa
m

e
co

lo
u
r.

S
u
m

m
er

m
ea

n
co

n
ce

n
tr

at
io

n
h
er

e
is

d
efi

n
ed

as
th

e
m

ea
n

o
f

d
ai

ly
v
al

u
es

o
v
er

th
e

th
re

e
m

o
n
th

s
(J

JA
).

32



Summer total P concentration (μg L-1)

Figure 11: Effectiveness of VFS as realized in the mean summer (JJA) total P concentration

(μgL−1) in the Vanemfjorden basin for 2001 and 2010.
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Figure 12: Scatterplot comparing daily total P concentration in the Vanemfjorden between

SWAT inputs with VFS and SWAT input without VFS for 60 MyLake parameter variations

(OPU) and 3 SWAT parameter variations (SIU).
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Table 3: Scope of the uncertainties that influences MyLake simulations at the Vanemfjorden

simulation in the case study.

Uncertainties in inputs to Vanemfjorden basin

Loading through Sundet

MyLake (Storefjorden) CIU

MyLake (Storefjorden) OPU

MyLake (Storefjorden) SIU

Loading from Vanemfjorden local catchment

Model choice uncertainty (SWAT or INCA-P)

Model OPU

Vanemfjorden basin

MyLake (Vanemfjorden) CIU, see above

MyLake (Vanemfjorden) OPU

MyLake (Vanemfjorden) SIU, see above
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Technical Note: Simultaneous calibration of two
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Abstract

Process-oriented environmental models rely on the calibration procedure in order to gain

relevance and applicability, and parameter uncertainty surrounding the calibration can be ef-

fectively described using probability-based methods. However, the parameter uncertainty is

not properly addressed when two models are calibrated separately but used together. Here,

using a case study on freshwater eutrophication, we demonstrate how simultaneously cal-

ibrating two sequentially connected models better contained parameter uncertainty due to

calibration. Use of models in sequence is a common practice in many application fields

but simultaneous calibration is often underutilised in the literature. Because it implicates

interpretation of the modelled system, we urge simultaneous calibration where applicable.

1 Introduction

Many process-oriented dynamic environmental models, for example hydrological and ecosys-

tem models, are calibrated against field observations (Oreskes et al., 1994; Tarantola, 2006;

Mooij et al., 2010). The main aim of calibration is to find one or more parameter sets that

1



reproduce the target observations. The ability of reproducing observation is often qualified

as being behavioural in the calibration context. Because multiple parameter sets can appear

equally behavioural, known as the equifinality phenomenon (Beven and Freer, 2001), they

are considered equally likely and should be given equal representation. Assembling all be-

havioural parameters as a multi-dimensional posterior parameter space is therefore useful

when the model is used beyond the original physical and temporal scope (i.e., ’prediction’

or ’forecast’). For example, calibration suggests a particular parameterisation A to represent

the dynamic processes in the model, because the parameters could reproduce the target field

observations as close as it could. Using the calibrated parameters, one could in turn produce

a forecast. Often this forecast carries managerial significance and is the motivation of set-

ting up the model. Now, equifinality implies that there is also another parameterisation B

and even many more that come as close to the field observations as the parameterisation A.

However, because the parameterisation B is different from the parameterisation A, derived

forecast will also be different. Therefore, the managers should consider all forecasts that are

derived from a variety of different but equally likely parameterisations.

The preciseness and accuracy of these forecasts from all posterior parameter sets depend

on several factors, such as the completeness of model process representation of complex real

world systems and consistency in the spatiotemporal scope between calibration and forecast.

Another important factor that determines the preciseness and accuracy of the forecasts is

quality of the target field data. Collecting relevant field data is crucial because what is being

modelled needs to be accurately measured by field observation. In practice this is never per-

fect due to technical factors (e.g., laboratory errors) and stochasticity in nature not captured

in sparse sampling (e.g., hourly varying state that are are sampled on an instantaneous basis).

Inaccurate and irrelevant target observed data will naturally result in inaccurate calibration.

Here we study how this calibration uncertainty may be addressed when two models are

sequentially connected and when each model requires calibration. As an example case, we

take on a modelling task where a stream-based nutrient runoff model INCA-P (Wade et al.,

2002) and a lake model MyLake (Saloranta and Andersen, 2007) were used in sequence

to predict how the land-use and agricultural activities in the catchment influences the lake

eutrophication status (total P concentration as the proxy). A common approach in such a

sequential modelling task has often been to conduct calibration separately (e.g., Tominaga et

al., unpublished manuscript):

i) first calibrate INCA-P using river observations,

ii) choose a singular forecast based on a particular parameterisation,

iii) pass on the derived forecast to use as the driving input for calibrating MyLake using

lake observations, and
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iv) produce forecast in the lake.

This approach is useful when expert users differ between various models. However, because

typical INCA-P applications require calibration of multiple parameters, INCA-P is not free

from the equifinality phenomenon. Therefore, such a strategy of reducing INCA-P’s param-

eter uncertainty to a singular run to use as the input for MyLake is not ideal.

In order to address this problem, we instead calibrated both models simultaneously. In

other words, INCA-P parameters and MyLake parameters are calibrated at the same time to

target both stream data and lake data. The advantages of this arrangement are i) that INCA-P

is now calibrated using more information (i.e., lake observations) that is less stochastic than

the stream observation and ii) that MyLake is less obscured because the calibration uncer-

tainty of INCA-P is included. The disadvantage is that INCA-P’s calibration is influenced by

MyLake’s inacuracy and impreciseness because both models affect lake simulation. To put

this into a generalised context, simultaneously calibrating two sequentially connected models

should be most effective when a confidence in the calibration of upstream model is less (e.g.,

due to lack of relevant observation to use as the target during the calibration) than the cali-

bration of downstream model. In our case of sequential calibration, we suspected that during

the INCA-P-only calibration, INCA-P may have suffered from instanteneous and stochasic

nature of stream chemistry data (taken fortnightly) that may not have represented the daily

cumulative discharge that INCA-P simulates. We also suspected that this may have reduced

accuracy in simulated loading to drive MyLake. On the contrary, lake P concentration is a

temporarily aggregated data type and is less prone to data stochasticity.

Simultaneous calibration of two sequentially connected dynamic models has unfortu-

nately been underutilised among the environmental models despite its anticipated benefits.

We demonstrate here how parameterisation or posterior equifinal parameter space is changed

from two separate model calibrations to a simultaneous calibration of both models. Hence,

the aim of this study is to show how additional information in the downstream observation

can be used to better condition the upstream model. The principles shown here are applicable

in any model application in which multiple models are connected sequentially.

2 Methods

The Vansjø-Morsa catchment is located in the southeastern Norway and is one of the most

cultivated areas in the country. Occasional toxic algae blooms in the lake Vansjø in the past

decades brought the management to study the nutrient budget of the lake (Bouraoui et al.,

2009). The present study focuses on the eastern basin of Vansjø called Storefjorden, which

is the larger and upstream basin of the lake, representing approximately 90 percent of the

water flowing out of the lake. The western basin is of greater management concern for
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eutrophication impacts and models are also being applied in the western catchment and the

basin. But for simplicity the present study will consider only the connection between the

eastern catchment modelled by INCA-P and the eastern lake basin modelled by MyLake.

The temporal scope was 2002-2010.

The INCA-P model is a process-based mass balance model for simulating the mobiliza-

tion and transport of phosphorus in a catchment (Wade et al., 2002). It calculates flow of

water through the soil in different land use categories, routes the water with phosphorus and

sediments into a river, generating concentrations of phosphorus and sediment in the water

column as well as flow in a daily resolution. INCA-P requires hydrological forcing in terms

of hydrological effective rainfall and soil moisture deficit and also uses phosphorus inputs

in terms of sewage and effluents to the river as well as fertilizer applied to the land. The

MyLake model is a one-dimensional process-oriented model for daily revolution of heat

and phosphorus concentration gradient s(Saloranta and Andersen, 2007). It also simulates

sinking of sedimenting particles and particle surface reactions, as well as lake surface heat

balance. The model is capable of simulating ice formation and snow accumulation on the

surface of the lake during the winter season. See Table 1 for the types of required data for

these models and see Tominaga et al. (unpublished manuscript) for details of the study sites

and other model specifics.

INCA-P was applied on the main river flowing into the lake (Hobølelva) and the rest of

the catchment that also drains into the lake. The INCA-P only calibration was conducted

using the river data which had been collected from the Kure dam located about 20 km up-

stream of the lake (Table 2). In order to relay the catchment runoff simulation to MyLake,

the same INCA-P parameters were used downstream of the dam and the rest of the runoff

that does not originate from Hobølelva. MyLake in turn takes these INCA-P outputs as an

input to simulate the daily vertical profile of the lake. In-lake data were used to calibrate

MyLake (Table 2). The MyLake-only calibration used the median INCA-P runoff simula-

tion with respect to the total P loading among the posterior equifinality space as the runoff

input. Simultanesous calibration of the two models was conducted by testing both INCA-P

and MyLake parameters together to connect from the headwater to the lake in each iteration.

Then the Kure dam data and in-lake data were together used as the target for calibration.

All our calibrations used the DREAM-MCMC (Differential Evolution Adaptive Metropo-

lis Markov Chain Monte Carlo) algorithm (Vrugt et al., 2009). DREAM operates on multiple

combination chains for each Markov chain iteration, unlike the singular combination chain

of ordinary MCMC methods. DREAM searches the multidimensional parameter space more

thoroughly by operating on multiple combination chains, and was appropriate for the present

study. Refer to Table 3 for the list of calibrated parameters. The intial parameter combina-

tions were chosen using Latin hypercube sampling to minimise blind space. The settings
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for DREAM were summarised in Table 4. For each type of obseration an error variance

was drawn using Gibbs sampling, and the formal likelihood was calculated according to the

following:

L (Ŷ|θθθ ,X,σσσ2) = ∏
o

n0

∏
t=1

exp(− (yo,t(X,θθθ)−ŷo,t)
2

2σ2
o

)√
2πσ2

o
, (1)

where Ŷ is the model simulation, θθθ is the parameters, X is the forcing data, σσσ is the error

variance, no is the number of observation for observation type o, yo,t is the model simu-

lated vaolue at observation time t, and ŷo,t is the corresponding observation(Gelman et al.,

2003). Due to the computational resource limitation, we could not observe that the DREAM

calibrations converged according to the Gelman-Rubin method (Gelman et al., 2003). We

therefore did not assume burn-in iterations and gathered all iteration distributions for use as

the posterior distribution.

3 Results

The posterior parameter probability density functions differed between the calibrations (Fig-

ure 1). The group of INCA-P parameters that are conditioned (i.e., having a narrower

and higher-reaching density function) was different between the two calibrations, namely

the INCA-only calibration and the simultaneous calibration. The INCA-P only calibration

mostly relied on parameters 11, 12, 14, and 16 that control surface erosion to achieve be-

havioural simulations. The simultaneous calibration constrained additional parameters, but

did not sharply condition parameter 11. This indicates that different set of processes were

emphasised depending on the calibration. The output variability due to parameters was neg-

ligible for discharge data within calibration due to parameter uncertainty and between cali-

brations, but for suspended solid and total P concentrations, the output variability between

calibration became notable (Figure 2). High loading events were not consistently modelled

by the two calibrations, and in case of total P concentration, the correspondence was poor

between the calibrations, although both calibrations were poor at reducing model error for

the total P concentration.

MyLake parameters were also differently conditioned depending on the calibration (Fig-

ure 1). Tighter calibration were concluded with the MyLake-only calibration than with the

simultaneous calibration (e.g., parameters 3, 4, 8, and 9). A few explanations could be made

for this difference. First, the parameter set of INCA-P that was chosen to make the input for

MyLake during the MyLake only calibration might have been suitable for reproducing the

observation, but only so suitable in a specific way. Second, in the simultaneous calibration,

MyLake is more greatly influenced by the forcing inputs that were simulated by INCA-P

and therefore more affected by the INCA-P parameters. The model performance of MyLake
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at the Storefjorden observation site support these explanations: the simultaneous calibration

had a wider confidence envelope than the MyLake only calibration, although the simultane-

ous calibration seems to have encompassed the observations within the confidence envelope

more thoroughly than the MyLake only calibration (Figure 3).

Covariance structure among the posterior parameters were also different between the

calibrations (Figure 4). The correlation among the parameters illustrate processes that com-

plement each other within the model; our results therefore indicates that the dominant com-

bination of processes that operate together are different depending on the calibration. Funda-

mentally, we can arrive at different conclusions about the modelled system depending on the

target observation for calibration. Furthermore, the complex covariance structure between

the INCA-P parameters and MyLake parameters in the simultaneous calibration confirms

that the parameter uncertainty of INCA-P is not negligible and needs a proper handling.

The previously common method of modelling two sequentially connected models by cali-

brating them separately therefore would have fallen short in properly addressing the overall

paraemter uncertainty.

4 Conclusions

Our illustration is a clear example case that strongly suggests a simultaneous calibration

when two models are sequentially connected, in order to reduce the blind spot caused by

paramter uncertainty. Similar conclusions might be made in other application fields of two

sequentially connected environmental models. But we cannot generalise the benefits of con-

necting the models during calibration. In our case, the following conditions raised the value

of a simultaneous calibration: i) the ultimate purpose of the modelling tasks was to simulate

the lake water conditions, not the intermediate results in the river, ii) although the information

was still relevant, the observation data at the Kure dam might have suffered from temporal

stochasticity and discrepancy in time resolution, and iii) MyLake application in this lake was

sensitive to the forcing data provided by INCA-P.
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Figure 1: Posterior probability density functions. Calibration schemes are overlaid to em-

phasise the difference in the calibrated parameter density. Gaussian normal kernel density

was assumed to produce the density functions. The prior uniform distributions are indicated

here by the horizontal line.

Table 1: Type of forcing input data and other fixed model configurations.

Use Category Variables Period

Input for both INCA-P and MyLake Weather Precipitation, air temperature, wind speed*, cloudiness*, air pressure*, relative humidity* 2002-2010

Input for INCA-P Hydrology Discharge 2002-2010

Geography Land use fraction, reach definition n/a

Output from INCA-P (Input for MyLake) Runoff Flow volume, loadings of total P and suspended particles 2002-2010

Input for MyLake Lake morphology Bathymetry n/a

* only needed for MyLake

Table 2: Summary of observation data that were used to calibrate the models.

Water body name Category Sample size Period

Hobølelva at the Kure dam Flow volume 74 2002-2004

Total P concentration 74 2002-2004

Suspended particle concentration 1461 2002-2005

Vansjø Storefjorden basin Total P concentration 153 2004-2010 (without winter)

Particulate P concentration 152 2004-2010 (without winter)

Suspended particle concentration 84 2004-2010 (without winter)

Chl-a concentration 153 2004-2010 (without winter)

Dissolved inorganic P concentration 150 2004-2010 (without winter)

Temperature at 8 depths 99 each 2010 (May through August)
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Figure 2: Model performance of INCA-P at the Kure observation station. Daily median

among the posterior simulations is shown using a line, while the daily 10- and 90-percentiles

are shown as the banded area. Observed values are shown with a line for the discharge data

and gray dots for the other data.

Table 3: List of calibrated paraemters. All parameters have uniform prior parameter distri-

butions.

Model Parameter Process Prior minimum Prior maximum

INCA-P p1 Soil erosion land use 1 0.0001 0.1

p2 Soil erosion land use 1 0.0001 0.5

p3 Soil erosion land use 1 0.05 15

p4 P mobilization (?) land use 1 0.005 0.5

p5 P? mobilization all land uses 100 250

p6 P? mobilization 0.002 0.1

p7 Residence time soil water land use 1 1 4

p8 Soil erosion land use 2 0.0001 0.1

p9 Soil erosion land use 2 0.0001 0.5

p10 Soil erosion land use 2 0.05 15

p11 P mobilization (?) land use 2 0.005 0.5

p12 P mobilization (?) land use 2 0.002 0.1

p13 Residence time soil water land use 2 1 4

p14 Hydrology, all 4 reaches. 0.02 0.2

p15 Soil erosion land use 3,4, and 5 0.0001 0.1

p16 Soil erosion land use 3,4, and 5 0.0001 5

p17 Soil erosion land use 3,4, and 5 0.05 15

p18 P mobilization (?) land use 3,4, and 5 0.005 0.5

p19 P mobilization (?) land use 3,4, and 5 0.002 0.1

p20 Residence time soil water land use 3 1 4

p21 Residence time soil water land use 4 1 4

p22 Flow erosion of bed sediment all reaches 7 15

p23 Residence time soil water land use 5 1 4

p24 Phosphorus dynamics in water 0.001 1

p25 Phosphorus dynamics in stream bed 0.001 1

p26 ?? 0.01 0.5

p27 Phosphorus dynamics in water column/pore water 0.001 4

p28 Scaling input data from sewage treatment works and scattered dwellings. 0.1 2

MyLake p1 Light sensitivity in photosynthesis -0.5 1

p2 Sediment resuspension of inorganic particles -0.5 1

p3 Sinking of inorganic particles -1 1

p4 Sinking of algae cells -1 0.5

p5 Algae mortality -1 1

p6 Algae growth -0.5 1

p7 Inorganic P exchange on inorganic particles -0.5 1

p8 Vertical heat diffusion -1 1

p9 Wind-induced mixing -1 1

p10 Snow albedo 0.3 0.8

p11 P speciation (inert P in lake) 2 10
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Figure 3: Model performance of MyLake at the observation station in the Storefjorden basin

of the lake Vansjø. Daily median among the posterior simulations is shown using a line,

while the daily 10- and 90-percentiles are shown as the banded area. Only the chemical

measurements are shown. Observed values are shown using gray dots.

Table 4: DREAM specific configurations.

DREAM configuration INCA-P only MyLake only INCA-P and MyLake together

number of parameters 28 11 39

number of chains 20 8 32

length of chains 640 400 400

number of crossover values 6 6 6

maximum number of pairs of chains from which proposals are affected 3 3 3

number of iterations between each use of full step size 5 5 5

width of uniform distribution of epslion 0.05 0.05 0.05

variance of normal distribution of epsilon 0.001 0.001 0.001

11



Figure 4: Correlation plot among the posterior parameters. Pair-wise Spearman’s ρ is shown

by colours. The top trianglular space is used for the calibration in which INCA-P and My-

Lake were used together, and the bottom two triangular spaces were for the separate calibra-

tions of INCA-P and MyLake.
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