Introduction and latest progress of SWAT model

Ph.D. candidate: Zhou Bin

SWAT - An Overview

- SWAT stands for Soil and Water Assessment Tool
- Spatial Scale: watershed or river basin developed by USDA.
- It focus on the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and management conditions over long periods of time.
- Data Organization: sub-basins hydrologic response units (HRU's)
- Some characters:
- √natural mechanistic model.
- > Based on the DEM data to produce the watershed and sub-catchment
- > Based on the precipitation data, soil data, land-use data and agricultural data to stimulated the runoff, SS, nutrient content.
- > Based on monitoring data to calibration and validation.
- \checkmark enables users to study long-term impacts.
- \checkmark It can stimulated the daily resolution.

Drawback

A large amount data input

Model Components

Water balance

$$SW_{t} = SW_{0} + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_{a} - W_{seep} - Q_{gw})$$

 SW_{t} : the final water content (mm)

 SW_0 : the initial soil water content on day i (mm)

t: the time (days)

R_{day}: the amount of precipitation on day i (mm)

 Q_{surf} : the surface runoff on day i (mm)

 E_a : the amount of evapotranspiration on day i (mm)

 W_{seep} : the amount of water entering the vadose zone from the soil profile on day i (mm)

Q_{aw}: the amount of return flow on day i (mm)

Soil erosion sub-model

$$sed = 11.8 \cdot \left(\mathcal{Q}_{surf} \cdot q_{peak} \cdot area_{hru} \right)^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$$

Sed: the sediment yield on a given day Qsurf: the surface runoff volume (mm H₂O/ ha) Q peak: the peak runoff rate (m³/s) Areahru: the aera of the HRU (ha) Kusle: the usle cover and the management factor Pusle: the USLE support practice factor Lusle: the USLE topographic factor GFRG: THE coarse fragment factor

Nutrient load Sub-model

SWAT tracks the movement and transformation of several forms of nitrogen and phosphorus in the watershed. Nutrients may be introduced to the main channel and transported downstream through surface runoff and lateral subsurface flow.

Nitrogen cycle

Phosphorus cycle

Soil database

Interpolation methods

load soil.txt;%导入国际制土壤质地文件 soil.txt↔ rot90(soil);+/ b1=ans;₽ flipud(b1);+ c1=ans;₽ x=[0.02,0.2,2]; xx=0.05;+/ i=1;₽ n=1;₽ for j=3:3:231+^j yy(n)=interp1(x,c1(i:j),xx,'spline');%一维插值函数↔ i=i+3;₽ n=n+1;₽ end⊬ rot90(yy);+/ flipud(ans)%得到≤0.05mm 土壤粒径累积百分含量(垂向排列)+

clay	silt			sand		gravel			cobbles	stones	bould	lers
US	6 DA											
	0.05			imm	2m			78	3mm 250mm 600mm			
clay	sil	lt		sand		gra	vel	stones				
International												
0.002mm 0.02mm				L	2mm 20mm							
clay	lay silt		sand		pebbles			cobbles		boulders		
After Wentworth												
0.004mm 0.		062mm	2n	nm		64mn	n	256mm	1			
Australia		2		20			200			2000		
Belgium -			2	10	20	50	100	200	500	1000	2000	
Denmark -		-		2		20	63	12	25 200	500		2000

Denmark —	2		20	63	125	200	500	2000
France —	•		22522	50	20120			2000
Germany —		(6.3)	20	63	(125	200	500	2000
Greece —	-	,	20	60	(200	600	
italy —		0	20	50		200	000	2000
The Netherlands —			16	50	105.15	0 210 30	10	2000
Portugal				50	105 15			
Slovac Republic —	2	10	20	50		200		2000
Spain —	•	10	20	50		250		2000
Sweden		6	20	60		200	600	2000
England & Wales		v	20	60	100	200	600	
Nothern Ireland	2		20	60	100	200	000	2000
Scotland —	-							
USA								2000
	2			50	100	250	500 1000	2000

HRU distribution

Lin river catchment

Some challenges ...

The missing data

