

UiO **Department of Chemistry** University of Oslo

SinoTropia

Watershed Eutrophication management in China through system oriented process modelling of Pressures, Impacts and Abatement actions

Funded bilaterally by CAS & RCN

Sustainable development

- Enable decision makers to establish knowledge based abatement strategies on environmental challenges thereby ensuring a sustainable development
- Needs for environmental protection are balanced against limitation posed by social harmony and economic production

Sustainability implies positive solutions for all components

Impact & Response

UiO **Department of Chemistry**

The main point

There is a need for coherent research where catchment processes governing eutrophication are linked to societal response

SinoTropia final conference

The natural science research

• Goal:

Increase our ability to **predict the effects** of changes in the environment and effect of abatement measures

• Need:

Improve the underlying models reliability and relevance

• Strategy:

Specifically targeting the **bioavailable** P-fraction and supplement empirical assessments with conceptual knowledge based **process understanding**

• Prerequisite:

Need to **link** physio-hydrological and geochemical processes in the **catchment** with the **in-lake** biochemical processes controlling the level of nutrients (P, N, C) and its effect on water quality

Scientific approach

- Trans-disciplinary approach on the eutrophication challenge
 - Integrated natural science and social science to improve the:
 - Policy-making process and implementation of relevant policies

 eventually achieving a water resource management meeting society's needs

UiO **Department of Chemistry** Scientific approach – Sampling strategy in watershed

- Focus on local watershed
 - Main source of P to the lake

Data source: Ji County EPB (2009)

UiO **Content of Chemistry**

Scientific approach

- Sampling strategy in watershed
- Focus on local watershed
 - Main source of P to the lake
- Soil mapping
 - Based on generic horizons from different land-use and management practices

Data source: Ji County EPB (2009)

UiO **Scientific approach**

- Sampling strategy in watershed
- Focus on local watershed
 - Main source of P to the lake
- Soil mapping
 - Based on generic horizons from different land-use and management practices
- Water monitoring
 - Seasonal variation in major streams
 - Episode studies

UiO **Continue of Chemistry** Scientific approach – Sampling strategy in watershed

- Focus on local watershed
 - Main source of P to the lake
- Soil mapping
 - Based on generic horizons from different land-use and management practices
- Water monitoring
 - Seasonal variation in major streams
 - Episode studies
- Background data
 - Climate and hydrology

• Maps

UiO **Catchment sampling**

We have done monitoring and synoptic studies of soil and water.

- 226 soil samples from 126 different sites

- 287 stream samples, 80 soil water samples and 25 DGT samples

UiO **Catchment analysis**

Soil samples

General characteristics

pH, Organic matter (LOI%), PSD (Clay, Silt and Sand%), bulk density, CECe, Soil mineral composition (XRD)

P pools

Tot P, TIP, TOP

Indices for potential risk of P loss

BAP: Olsen P, Bray-1 P, Mehlich 3 P

PSI: P sorption index

DPS%: Degree of P saturation

■ P composition ³¹P NMR

Phosphatase activities AcP, AIP, PD and PY

Stream and soil water samples

Major cations and anions

H⁺, Ca²⁺ , Mg²⁺, Na⁺, K⁺ , NH₄⁺ Cl⁻, NO₃⁻, SO₄²⁻, HCO₃⁻

■ P fractions Tot P, TIP, TOP, PP, TDP, DIP, DOP

> Hydrological monitoring

2 sets of temperature and light intensity loggers

3 water level loggers

UiO **Continue of Chemistry Scientific approach** – Analytical methods

- P-fractionation enhancing our ability to identify :
 - Source of Phosphorous
 - Processes governing fluxes
 - Fate of the Phosphorous
 - Effect of bioactive P-fractions and thereby algal growth

UiO **Department of Chemistry**

Reservoir

UiO **Department of Chemistry**

Scientific approach - Models

- Models developed elsewhere need to be adopted to Chinese environment
 - The main governing processes may not be the same
- Adequately
 parameterize processes
 governing nutrient fluxes
 to improve performance
 of the conceptual models

Schematic representation of the modular structure of the P Index

Models that are used on the watershed

• Phosphorus index model (PI model)

- Paper I: Establishment and validation of an amended phosphorus index: Refined phosphorus loss assessment of an agriculture watershed in northern China
- Relative importance analysis model / Sensitive analysis model (The backpropagation network (BPN) with Garson's algorithm)
 - Paper II: Relative Importance Analysis of a Refined Multiparameter Phosphorus Index Employed in a Strongly Agriculturally Influenced Watershed
- Land-use change model (CLUE-S model)
 - Paper IV: Land use change and its effects on the variation of Phosphorus level in targeted reservoir: a case study of a strongly agriculturally influenced watershed

Models that are used on the reservoir

- MyLake
 - 1-D physics + Eutrophication
 - Used for Vansjø
 - Underestimates temperature?
- Flake
 - Physics only (0.5-D)
 - Realistic temperature & stratification

UiO **Continue of Chemistry** Scientific approach

- Societal response
 - Knowledge -
 - Of stakeholder
 values and attitudes
 are essential for the success
 of the public policies
 abating eutrophication
 - Constitute a necessary basis for sound environmental management through facilitating collective action and public policies

WHAT IS HIDDEN

Social research survey

- Survey questionnaires are answered by 545 residents in 11 villages
- Face-to-face interviews (47) have been conducted in predominantly cereal, pig farming, fishing farming and orchard villages

Topics:

- Environmental values/attitudes
- Place attachment
- Learning and knowledge about farming and the use of fertilisers
- Water resource issues

To be presented today:

- **Eutrophication** in Yuqiao reservoir: Status, seasonal fluctuations, pressures and drivers
- Processes and their governing factors controlling fluxes of phosphorus fractions from the watershed to the reservoir
- Environmental behaviour among farmers in Yuqiao; farming production mode and ecological construction; and policies for reducing the leaching of phosphorus into the reservoir

"Water is life's mater and matrix, mother and medium -There is no life without water"

Albert Szent-Györgyi, Nobel prize winner in 1937