

UiO **Department of Chemistry** University of Oslo

Drivers and pressures governing transport of phosphorous fractions

R.D. Vogt¹, Bin Zhou¹, Min Yang², Xueqiang Lu³, Tom Andersen⁴, Geir Orderud⁵,

- ¹ Department of Chemistry, University of Oslo
- ² Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences
- ³ Tianjin Academy of Environmental Sciences
- ⁴ Department of Biosciences, University of Oslo
- ⁵ Norwegian Institute for Urban and Regional Research

Drivers of P loading

• Approx. 105 000 people live in the watershed and work within agricultural production

Drivers of P loading

• Approx. 105 000 people live in the watershed and work within agricultural production

Huge livestock

- 106 000 pigs,
- 6 000 cattle,
- 16 000 sheep
- 805 000 poultry

Drivers of P loading

- Approx. 105 000 people live in the watershed and work within agricultural production
- Huge livestock
 - 106 000 pigs,
 - 6 000 cattle,
 - 16 000 sheep
 - 805 000 poultry
- Farmland and orchard constitute 40% of the watershed
- Most farmland lie at the vicinity of the reservoir

Pressures of P loading

Three main P sources

1. Over-application of inorganic P fertilizer The farmers apply ~9 g P m⁻² yr⁻¹ inorganic fertilizers

Pressures of P loading Three main P sources

2. A large amount of manure from excess livestock and poultry breeding

Only a small part of it is used in the fields due to excess amounts and labor demanding.

Most is just dumped due to lack of collection system

Pressures of P loading Three main P sources

3. Large contribution of sewage from household Most of household's sewage is directly discharged into nearby channels or rivers due to the lack of sewage treatment system

Percentage of pollutant loss by pollution sources

Pollution sources	COD		Ammonia nitrogen		Total nitrogen		Total phosphorus	
	Loss (tons)	Percentage (%)	Loss (tons)	Percentage (%)	Loss (tons)	Percentage (%)	Loss (tons)	Percentage (%)
Fertilizers and pesticides	1026	3.6	437	17	3516	40	825	33
Livestock and poultry raising	19995	70	1697	66	4186	48	1291	52
Rural residential pollution	7631	27	447	17	1055	12	384	15

Source: Tianjin Dragon Network Technology Development Co Ltd, Study on Diffused Pollution in the River in the Prefecture and Measures, the report of 2014

In: Jintu et al., In progress

Clean water action plan

- \$330 billion to curb water pollution
- Efforts must be put on diffuse sources

 not on point sources, i.e. not
 upgrading existing sewage treatment
 plants

In: Lu et al., In Progress

Main results - <u>Soil</u> chemistry

Low
 Soil organic matter content

State

Main results - <u>Soil</u> chemistry

Main results - <u>Soil</u> chemistry

- Low
 Soil organic matter content
- Low
 Cation exchange capacity
- Soil texture
 - Homogeneous particular size distribution of mainly silty loam
 - Apparent impermeable clay layer underneath shallow Ap

State

Main results

- Soil chemistry
- P pools
 - Total inorganic P (TIP) is the dominant fraction (60~80%)

Main results - Soil chemistry

- P pools
 - Total inorganic P (TIP) is the dominant fraction (60~80%)

State

- TIP increased in the following order:
 - Forest < Orchard < Crop land < Vegetable field
 - P pools are strongly governed by P fertilizer application

Main results - Soil chemistry

P sorption capacity

- **Bio-available P** is governed by agricultural management practices
- **P sorption capacity** (P sorption index) is very low
- The Degree of P saturation exceeds the critical threshold value in all land-use types, except for forest soils

In: Zhou et al. 2015

State

Main results - Water chemistry

pH between 7-7.5 with high conc. of Ca²⁺

 $>PO_4$ solubility is expected to be governed by apatite solubility.

State

In: Master thesis of Wycliffe (2014)

Main results - Water chemistry State

pH between 7-7.5 with high conc. of Ca²⁺

 $>PO_4$ solubility is expected to be governed by apatite solubility.

In: Master thesis of Wycliffe (2014)

Main results - Water chemistry State

400 -100 -Forest Mixed 1 Mixed 2 Farmland Orchard

P fractions

- Mean Total P in the river water between 60-500µg P/L
- Dissolved Inorganic P is the dominant fraction in all local streams draining mainly agricultural land
- Particulate P is the main fraction only in the main large river
 governed by a large supported particle leading from industry
 - governed by a large suspended particle loading from industry In: Master thesis of Wycliffe (2014)

Main findings – nature sciences

- The soils have very poor P sorption ability and are strongly P oversaturated
- Excess P is not retained
- Frequent application of manure and fertilizers is based on indigenous knowledge
- Amount added has no clear consideration of poor soil P sorption capacity

Forest Orchard Crop Vegetable field

Recommendations

- Close the P cycle
 - Reuse:
 - Collect dung from husbandry and sewage from households
 - Process in central units producing methane, fertilizers and dry manure for export

Recommendations Close the P cycle

- Reduce inorganic fertilizing
 - Make available
 - Smaller fertilizer bags
 - Fertilizers without P
 - Plough deeper
 - Limit cultivation of vegetables
 - Improve literacy
 - Disseminate information
 - Provide advice based on soil analysis

Recommendations - Close the P cycle

- Recycle:
 - Convert decommissioned fish ponds to constructed wetlands
 - Capture eroded soil and Bioavailable P

