DOKTORAND:	Eirik Mydske Thoresen
GRAD:	Philosophiae doctor
FAKULTET:	Det matematisk-naturvitenskapelige fakultet
INSTITUTT:	Kjemisk institutt
FAGOMRÅDE:	Metallorganisk/materialkjemi
VEILEDERE:	Mohamed Amedjkouh og Mats Tilset
DISPUTASDATO:	9. november 2018
AVHANDLINGENS TITTEL:	Cyclometalated Ruthenium(II) Complexes and th

Cyclometalated Ruthenium(II) Complexes and their Incorporation into the Metal-Organic Framework UiO-67 for Photocatalytic CO₂ Reduction

Two of the biggest challenges for the world today are the global warming, partly resulting from the increased CO_2 emissions, and the need of new energy sources due to an increasing world population and the necessary replacement of fossil fuels. The capture and transformation of CO_2 into high energy containing chemicals could contribute to both of these challenges.

In this PhD thesis, a type of porous materials is developed and studied with the aim of such CO_2 utilization. These materials are called metal-organic frameworks (MOFs) and can be readily functionalized by a wide range of chemical species. New, cyclometalated ruthenium(II) complexes were synthesized and incorporated into the MOF UiO-67 by different synthetic methods. These complexes and the corresponding functionalized MOFs were found to intensely absorb visible light. The MOFs were also tested for photocatalytic CO_2 reduction, in which the reduction products carbon monoxide, methanol, and formic acid were observed.