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Abstract

House price prediction models are used to estimate the price of a dwelling given its features such
as location, size or number of bedrooms. Machine learning models like gradient boosted trees are the
state-of-the-art for this in terms of prediction accuracy, but these models are often hard to interpret:
Why exactly does the model predict what it predicts? We compare the performance of gradient boosted
trees with the performance of Generalized Additive Models (GAMs), a class of model that is widely
regarded as interpretable. We argue that GAMs are not optimal for data sets with categorical variables
with a large number of levels, as is the case with the K = 96 city districts in the data set we study. As a
possible solution for this, we propose using a collection of local models on clusters of city districts, where
districts within the same cluster have a similar prediction model.

We evaluate the models on a data set consisting of N = 29 933 transactions from Oslo, Norway,
in 2018-2019. The results indicate that the gradient boosted trees have the best model performance,
achieving an RMSE of 10.1% compared with 15.5% for the GAM model. The local GAM models achieve
11.5% at its best, while simultaneously remaining fully interpretable.

1 Introduction

Automated Valuation Models (AVMs) are statistical models that aim to estimate the value of a dwelling, or
oftentimes a portfolio of dwellings. There might be many reasons why this is of interest, but one of the main
reasons is risk management for banks that use dwellings as mortgage collateral when giving out mortgages.
The financial crisis of 2007-2008 highlighted the need for having in place reliable and efficient mechanisms
for monitoring of housing market valuations.

The idea of using statistical tools for house price prediction is not novel, and some early examples include
the use of repeated sales models (Bailey et al. (1963)) and hedonic regression models (Rosen (1974)). Recent
years have seen an increased use of more sophisticated machine learning models as AVMs. The term machine
learning refers to a broad set of techniques and tools where models learn patterns from data, induce general
learning rules from previous examples and use these rules to make predictions on new instances. Examples of
popular machine learning techniques are decision trees, random forests (Breiman (2001)), gradient boosted
trees (Freund et al. (1996), Friedman et al. (2000)) and neural networks (Schmidhuber (2015)). Many
machine learning models have proven to yield high accuracy for the task of house price prediction: Ho et al.
(2020), Park et al. (2015), Baldominos et al. (2018), Sing et al. (2021), Kim et al. (2021) and Hjort et al.
(2022) all demonstrate the effectiveness of tree-based models such as random forest and gradient boosted
trees for house price prediction.
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While these machine learning models often tend to give more accurate predictions than traditional re-
gression models, the accuracy often comes at the cost of interpretability. Many of the above mentioned
models are frequently referred to as black box models. This term captures the fact that the models often are
difficult to interpret. To combat this, several explanatory frameworks exists, such as the SHAP (SHapley
Additive exPlanations) framework proposed by Lundberg et al. (2017), and the LIME (Local Interpretable
Model-Agnostic Explanations) framework introduced in Ribeiro et al. (2016). These methodologies consists
of training a second explanation model on top of the prediction model, aiming to provide an explanation on
why the model estimate is what it is.

Although explanatory tools like SHAP and LIME has gained popularity in recent years, they have also
received critique. Rudin (2019) argues that all explanatory frameworks that creates post hoc explanations
must be wrong by construction: The only way the explanatory model can give an exact explanation is if
the explanatory model equals the prediction model, which would imply that the prediction model was fully
interpretable in the first place.

A fundamental challenge in this regard is that there is no simple and universal definition of what it means
for a model to be interpretable, and the requirements will vary with different applications and contexts.
Whenever a prediction model outputs a prediction ŷi given a set of input features xi, an interpretable model
should be able to offer an insight into why ŷi is the prediction returned. Many classical methods such as linear
regression are inherently interpretable: The prediction is nothing but a sum of β coefficients times covariate
values xi, and it is therefore straightforward to explain how much each covariate xi contributes to the final
prediction. Some authors like Lou et al. (2012) and Lou et al. (2013) connect the notion of interpretability
closely to visualization: If the model predictions can be visualized in a simple and user-friendly manner, the
model is regarded as interpretable.

A class of models that is widely regarded as interpretable is the Generalized Additive Models (GAM). A
GAM is a function that can be expressed as

f(x1, x2, ..., xp) = f0 + f1(x1) + f2(x2) + ...+ fp(xp),

that is, as a sum of separate models of each covariate xj . The models fj(xj) are often called shape functions.
As this class of models has no interaction terms, they can easily be examined visually: By plotting the pair
(xj , f(xj)) we can examine exactly how a change in the covariate value xj would impact the corresponding
shape function. Furthermore, if the model outputs a certain prediction ŷ we can decompose it to see how
much each of the shape functions contribute to the final estimate.

A slight challenge with the GAMs arise when one of the covariates is a categorical covariate with K
disjoint levels that have no intuitive order or ranking. This is highly relevant in the realm of house price
data, since categorical covariates such as city district, municipality or postal code are typical and often very
important determinants of the final sale price. One way of handling this is to introduce dummy variables for
each of the K city districts such that each dummy variable is either zero or one. This is in many cases the
intuitive approach, and it is also what many procedures like linear regression does ”under the hood” when
treating categorical variables. This solution requires little tuning or engineering and is easy to implement.
The downside is that it effectively assumes the same form on the shape function for each of the K city
districts.

If the between-group differences are sufficiently large, another approach is to create completely local
models, that is, a separate prediction model per city district. The upside of this is that each model will
be more refined as it is trained only on data from one district: We essentially get an ensemble of K local
experts. This can be very good when there is enough available data in each city district, but it runs into
trouble when some districts have few observations. If the number of city districts become large it can also
becomes computationally and practically difficult to manage K completely separate models.

A trade-off between creating K completely local models and one global model, is to create a smaller
number of models where each model is trained on a cluster of similar city districts. This process of collapsing
similar groups together is referred to as feature fusion by Gertheiss et al. (2010). The motivation behind
using feature fusion is that some city districts might display similar characteristics, and it will therefore
make sense to group these together and in turn train a separate model on this subset of the data. Clustering
together similar city districts have many advantages: Sharing of data between similar groups might lead
to better models than if we train K completely separate models. Since the underlying premise is that the
groups that are clustered together share many of the same attributes, each model might be less complex
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than when we try to create a single global model. An obvious challenge with the categorical feature fusion
is that the space of possible models quickly grows to be too large to exhaustively test every combination.
This begs the question: How can we effectively fuse together groups in a way that creates the best set of
L < K local prediction models?

This problem can be tackled in many ways. Gertheiss et al. (2010) introduced a grouped lasso approach
with regularization on the number of groups, effectively clustering similar groups together. More generally,
Späth (1979) developed the framework of clusterwise linear regression (CLR), where the data set is parti-
tioned into clusters and separate models are trained for each cluster. Zhang (2003) has introduced the same
concept under the name regression clustering, an approach that Brusco et al. (2008) warned that might
lead to overfitting of the training data. In the realm of neural networks, the notion of Mixture of experts
(MoE) was introduced by Nowlan et al. (1990). This methodology consists of training multiple models to
be experts in different parts of the feature space. On top of this, a gating network is trained to decide which
of the underlying experts that should handle a new instance. Zeileis et al. (2008) presented model-based
recursive partitioning, which is a framework for building separate models for different parts of the feature
space. Among the p covariates, some are chosen as partition variables and some are chosen as regression
variables.

This paper studies a data set consisting of N = 29 933 housing market transactions from the Oslo
(Norway) in 2018-2019. Each dwelling in the data set belongs to one of the K = 96 city districts. We
investigate two closely related questions in this paper:

• Will interpretable models such as Generalized Additive Models match the performance of the commonly
used gradient boosted tree algorithm, which is often regarded as the state-of-the-art machine learning
model?

• Can we improve the GAMs by training an ensemble of local models rather than a single global model
for the whole data set?

We propose a greedy algorithm that merges city districts iteratively, finding the best merger at each
iteration based on model accuracy on a validation set. We compare the results of this procedure with that
of a single global model and that of K completely local models.

The rest of this paper is organized as follows: The Oslo housing market data set is introduced in Section 2.
Section 3 gives an introduction to gradient boosted trees, Generalized Additive Models and outline some
similarities and differences between the two, while also demonstrating why the latter is considered a more
interpretable model than the former. Section 4 introduces the greedy method for clustering of groups.
Prediction performance on a separate test set, both with and without using the greedy algorithm to cluster
together groups, is shown in Section 5.

2 About the data set

2.1 About the data set

We use a data set of all arms’ length transactions of apartments in Oslo (Norway) in the time period 2019-
2021. Oslo is the capital and largest city in Norway. The total number of observations in the data set
is N = 29 933, where each data point represents a single sale, i.e. a transaction of one dwelling. Each
transaction includes a SalePrice (the response variable in the regression) and p = 14 features of the specific
dwelling (the independent covariates in the regression). These features contain information that is typically
of high importance to home owners, such as size of the dwelling (in m2), the number of bedrooms, the exact
location (represented by the Longitude and Latitude), the floor the apartment is on, the age of the dwelling
and so on.

The data set also includes information about the neighborhood. This data is based on a division of
Norway into grids of size 250× 250 meters. We can count the number of homes and other buildings (shops,
schools, churches, etc.) in the grid cell in which the dwelling lies, as well ass all (eight) adjacent grid cells.
This information is summarized in the covariates NearbyHomes and NearbyBuildings. This information is
valuable to potential buyers of an apartment, as it gives insight into what kind of area the dwelling is in.
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Furthermore, Oslo is divided into K = 96 distinct and non-overlapping city districts. These city districts
are depicted in Figure 1 with color coding showing the mean price per square meter. The prices are measured
in thousands NOK. 1

We have concentrated the analysis on only those sales registered as apartments, thus excluding other
estate types such as row house, detached homes and duplexes. This will naturally lead to a higher density
of transactions from central areas, as the areas outside of the city centre is often dominated by detached
homes. Finally, sale date is given as SaleMonth with values ranging from 1 to 24 (two years corresponds to
24 months). This makes it easier to handle in a regression setting, and the sacrifice in model accuracy by
doing this is minimal.

The data set is summarized in Table 1.

Table 1: The variables in the data set with summary statistics for the numerical variables.

Variable Unit Mean St. Dev. Min Max Type

Sale Price NOK (mill.) 4.69 2.14 1.26 67.5 Numerical
City District1 - - - - - Categorical
Sale Date months 9.57 6.00 1.00 24.00 Numerical
Altitude m 90.27 61.68 0 480 Numerical
Size 2 m2 65.63 24.24 15.00 370.00 Numerical
Floor3 - 3.02 1.89 -4 14 Numerical
Bedrooms - 1.79 0.76 0 9 Categorical
Dwelling Age years 61.27 37.4 0 218.00 Numerical
Balcony4 - 0.75 0.43 0 1 Binary
Elevator4 - 0.37 0.48 0 1 Binary
Units On Address5 - 20.54 27.49 0.00 274.00 Numerical
Coast Distance m 3,160 2,395 5 12,201 Numerical
Lake Distance m 966.60 497.37 31 3,183 Numerical
Nearby Homes6 - 2,815.72 1,589,6 100 6,746 Numerical
Nearby Buildings7 - 166.66 144.38 6 1,323 Numerical

1 There are 96 distinct city districts in the data set.
2 The living area in m2.
3 If the dwelling has multiple floor, this variable will be the lowest floor. For detached homes this is set to 1.
4 In cases where the information is missing, this is set to 0.
5 In some cases, e.g. in apartment buildings, multiple dwellings have the same address.
6 The time of sunset as of July 1st.
7 Norway is divided into squares of 250m×250m. This variable counts the number of homes or other buildings
(stores, schools, churches etc.) in all the adjacent squares to the square that the target dwelling is in, i.e.
the 8 neighbouring squares.

8 This counts the number of homes or other buildings (stores, schools, churches etc.) in the adjacent eight
250m×250m squares, as well as the neighbors of these eight squares. In total, this includes 25 squares.

3 Tree stumps, gradient boosting and GAMs

In this section we briefly present gradient boosted trees and generalized additive models (GAMs), two popular
methods for predictive tasks. We also show how gradient boosted trees can be considered a special case of
a GAM when we use decision trees with a depth of one (so-called tree stumps).

3.1 Gradient boosted trees

Gradient boosted trees is an ensemble method that combines multiple decision trees. Denote h(xi; q) to
be the output of a decision tree with tree structure q. Encoded in the tree structure is the division of the
feature space into J distinct and non-overlapping regions denoted Rj , each equipped with a value w(j) for

11 NOK ≈ 0.1 USD as of May 10th 2022.
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Figure 1: The K = 96 city districts in the data set with mean sale price per m2 (measured in thousand
NOK). The white area represents a city district (”Sentrum”) that is left out of the data set due to too low
sample size.

j = 1, ..., J . Formally,

h(x; q) =

J∑
j=1

w(j) · I(xi ∈ Rj).

The regions Rj are usually created in a way that minimizes the total variance of the y values in each of the
nodes, meaning that the decision tree finds splits that group together observations with a similar response
in each node. This was first introduced by Breiman et al. (1984).

Gradient boosted trees train multiple decision trees in a sequential manner where each tree is trained on
the residuals from the previous trees. After training M such trees in a sequence, the final prediction is

f(x) =

M∑
m=1

η · hm(x; qm)

where hm is tree number m in the sequence and η ∈ (0, 1] is a regularization parameter. This sequential
model fitting to the residuals of the previous tree bears close resemblance to the gradient descent method
often used in various optimization tasks, where one searches for the minimum in a step-wise fashion by
repeatedly moving in the direction of the gradient. In fact, Friedman (2001) showed that gradient boosting
is nothing but a gradient descent method in function space.

Even before this connection to the gradient descent method was established, the idea of boosting a
model by re-training it on the residuals from the previous iteration was first introduced as a computational
technique by Freund (1995), Schapire (1990) and Freund et al. (1996). In much of this original work the
focus was on an ensemble of so-called weak learners, i.e., learners that on its own is merely slightly better
than random guessing. Schapire (1990) showed that any strong learner, i.e. highly accurate model, can be
expressed as an ensemble of weak learners via boosting. The boosting idea does not rely on a sequence of
learners that on its own are very precise, but quite the contrary: Weak learners will yield precise predictions
if we combine a large sequence of them, each one correcting the mistakes of the previous one. Schapire et al.
(2012) likened boosting to “garnering wisdom from a council of fools”. Despite this, boosting with stronger
learners may often show better performance in practical applications, but too strong learners might quickly
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lead to over fitting of the training data (Bentéjac et al. (2021), Ridgeway (2005)). The tree depth D and
learning rate η should be picked based on the specific problem at hand, or found via systematic tuning.

A major drawback of gradient boosted trees, however, is the lack of interpretability. While a single
decision tree is inherently easy to inspect and understand, a sequence of M trees quickly becomes hard to
understand, especially as M ∼ 103 in most applications. A single tree of depth D divides the feature space
in up to 2D distinct regions. Typical tree depths are 4 < D < 8, yielding a large number of regions per
tree. With these tree depths we also include a large number of interactions between the covariates, making
it difficult to isolate the effect of each covariate.

Although the predictions from gradient boosted trees are difficult to interpret, some methods exist. Most
notably, one can construct a partial dependence plot, which attempts to visualize the marginal effect of any
of the covariates xj on the dependent variable y. In order to generate a partial dependence plot we must
find a way to marginalize out the effect of all the other covariates x1, ..., xj−1, xj+1, ..., xp. Greenwell (2017)
presents a practical way of doing this: For a certain observation in the data set we modify the true observed
xj repeatedly while keeping all the other covariates fixed, each time using the gradient boosted tree to make
a prediction based on this modified observation. If we do this repeatedly in a discrete grid, we can plot (xj , ŷ)
for this observation. If we repeat this for all N observations, we get N curves and can take the average curve
as an approximation of how different values of xj affects the prediction ŷ.

While the partial dependence plot gives a hint about the shape of the prediction ŷ, it does not give a
perfect explanation in the following sense: Given a set of features (x1, ..., xp) in a new observation, we can
not simply look at the average partial dependence plots and use these as a prediction. Due to the interaction
terms that are introduced by having deeper trees, a partial dependence plot of (xj , ŷ) will not reveal to us the
exact prediction corresponding to a set of features (x1, ..., xp). Instead this plot will give us the prediction
given xj , averaged over all the other input variables. An example of a simple gradient boosted tree with
interactions, together with a corresponding partial dependence plot, is shown in Appendix B.

3.2 Generalized Additive Models (GAM)

An Additive Model is a any model that takes the form

E(y) = f0 + f1(x1) + f2(x2) + ...+ fp(xp), (1)

where x1, ..., xp are features and f1(·), ..., fp(·) are called shape functions. This framework allows for more
flexible regressions than what can be achieved via traditional OLS linear regression or Generalized Linear
Models (GLM), where a link function of the mean of the response y is modelled as a known function of
covariate xj , or specified transformations of xj . In a additive model, the dependency on the covariate xj

is specified through an unknown function fj(xj), whose shape can be learned. The Additive Model can be
expanded into a Generalized Additive Model (GAM) by adding a link function g(·) such that

g(E(y)) = f0 + f1(x1) + f2(x2) + ...+ fp(xp). (2)

The link function makes it possible to make assumptions about the mean of the underlying data. For
instance, the link function g(·) = log(·) implies data that is Poisson distributed. By using the so-called
identity link function g(E(y)) = E(y) we retrieve the simple Additive Model. Note also that we can easily
express standard linear regression in this framework by letting fj(xj) = βj · xj for every j = 1, .., p and
estimate β via maximum likelihood, as is normally used in linear regression. The GAM framework was
introduced by Hastie et al. (1986).

The flexibility offered by the GAM framework has multiple benefits: First and foremost, it can be useful
with a large variety of assumptions on the underlying data. Secondly, this kind of model is much more
interpretable than a function that takes multiple covariates as input, thus creating interactions. The reason
for this is that we can easily visualize each of the shape functions by plotting (xj , fj). This highlights the
appeal of the additive nature of the model: By simply looking at all the shape functions f0, f1, ..., fp we can
determine what the final prediction ŷ is. It also makes it straight-forward to answer questions such as ”how
would ŷ change if we change x1 by one unit?” with certainty.

Traditionally, the preferred choice of shape functions in GAMs has been smoothing splines (Wood (2006)).
Smoothing splines are piece-wise polynomial functions with the additional requirement that the polynomials
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should have similar first and second derivative in the knots where two polynomials meet. This has the benefit
of creating a smooth curve that interpolates the data in a highly flexible manner. In principle, however,
all sorts of different models can be used to fit the shape functions f1, ..., fp. Recent years have seen an
increased interest in using decision trees or ensembles of decision trees to fit each base learner. Lou et al.
(2012) provides a comprehensive comparison of different shape functions in GAMs and note that splines
tend to underfit, while tree-based methods are prone to overfitting and must thus be regularized carefully.
They conclude that a bagging of shallow trees – defined by them as trees with depth of 1 or 2 – provide the
best accuracy. Furthermore, Chang et al. (2021) note that even in cases where splines and tree-based shape
functions have the same accuracy on a test set, the shape plots reveal unexpected and unreliable behaviour
for some of the splines. For these reasons we will focus on tree-based GAMs.

The fitting of the GAMs depends on the choice of shape functions. Some shape functions, like linear
regression or splines, can be obtained simultaneously in closed form. Other shape functions, like tree based
methods, cannot be calculated in closed form and require iterative procedures. The historically most used
method for this is backfitting (Hastie et al. (2001)).

3.3 Gradient boosted tree stumps as a GAM

At first glance, gradient boosted trees and GAMs seem to have few similarities. However, in the special case
where each tree use tree depth of 1 we can indirectly turn a gradient boosted tree ensemble into a GAM. A
tree of depth 1 is equivalent to dividing the feature space in two, i.e.

R1 = {x : xj ≤ a}, R2 = {x : xj > a}

for some value a. Note that each tree in the gradient boosted tree ensemble then will be a simple step
function that only utilize one of the p covariates. A tree of depth 1 is often referred to as a tree stump.
Although a simple tree stump in itself will provide a quite uninformative binary split of the xj feature space,
an accumulation of multiple binary splits on xj will sum to a non-smooth function fj(xj).

Training a full gradient boosted tree algorithm where each tree consists of a single split will effectively
turn the gradient boosted tree into a GAM, since each tree will make a split on one of covariates xj without
creating any interactions. In order to visualize the pair (xj , fj) we can simply gather all the trees that split
on xj and discard the other trees. This can be repeated for all the p covariates, giving an additive structure.
A simple example of how a sequence of tree stumps form an additive model is illustrated in Appendix B.

3.4 A simple example

We simulate data from the following model:

x1 ∼ N (0, 1), x2 ∼ N (0, 1), x3 ∼ N (0, 1)

y = 0.1x2
1 + sin(x2) + I

(
cos(x3)

)
+ ε, ε ∼ N (0, 0.5),

(3)

where y is the response and x1, x2, x3 are covariates. The function I(x) is an indicator function that is 1
if x > 0 and 0 otherwise. We train a GAM on N = 1000 samples from the above model, using boosting
with M = 1000 iterations (tree stumps) and a learning rate of η = 0.03. The model results in prediction
on the form ŷ = f0 + f1(x1) + f2(x2) + f3(x3), and the estimated shape functions are plotted in Figure 2.
The plots show the constant intercept f0 as well as the pairs (x1, f1), (x2, f2), (x3, f3). The functions are not
smooth, but rather a sum of many step functions (on average 333 binary splits on each covariate). The true
function used to generate the data as per Equation 3 is displayed in a dotted blue line. The function that
seems to best approximate the underlying truth is f2. However, we must not be fooled by the fact that the

f1 and f3 functions lie somewhat below the true functions 0.1 · x2
1 and I

(
cos(x3)

)
; the final prediction is a

sum of all the shape functions given covariate values (x1, x2, x3), including the intercept that is close to 1.
Of major importance is therefore whether or not the functions f1, f2, f3 are showing a similar shape as the
underlying data. This seems to be the case, even though all of the shape functions diverge somewhat from
the underlying truth in the edges of each plot. The shape functions f1 and f2 flatten out in the edges, due
to the fact that there are less observations here for the model to train on.
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Figure 2: The shape functions from a GAM trained on the synthetic data set in (3) with M = 1000
sequential tree stumps. The first plot show the constant intercept f0, while the other three plots show
the pairs (x1, f1), (x2, f2), (x3, f3). The black rug at the bottom of the plots show at what x values the
observations are from. The blue dotted line is the true value that the data set is simulated from.

3.5 Preliminary results

We train two models on the data set of transactions from Oslo: a GAM with tree stumps as shape functions
and a gradient boosted tree method with deeper trees. For the GAM models we use the mboost implementa-
tion by Hofner et al. (2014), while the deeper gradient boosted tree ensemble is trained by using the XGBoost
implementation by Chen et al. (2016). We use a tree depth of D = 8 in the deep gradient tree ensemble. In
both methods we use learning rate of η = 0.05 and M = 10 000 iterations.

We randomly sample half of the data set for training and the other half for testing, giving Ntrain = 14 968
andNtest = 14 965. Table 2 show the performance of the three methods on the test set. We report Root Mean
Squared Error (RMSE) and Median Absolute Error (MdAE), where all errors are reported as a percentage
of the sale price. We also report R2.

Table 2: Root Mean Squared Error (RMSE), Median Absolute Error (MdAE) and R2 of the GAM and the
gradient boosted trees. All errors are reported as percentages of sale price when the models are applied
to a new test set of Ntest = 14 965 observations. All methods have used a learning rate of η = 0.05 and
M = 10 000 iterations. The gradient boosted trees is trained with XGBoost and with trees of depth D = 8.

Model RMSE (%) MdAE (%) R2(%)

GAM (tree) 15.5 8.4 82.3
Gradient boosted trees 10.1 5.4 89.1

The results in Table 2 clearly shows that the full complexity model (gradient boosted trees with depth
8) outperforms both the GAM on all performance metrics. Figure 3 shows a grid of 15 plots, corresponding
to the shape plots of the 14 numerical covariates plus the intercept. The intercept, f0 = 4.58 corresponds
to the mean price in the training set. Any prediction will thus use this as the starting point, and then
adjust the estimate up or down through the other shape functions. Notice that CityDistrict is a categorical
covariate taking K = 96 levels. The shape function fCityDistrict is therefore simply a set of K = 96 constant
values, one for each city district. The shape plot fCityDistrict displays these values from smallest to largest.
Each tick mark represents one city district. The y axis in each of the plots is measured in million NOK.
Although many of the plots, like fSize, fBedrooms or fSaleMonth tend to give rather smooth curves, other
such as fBuildingsNearby or fLakeDistance, are rather erratic and are less easy to understand. For instance,
fBuildingsNearby has a sudden drop around 400 that is hard to explain. The shape function fCoastDistance
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shows a large hike for very small values before stabilizing around 0. This is intuitively easy to explain:
People are willing to pay a lot to live very close to the sea, but the difference between living 5 000 meters
and 6 000 meters from the sea will typically not matter much.

However, when considering these plots one must also look at the magnitude of the y axis. The erratic
fBuildingsNearby, for instance, varies between approximately −0.1 and 0.1, i.e. between −100 and 100 thou-
sand NOK. This is a relatively modest amount, considering that the average price in the data set is 4.69
million NOK. It’s not surprising that fSize seems to have the biggest contribution to the final prediction,
based on the magnitude of y axis.
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Figure 3: All the p = 14 shape functions (plus the intercept f0) from the GAM trained with tree stumps.
The values on the y axis is in million NOK. The covairates Balcony and Elevator are both boolean (that
is, they take either the value 1 or 0). The CityDistrict covariate takes one of K = 96 different values. The
shape plots fCityDistrict therefore shows 96 dots, sorted from smallest to largest for convenience.

Let us consider a specific example of an apartment in the training data. This has the true sale price of
y = 7.30 (million NOK) and the GAM model predicts ŷ = 7.48. By calculating fj(xj) for all the specific xj

features of this dwelling we can visualize exactly how we got to the prediction. Figure 4 shows this for one
specific dwelling that is located in the city district Skillebekk. For this specific dwelling we observe that the
two covariates that contribute most towards the final prediction is fCityDistrict and fSize. The size of the
bars in Figure 4 corresponds exactly to the fj values from Figure 3, which highlights the explanatory nature
of the GAMs.
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CityDistrict = Skillebekk

Size = 91

Altitude = 21
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UnitsOnAddress = 234
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Figure 4: A plot showing the contribution from each shape function towards the final prediction. The left
dashed line shows the intercept f0 = 4.58 million NOK and the right dashed line shows the prediction
ŷ = 7.48 million NOK. Covariates that give a postiive contribution to the prediction predictions are filled
with blue, while covariates that give a negative contribution to the predictions are filled with red. The true
sale price observed for this dwelling was y = 7.30 million NOK.

4 Towards more local models

It is clear from the previous section that the GAM models struggled to perform at the level of the full
complexity model. One possible explanation is the large number of levels for the categorical features. With
GAMs we can not encode interactions between different covariates, thus we are unable to encode that there
is e.g. a different slope for the Size feature in different city districts. With the GAM framework we assume
that the shape functions are equally shaped in each city district, but shifted up or down by a constant.

Is this a good assumption? In order to investigate this problem we take the polar opposite view: What
if we trained K completely local models, that is, one model per city district? This would have the benefit
of creating highly specialized models, but the obvious downside is the lack of available data for many city
districts; some city districts have less than 10 observations. Figure 5 shows the shape plot of fsize(·) for
the two city districts Bygdøy og Rommen. These are the city districts in the data set with highest and
lowest mean sale price, respectively. They have thus been deliberately picked to demonstrate the point,
namely that different city districts not necessarily have a similar shape plot. The right plot in Figure 5 uses
a simple linear regression as an analogy for the shape plots produced by the GAMs: All city districts does
not necessarily have the same βsize.
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Figure 5: Left: Shape plots of fSize from two local models trained on the city districts Bygdøy and Rommen.
Right: A plot of the actual observations from the two city districts with a linear regression line showed for
illustrative purposes.

Is the solution simply to train K = 96 completely local models? Not necessarily. The rug (i.e. the tick
marks at the bottom of the plot) in Figure 5 reveal that some city districts contain quite few observations.
This is often symptomatic of housing market data, as some parts of the market tend to have higher activity
than others. Training K completely local models will in theory yield highly specialized experts in each of
the city districts, but with so little data available for some city districts, there is no guarantee that this will
be true in practice. Besides, many city districts display shape plots that are much more equal than the one
displayed in Figure 5. Figure 6 shows the shape plots of fSize for two local models trained on the the two
neighbouring city districts Sagene and Torshov. The shape function from these models show a much clearer
similarity, which is also evident from the right plot that shows βSize from the two models.
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Figure 6: Left: Shape plots of fSize from two local models trained on the city districts Sagene and Torshov.
Right: A plot of the actual observations from the two city districts with a linear regression line showed for
illustrative purposes.
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The above examples illustrates that K completely local models not necessarily is an optimal choice, and
some sharing of information between city districts can be beneficial. At the same time, Table 2 showed that
the performance of a single global GAM model did not match the performance of full-complexity models. A
compromise is to train L < 96 separate models, where similar city districts are merged together. The next
subsection presents a greedy approach to this problem.

4.1 Greedy Algorithm

A greedy algorithm is a term for describing a paradigm in combinatorial optimization where an algorithm
makes a locally optimal choice at every iteration of the algorithm without considerations of future implications
of the choice. While this sequence of locally optimal choices not necessarily lead to the globally optimal
solution, it is a good approximation when finding the global optimum is too expensive.

A greedy algorithm for the regression problem with a large number of city districts would consists of
sequentially reducing the number of groups by merging two groups together at every iteration. This process
is continued until a stopping criterion is reached. The stopping criterion will typically be related to the
model performance or a pre-determined number of iterations. At every iteration, the algorithm should
merge together the two groups that give the best improvement in performance.

How should we determine what gives the best improvement in performance? The intuitive approach is
to test all combinations. That is, we try to merge every city district i and j and evaluate the change in
performance measured by the prediction error on a validation set. When city districts i and j are merged
we are left with (K − 1) groups. We then train (K − 1) completely local models and evaluate the model
performance on a validation set. If we do this for every pair of city districts, we will obtain a K×K matrix,
where element (i, j) contains the model performance in the scenario where city district i and j are grouped
together. Note that the diagonal elements in this matrix will all contain the same number, since that would
be the scenario where no groups are merged. We can now easily pick the smallest element in the matrix,
and this would correspond to finding the city districts (i∗, j∗) that lead to the biggest reduction in error.
We merge these and repeat the process until we find no further improvement. A detailed description of the
algorithm is shown in Algorithm 1.

The benefits of this approach is that we actually test all combinations empirically on a validation set, thus
giving a sequence of merge operations that are probably fairly good. It is also a model agnostic approach;
the (K−1) local models can be any type of statistical model, and even – in theory – different types of model.
The downside of this approach, however, is the computational cost. We need to train

(
K
2

)
= 1

2K · (K − 1)
models in order to initiate the algorithm (the 1/2 is due to the symmetry involved; merging city district i
and j is the same as merging city district j and i). After merging two groups we must train another (K− 1)
model, then (K − 2) in the next iteration, and so on. With K ≈ 100, as in the Oslo data set, we must train
thousands of models. This is a significant computational challenge.

Algorithm 1 Greedy algorithm

1: procedure GreedyMerging(
2: )Train K completely local models on the K city districts
3: Initialize a symmetric error matrix M ∈ RK×K where M [i, j] is the RMSE (%) on a validation set

after city district i and j is merged
4: Normalize M s.t. diag(M) = 1
5: SmallestError = min(M)
6: while SmallestError < 1 do
7: [i∗, j∗] = which(M == SmallestError)
8: Merge city district i∗ and j∗
9: Delete row j∗ and column j∗

10: Improvement = 1− SmallestError
11: M = M − Improvement
12: Recalculate row i∗ and column i∗ in M
13: SmallestError = min(M)
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However, the greedy approach also allows for other choices of merging criterion. Another approach
that is similar in spirit, but computationally faster, defines the merging criterion based on out-of-sample
performance. Rather than actually merging city district i and j we can train a model on city district i
and evaluate it on city district j. A good out-of-sample performance can be taken as an indicator that city
district i and j are similar. This method drastically reduces the total number of models that need to be
trained. In order to initiate the algorithm we must train K local models (as opposed to 1

2K · (K − 1)),
and for every iteration we must simply train one additional model. However, at every iteration we must
evaluate one model on the (K−1) other city districts. This also has a computational cost, but it is generally
considered smaller than the cost of training (K − 1) models.

It must be noted that this approach does not have the same symmetry as the previous greedy approach:
A model trained on city district i and evaluated on city district j does not necessarily give the same result
as a model trained on city district j and evaluated on city district i. To make it easier to decide which two
city districts to merge we enforce a symmetry by considering the average of element (i, j) and (j, i) in the
matrix.

A detailed description of the greedy out-of-sample is described in Algorithm 2.

Algorithm 2 Greedy algorithm with out-of-sample merging criterion

1: procedure Greedy Algorithm (Out-of-sample)(a, b)
2: Train K completely local models on the K city districts;
3: Divide a validation set into K parts such that part j consists of data only from city district j
4: Initialize a symmetric error matrix M ∈ RK×K where M [i, j] is the RMSE (%) when using a model

i on validation set j

5: Create Msymmetric such that Msymmetric[i, j] =
1
2

(
M [i, j] +M [j, i]

)
6: SmallestError = min(M)
7: while iteration < MaxIteration do
8: [i∗, j∗] = which(Msymmetric == SmallestError)
9: Merge city district i∗ and j∗

10: Delete row j∗ and column j∗
11: Recalculate row i∗ and column i∗ in M
12: SmallestError = min(Msymmetric)

5 Results

We saw in Table 3 that the gradient boosted tree significantly outperformed the GAM model, giving RMSE
of 10.1% and 15.5%, respectively. We now seek to investigate if clustering city districts through a greedy
procedure will improve the performance of the GAM. As touched upon in Subsection 4.1, the Greedy Algo-
rithm requires us to train thousands of models, which is practically infeasible. We therefore use the much
quicker GreedyOutOfSample algorithm to reduce the number of models iteratively from K = 96 (completely
local models for each city district) to K = 1 (a single global model).In order to smooth out noise related
to specific splits of the data into training set and test set, we perform 20 simulations and report the mean
performance.

The mean results of the simulations can be seen in Figure 7. The plot shows performance, measured
by MdAE, RMSE and R2, against the number of groups, ranging from 1 to 96. The left side of the plot,
where the number of groups is one, corresponds to training a single global model for the whole data set.
These numbers are the same that was reported in Table 2. The red dashed line shows the performance of
the gradient boosted tree with depth 8.

No matter the number of groups, we are not able to reach the performance of the gradient boosted tree
on any of the performance measures. However, we do see some encouraging results: The RMSE is reduced
from the original 15.5% to below 12% as long as the number of groups are above approximately 25. The
MdAE is reduced from the original 8.4% towards approximately 6.2%. The R2 improves quickly when going
from one to approximately 15 groups, but stabilizes quickly thereafter.
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Figure 7: The mean results of running 20 simulations with the GreedyOutOfSample-algorithm. The plots
should be read as follows: To the left in each plot, the number of groups is 1, i.e., we use a single global
model for the whole data set. To the right in each plot the number of groups is 96, i.e., we use 96 completely
local models (one for each city district. We use the GreedyOutOfSample-algorithm to go from 96 models to 1
model by merging two models in each iteration. We only consider tree-based GAM models. The red dashed
line shows the performance of the gradient boosted trees with trees of depth 8, serving as a performance
benchmark. Left: Root Mean Squared Error (RMSE). Middle: Median Absolute Error (MdAE). Right:
R2.

There seems to be no doubt that going towards more local model improves the performance of the GAMs.
It is hard to determine the optimal number of groups, as it varies somewhat depending on what performance
measure we choose. One can argue that 96 groups – i.e. one model for each city district – seems to be
the optimal number. However, having a large number of models is also computationally and practically
challenging. Table 3 reports the performance for different number of groups. With 53 groups we achieve
the best RMSE. Note, however, that by using merely 20 groups we achieve an RMSE of 12.0%, a significant
reduction from the original 15.5%.

Table 3: Model performance with different number of groups, where the GreedyOutOfSample algorithm is
used to determine which city districts that are to be merged. The results above the dashed line are the one
reported in Table 2. The 53 groups are chosen because it is the one minimizing the RMSE. As expected
none of the GAM models are able to achieve performance at the level of the gradient boosted trees.

Model RMSE (%) MdE (%) R2(%)

GAM (1 group) 15.5 8.4 82.3
Gradient boosted trees 10.1 5.4 89.1
GAM (greedy, 96 groups) 11.7 6.2 85.7
GAM (greedy, 53 groups) 11.5 6.2 85.8
GAM (greedy, 25 groups) 11.8 6.5 85.8
GAM (greedy, 20 groups) 12.0 6.7 85.6
GAM (greedy, 10 groups) 12.9 7.2 85.1

Although it seems evident that going towards more local models improve the model accuracy of the
GAMs, it also introduces another important question: Which city districts are being grouped together?
Figure 8 shows three examples of how the clustering looks when the number of models is set to be 10. The
three maps correspond to the clustering result for three different training sets, all sampled randomly from the
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original data set presented in Section 2. Interestingly, all three plots show the existence of two super groups:
One group that mainly includes the north-eastern and south-eastern city districts, and one group including
the north-western, central northern and some eastern city districts. This has primarily two implications.
Firstly, it is reassuring that the same structures seem to appear even with a slightly different training set.
This strengthens the belief that these structures are indeed present, and not merely noise. Secondly, it is
surprising and perhaps slightly problematic that all the other 8 groups consist of a single city district each.
Rather than having 10 clusters with e.g. 5 − 15 city districts in each, we see two super groups and eight
completely separate city districts. One exception is the second map, which seems to have two neighboring
city districts clustered together slightly left of the city centre.

The implications of this is not immediately obvious, and further analysis of the clustering results should
be conducted. Although the number of models is indeed 10 in this case, one could argue that the actual
number of clusters is three: the two large groups and a group of special cases that each need their own model.
Utilizing this insight about the de facto number of groups might be able to improve the greedy clustering,
either in terms of accuracy of by computational speed.

Figure 8: Three examples of how the greedy algorithm clusters when we order the number of groups to be
10. The three examples correspond to three different training sets that are randomly sampled from the same
full data set presented in Section 2. The exact coloring is not of importance, and neither are color differences
or similarities between the maps. The important thing is which city districts that are clustered together in
each clustering.

6 Conclusion

This paper discusses the challenge of creating statistical models for house price prediction and evaluate
the models both by their accuracy on a test set and by their interpretability. We argue, inspired by the
works of Lou et al. (2012), Lou et al. (2013) and Chang et al. (2021), that Generalized Additive Models
(GAMs) trained with tree stumps are more interpretable than the state-of-the-art machine learning models
like gradient boosted trees.

The performance of the GAMs are considerable worse than the performance of gradient boosted trees on
a data set of N = 29 933 transactions from Oslo, Norway, from 2018 and 2019. However, using several local
models rather than a global model improves model performance considerably, reducing RMSE from 15.5%
to 11.5%. This is, however, still not as good as the performance of the state-of-the-art prediction model,
gradient boosted trees with deeper trees, which yielded an RMSE of 10.1%.

Despite claims of the contrary from e.g. Rudin (2019), many empirical studies – including this one – point
towards the existence of a trade off between how accurate a machine learning model is, and how intelligible
it is. It is impossible to determine a general rule about how much accuracy one should sacrifice in order to
get more interpretable models, especially since the notion of interpretability is hard to define on its own. By
utilizing several local models rather than a single global we are able to get the performance of the GAMs
closer to the gradient boosted tree. Whether or not the performance is close enough to prefer the former
model depends entirely on the context the models should be used within, the importance of being able to
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explain the prediction and the preference of the user.
There are many interesting directions for future research to improve the paper. The grouping of similar

city districts is done via a greedy algorithm, as described in Subsection 4.1. This requires training a large
number of models, and evaluating the model a large number of times. Another approach that makes sense
both computationally and methodologically is to use the shape plots to measure the similarity between
groups. To motivate this, let us imagine that we train K completely local linear regression model. We can
then inspect the β coefficients of each of the model and argue that those city districts that have similar β
coefficients share some characteristics and should thus be clustered together. Creating a similar methodology
for GAMs is not straight forward, as it raises the question of how to quantify the similarity (or lack there
of) between curves that are non-parametric and non-smooth. Numerical integration methods will likely be
necessary.

Furthermore, it would be interesting to compare the results of both the GAM models and the full
complexity model with the Catboost (Categorical Boosting) algorithm (Prokhorenkova et al. (2018)). This
is an implementation of gradient boosted trees that is developed specifically for data sets with categorical
variables. Recently, Nori et al. (2019) also introduced Explainable Boosting Machine, a framework for
training GAMs with tree stumps that also allows for some interaction terms. This will also be highly
relevant to compare with. It can also be interesting to compare this with mixture model approaches.

Finally, it is worth noting that we so far have neglected the spatial connection between the city districts.
We argued in the beginning that the K = 96 city district have no inherent ranking or ordering, unlike the
levels of other categorical covariates. Despite this, there is indeed a spatial relationship between the categories
that might relevant to consider. Future work might include methods that use the spatial relationships as
one factor when calculating the similarity between two city districts.
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Carlos (2018). “Identifying Real Estate Opportunities Using Machine Learning”. In: Applied Sciences
8.11, p. 2321.
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A Example of tree stumps

We now present a simple example of how a set of tree stumps together form a Generalized Additive Model.
We use the state-of-the-art implementation of gradient boosted trees, XGBoost, to train a model on the
synthetic data set considered in Equation 3. Each tree is a tree stump. Figure 9 shows the first nine trees in
this sequence. The root nodes are color coded based on which of the three variables x1, x2, x3 that is chosen
(by the algorithm) for splitting in each iteration. The resulting shape functions, based solely on these 9
trees, is shown in Figure 10. 2

Tree 1
x2

Cover: 100
Gain: 8.6999836

Leaf
Cover: 53

Value: -0.0740729794< -0.0213288534

Leaf
Cover: 47

Value: -0.0148409922

Tree 2
x2

Cover: 100
Gain: 7.08897781

Leaf
Cover: 54

Value: -0.0663360953< 0.0177013706

Leaf
Cover: 46

Value: -0.0127975168

Tree 3
x2

Cover: 100
Gain: 5.77804756

Leaf
Cover: 53

Value: -0.0602920838< -0.0213288534

Leaf
Cover: 47

Value: -0.0120231826

Tree 4
x2

Cover: 100
Gain: 4.70672131

Leaf
Cover: 54

Value: -0.0539912693< 0.0177013706

Leaf
Cover: 46

Value: -0.0103682587

Tree 5
x3

Cover: 100
Gain: 4.20273685

Leaf
Cover: 50

Value: -0.0510896854< -0.152038619

Leaf
Cover: 50

Value: -0.0100393575

Tree 6
x2

Cover: 100
Gain: 3.71483374

Leaf
Cover: 54

Value: -0.0453908853< 0.0177013706

Leaf
Cover: 46

Value: -0.00671143597

Tree 7
x3

Cover: 100
Gain: 3.31975985

Leaf
Cover: 50

Value: -0.0430718102< -0.152038619

Leaf
Cover: 50

Value: -0.0066527552

Tree 8
x1

Cover: 100
Gain: 2.9451251

Leaf
Cover: 15

Value: -0.0621579997< -0.960881293

Leaf
Cover: 85

Value: -0.0150325811

Tree 9
x2

Cover: 100
Gain: 2.90946484

Leaf
Cover: 54

Value: -0.0359813645< 0.0177013706

Leaf
Cover: 46

Value: -0.00185831811

Figure 9: The first nine trees in a gradient boosted tree ensemble with depth = 1 trained on the simulated
data set from Equation 3. The root nodes are color coded according to which variable they split on: Red
(x1), blue (x2), green (x3).

2This visualization is inspired by Cynthia Rudin’s lecture notes on Interpretable Generalized Additive Models via Boosting.
It can be accessed here: https://users.cs.duke.edu/~cynthia/CourseNotes/AdditiveModelsBoosting.pdf
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Figure 10: The shape functions f1, f2, f3 based on the nine decision trees presented in Figure 9.

B Partial dependence plots

Consider a data set that is generated from the following scheme:

x1 ∼ N (0, 1), x2 ∼ N (0, 1), x3 ∼ N (0, 1)

y =
(1
2
x1

)2

· sin(4 · x2) ·
1

2
|x3|+ ε, ε ∼ N (0, 1)

(4)

This data set quite clearly has interactions, since we multiply instead of add, the three terms. To illustrate
the effect of using trees of depth > 1, we train a gradient boosted procedure with M = 1000 sequential trees,
each with tree depth 3. This is equivalent of including interactions terms, since each tree might first split
on x1 first, x2 second and x3 third, for instance. This is illustrated in Figure 11, where the left figure shows
the first decision tree in the sequence. The first split is on the covariate x1, putting every instance with
x1 ⪅ 0.99 in one node and the rest in another node. The right plot shows a partial dependence plot between
the prediction ŷ and the covariate x1. We show five lines, representing five of the rows in the training data
set. Each line is generated by repeatedly changing x1 while keeping the other covariates x2, x3 fixed, each
time using the model to predict. Due to the interactions introduced by having trees with depth > 1, the
lines are not parallel. If the model was trained by using tree stumps, we would see completely parallel lines.
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Figure 11: Left: A decision tree with depth 3 for a data set with interactions between x1, x2, x3. The text in
the square boxes indicate which covariate that is used to split on, while the values above the arrows show the
numerical value the split is conducted at. For instance, the first split is done according to the rule x1 < 0.99
such that the data points that satisfy this goes to the upper node and the rest goes to the lower node. Right:
A partial dependence plot (PDP) after running a gradient boosted trees procedure for M = 1000 iterations,
each time with trees of tree depth 3. The pdp shows five of the the final predictions ŷ plotted against one
of the covariates, x1. Since we allow interactions, the lines will not always be parallel.
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