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Multiindices are an elegant way of taking derivatives of multivariate func-
tions (functions depending on several real variables) and, in particular, Taylor
expanding such functions. This note gives an introduction to multiindices and
some things you can do with them, such as Taylor expanding multivariate func-
tions and computing multivariate power series.

1 Multiindices

Let d ∈ N. When we say that a function f : Rd → R is smooth, we mean that
it is differentiable as many times as we require.

Notation. The sets of positive integers is N = {1, 2, 3, . . . }, and the set of
non-negative integers is N0 = {0, 1, 2, . . . }.

Definition. Let d ∈ N.

• A multiindex is a vector α ∈ N0
d, that is, a vector α = (α1, . . . , αd) where

α1, . . . , αd ∈ N0. If α and β are multiindices then we write β 6 α if
βi 6 αi for all i = 1, . . . , d.

• The factorial and length of a multiindex α are the numbers α! = α1!α2! . . . αd!
and |α| = α1 + α2 + · · ·+ αd.

• The multinomial coefficients are the numbers
(|α|
α

)
, where(

|α|
α

)
=
|α|!
α!

=
(α1 + · · ·+ αd)!

α1! · · ·αd!
.

(We do not give meaning to
(
k
α

)
for k 6= |α|.)

• If x = (x1, . . . , xd) ∈ Rd then xα = xα1
1 · · ·x

αd
d (with the convention that

a0 = 1 for any a ∈ R).

• For a smooth function f : Rd → R and a multiindex α ∈ N0
d, we define

the α-th partial derivative of f as

f (α)(x) =
∂|α|f

∂xα1
1 · · · ∂x

αd
d

(x),

that is, the partial derivative of f taken α1 times with respect to x1, α2

times with respect to x2, and so on. Note that any partial derivative can
be written in terms of multiindices.
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• A multivariate polynomial is a linear combination of products of terms
of the form xni for n ∈ N and i ∈ {1, . . . , d}. Thus, every multivariate
polynomial p can be written as

p(x) =
∑
|α|6k

cαx
α,

where cα ∈ R are fixed coefficients and k is the order of the multivariate
polynomial.

Example. If f : R3 → R is smooth then f ((2,0,1)) = ∂3f
∂x2

1∂x3
. See also the

problems at the end of this note.

Remark. Let α be a multiindex. We can make the following combinatorial
interpretations:

• Assume that we have distributed |α| objects into d different containers,
where container i contains αi objects (i = 1, . . . , d), and the objects are
lying side-by-side (so they are ordered from left to right). Then α! is the
number of distinct ways in which we can order these elements, without
moving objects from one container to another.

• Given |α| objects and d containers, the multinomial coefficient
(|α|
α

)
is the

number of ways in which we can place the |α| different objects into the d
containers, while making sure that container i contains exactly αi objects
(i = 1, . . . , d).

The following results are examples of the elegance and simplicity that can
be achieved in using multiindices.

Theorem (The Multinomial Theorem). Let x ∈ Rd and let k ∈ N. Then

(x1 + x2 + · · ·+ xd)
k =

∑
|α|=k

(
|α|
α

)
xα

where the sum is taken over all multiindices α of length |α| = k.

Idea of proof. Use induction on d. You will need the binomial theorem, (a +

b)k =
∑k
i=0

(
i
k

)
aibk−i. Try writing this statement using multiindices of length

d = 2.

Theorem (Leibniz’ formula). Let f, g : Rd → R be smooth functions and let
α ∈ N0

d be a multiindex. Then

(fg)(α) =
∑
β6α

(
α

β

)
f (β)g(α−β),

where the sum is taken over all multiindices β 6 α, and we write
(
α
β

)
= α!

β!(α−β)! .

Idea of proof. Use induction on d. You will need the standard Leibniz formula
for functions of one variable, (fg)(k) =

∑k
i=0

(
i
k

)
f (i)g(k−i). In the induction

step d d+ 1, write

(fg)(α) =
∂αd+1

∂x
αd+1

d+1

(fg)(ᾱ),

where α = (α1, . . . , αd, αd+1) and ᾱ = (α1, . . . , αd).
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Theorem (Taylor’s formula). Let f : Rd → R be a smooth function, let k ∈ N
and z ∈ Rd. Then

f(x) =
∑
|α|6k

f (α)(z)

α!
(x− z)α + Rk(x)

where the sum is taken over all multiindices α of length |α| 6 k, and the re-
mainder term Rk satisfies

|Rk(x)| 6 C‖x− z‖k+1

for some C > 0.

Remark. The multivariate polynomial p(x) =
∑
|α|6k

f(α)(z)
α! (x − z)α is the

k-th order Taylor expansion of f around z.

Proof of Taylor’s formula. Fix a point x ∈ Rd. Define the function

g(t) = f
(
z + t(x− z)

)
∀ t ∈ R.

Then g : R → R is smooth and satisfies g(0) = f(z), g(1) = f(x). By Taylor’s
formula we know that

g(t) =

k∑
m=0

g(m)(0)

m!
tm +R(t)

where R(t) = g(k+1)(s)
(k+1)! s

k+1 for some s between 0 and t. We compute the deriva-

tives of g using the chain rule:

g′(t) =

d∑
i=1

∂f

∂xi

(
z + t(x− z)

)
(xi − zi),

g′′(t) =

d∑
i=1

d∑
j=1

∂2f

∂xi∂xj

(
z + t(x− z)

)
(xi − zi)(xj − zj)

...

g(m)(t) =

d∑
i1=1

· · ·
d∑

im=1

∂mf

∂xi1 · · · ∂xim

(
z + t(x− z)

)
(xi1 − zi1) · · · (xim − zim).

Each term ∂mf
∂xi1 ···∂xim

is of the form f (α) for some multiindex α of length |α| = m,

and the corresponding coefficient (xi1 − zi1) · · · (xim − zim) can be written as
(x − z)α. The number of different ways in which f (α) can occur when written
in the above form is precisely (

m

α

)
=
m!

α!

(see the remark on page 2). Hence,

g(m)(t) =
∑
|α|=m

(
m

α

)
f (α)

(
z + t(x− z)

)
(x− z)α.
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Using the Taylor expansion of g we obtain

f(x) = g(1) =

k∑
m=0

g(m)(0)

m!
1m +R(1)

=

k∑
m=0

1

m!

∑
|α|=m

m!

α!
f (α)

(
z + 0(x− z)

)
(x− z)α +R(1)

=

k∑
m=0

∑
|α|=m

1

α!
f (α)(z)(x− z)α +R(1)

=
∑
|α|6k

1

α!
f (α)(z)(x− z)α +R(1).

We finally estimate R(1): For some s ∈ (0, 1) we have

|R(1)| =
∣∣∣∣g(k+1)(s)

(k + 1)!
sk+1

∣∣∣∣
=

1

(k + 1)!
sk+1

∣∣∣∣∣∣
∑

|α|=k+1

(k + 1)!

α!
f (α)

(
z + s(x− z)

)
(x− z)α

∣∣∣∣∣∣
(as |s| 6 1)

6

∣∣∣∣∣∣
∑

|α|=k+1

1

α!
f (α)

(
z + s(x− z)

)
(x− z)α

∣∣∣∣∣∣
(triangle inequality)

6
∑

|α|=k+1

1

α!

∣∣∣f (α)
(
z + s(x− z)

)∣∣∣ |(x− z)α| .
Let C̃ > 0 be a number that bounds all (k + 1)th order derivatives of f , that

is,
∣∣f (α)(y)

∣∣ 6 C̃ for all multiindices |α| = k + 1 and all y. Next, we have |(x−
z)α| = |x1− z1|α1 · · · |xd− zd|αd 6 ‖x− z‖α1 · · · ‖x− z‖αd = ‖x− z‖α1+···+αd =
‖x− z‖k+1. Hence,

|R(1)| 6
∑

|α|=k+1

1

α!
C̃‖x− z‖k+1 = C̃‖x− z‖k+1

∑
|α|=k+1

1

α!︸ ︷︷ ︸
=D

= C‖x− z‖k+1,

where C = C̃D. (See also Problem 5.)

2 Multivariate series

Just as for univariate power series,

∞∑
n=0

cn(x− a)n, x ∈ R
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we can develop a theory of multivariate power series∑
α

cα(x− a)α, x ∈ Rd (1)

where the “sum” is taken over all multiindices α ∈ N0
d, a ∈ Rd is a fixed point

and cα ∈ R are fixed coefficients. We say that the power series (1) converges at
a point x ∈ Rd if the sequence of partial sums {Sn}n∈N converges, where

Sn =
∑
|α|6n

cα(x− a)α.

(This is just a sequence of real numbers, and convergence of this sequence is
meant in the usual sense.) For a power series (1), we define its radius of con-
vergence as

R =
1

lim sup|α|→∞ |cα|1/|α|

(with the usual convention 1/0 = ∞ and 1/∞ = 0). The “lim sup” should be
understood as

lim sup
|α|→∞

|cα|1/|α| = lim
k→∞

(
sup
|α|>k

|cα|1/|α|
)
,

where the supremum is taken over all multiindices α of length |α| > k.

Theorem (The Cauchy–Hadamard theorem). Let R be the radius of conver-
gence of the multivariate power series (1). Then (1) converges at all points x
in the “rectangle”

C(a;R) = (a1 −R, a1 +R)× · · · × (ad −R, ad +R).

Proof. The proof follows the univariate version closely. If R = 0 then C(a;R)
is empty, so there is nothing to prove. If R > 0 then η = lim sup|α|→∞ |cα|1/|α|
is finite, so for any ε > 0 there is some N ∈ N such that∣∣∣∣η − sup

|α|>k
|cα|1/|α|

∣∣∣∣ < ε ∀ k > N.

In particular, sup|α|>k |cα|1/|α| < ε + η. Let now r ∈ (0, R), fix a point x ∈
C(a; r) and let ε = 1

2 (r−1 − η) > 0. If |α| > N then

∣∣cα(x− a)α
∣∣ =

(
|cα|1/|α||x1 − a1|α1/|α| · · · |xd − ad|αd/|α|

)|α|
6
(

(η + ε)rα1/|α| · · · rαd/|α|
)|α|

=
(
(η + ε)r

)|α|
= γ|α|,

(2)

where γ = (η + ε)r = 1+rη
2 . Since r < R = 1

η we have rη < 1 and hence γ < 1.
Let us write our series as

∞∑
k=0

∑
|α|=k

cα(x− a)α.
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If k > N then we can bound∣∣∣∣∣∣
∑
|α|=k

cα(x− a)α

∣∣∣∣∣∣ 6
∑
|α|=k

∣∣cα(x− a)α
∣∣ 6 ∑

|α|=k

γ|α| =

(
k + d− 1

d− 1

)
γk,

since
(
k+d−1
d−1

)
is the number of different multiindices α ∈ N0

d of length |α| = k.
The series

∞∑
k=N

(
k + d− 1

d− 1

)
γk

is convergent (this can be seen by observing that
(
k+d−1
d−1

)
6 (k + d − 1)d, and

that
∑
k(k+d−1)dγk is convergent when γ < 1). Hence, by Weierstrass’ M-test,

we conclude that the series (1) converges uniformly in C(a; r).

Remark. Unlike in the univariate case d = 1, we cannot state precisely for
which x the series (1) diverges. In the computation (2), if for instance |x1− a1|
is very small, but the other terms |xi − ai| are large, then |cα(x− a)α| is small,
even though x is far away from C(x;R).

Problems

1. Write a list of all multiindices α ∈ N0
2 of length |α| 6 2.

2. Write out the expression ∑
|α|=2

α!xα

where x = (a, b) is some point in R2.

(Here and elsewhere we use the convention that α denotes a multiindex,
so the sum runs over all pairs of nonnegative integers α = (α1, α2) ∈ N0

2

whose sum |α| = α1 + α2 equals 2.)

3. Compute the partial derivative f (α) for all multiindices α of length |α| = 1
and |α| = 2, for each of the following functions:

(a) f(x) = sin(x1x
2
2 − x3) for x = (x1, x2, x3) ∈ R3

(b) f(x) = ‖x‖2 for x ∈ Rn

(c) f(x) = ‖x‖ for x ∈ Rn

4. Let f : R2 → R be defined by f(x) = sin(x1 − x2)e1+x2 .

(a) Compute the first order Taylor expansion around z = (0, 0) of the
function f .

(b) Write f as a power series by letting k →∞ in Taylor’s formula. (You
will need to find a general expression for f (α)(z).)

5. Use the Multinomial Theorem to prove that∑
|α|=k

1

α!
=
dk

k!
.

(Hint: Write d = 1 + 1 + · · ·+ 1.)
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