A note on ℓ^{p} spaces

Ulrik Skre Fjordholm

January 20, 2021

In this note we define the ℓ^{p} spaces (pronounced "ell-pee", or sometimes "little ell-pee", to distinguish it from L^{p}) and list some of their properties. The starting point is real-valued sequences $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ in \mathbb{R}, which we can think of as "infinite-dimensional vectors" $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \mathbb{R}^{\infty}$. The space \mathbb{R}^{∞} is too big to have an interesting structure, so instead we study smaller (but still infinitedimensional) subspaces, namely the ℓ^{p} spaces.
Notation. In this note we will think of a sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ in \mathbb{K} (where \mathbb{K} is one of the fields \mathbb{R} or \mathbb{C}) as the function

$$
a: \mathbb{N} \rightarrow \mathbb{K}, \quad a(i)=a_{i}
$$

It should be clear that each sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ in \mathbb{K} gives rise to one and only one such function $a: \mathbb{N} \rightarrow \mathbb{K}$, and vice versa. We will therefore refer to a function $a: \mathbb{N} \rightarrow \mathbb{K}$ as a sequence (in \mathbb{K}). The reason for viewing sequences as functions becomes apparent when we talk about sequences of sequences of numbers.

We first state the finite-dimensional variant of ℓ^{p}.
Definition 1. Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ and let $p \in[1, \infty]$. For $n \in \mathbb{N}$ we define the p-norm of a vector $u \in \mathbb{K}^{n}$ as

$$
\|u\|_{p}= \begin{cases}\left(\sum_{i=1}^{n}\left|u_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{i=1, \ldots, n}\left|u_{i}\right| & \text { if } p=\infty\end{cases}
$$

Definition 2. Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ and let $p \in[1, \infty]$. For a sequence $a: \mathbb{N} \rightarrow \mathbb{K}$ we define

$$
\|a\|_{\ell^{p}}= \begin{cases}\left(\sum_{i \in \mathbb{N}}|a(i)|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \|a\|_{\ell \infty}=\sup _{i \in \mathbb{N}}|a(i)| & \text { if } p=\infty\end{cases}
$$

and we set

$$
\ell^{p}(\mathbb{K})=\left\{a: \mathbb{N} \rightarrow \mathbb{K}:\|a\|_{\ell^{p}}<\infty\right\} .
$$

Example 3. If $a(i)=\frac{1}{i}$ then $\sum_{i \in \mathbb{N}}|a(i)|^{p}=\sum_{i \in \mathbb{N}} \frac{1}{i^{p}}$, which is finite only when $p>1$. Clearly, $|a(i)| \leqslant 1$ for all i, so $\|a\|_{\ell \infty}<\infty$. Hence, $a \in \ell^{p}(\mathbb{R})$ for all $p \in$ $(1, \infty]$, but not for $p=1$. Similarly, if $b(i)=\frac{1}{\sqrt{i}}$ then $\sum_{i \in \mathbb{N}}|b(i)|^{p}=\sum_{i \in \mathbb{N}} \frac{1}{i^{p / 2}}$, which is finite only when $p>2$.
Remark 4. It is not hard to see that $\ell^{p}(\mathbb{K}) \subset \ell^{\infty}(\mathbb{K})$ for every $p \in[1, \infty)$, but not vice versa. Indeed, if $a \in \ell^{p}(\mathbb{K})$ then $\sum_{i=1}^{\infty}|a(i)|^{p}<\infty$, so in particular $|a(i)|^{p} \rightarrow 0$ as $i \rightarrow \infty$, which is equivalent to $|a(i)| \rightarrow 0$ as $i \rightarrow \infty$. Thus, a is a sequence converging to 0 , so it must be bounded. To see that the converse inclusion is not true it is enough to observe that $a=(1,1, \ldots) \in \ell^{\infty}(\mathbb{K})$ but $a \notin \ell^{p}(\mathbb{K})$ for every $p<\infty$.

In order to show that $\ell^{p}(\mathbb{K})$ is a normed vector space we first prove Hölder's inequality For some $p \in[1, \infty]$ we define its conjugate exponent $q \in[1, \infty]$ by

$$
q= \begin{cases}\frac{p}{p-1} & \text { if } p<\infty \\ 1 & \text { if } p=\infty\end{cases}
$$

Note that

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1 \tag{1}
\end{equation*}
$$

and that q is the only element of $[1, \infty]$ satisfying this identity. (Here, we write $1 / \infty=0$.) Note also that $p=2$ is the only exponent which is its own conjugate.

Theorem 5 (Hölder's inequality, finite-dimensional version). Let $p \in[1, \infty]$ and let q be its conjugate exponent. For any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\|u v\|_{1} \leqslant\|u\|_{p}\|v\|_{q} \quad \forall u, v \in \mathbb{K}^{n} \tag{2}
\end{equation*}
$$

where $u v=\left(u_{1} v_{1}, \ldots, u_{n} v_{n}\right) \in \mathbb{K}^{n}$.
Proof. If $u=0$ or $v=0$ then (2) follows immediately, so we may assume $u, v \neq 0$. If $p=1$ then $q=\infty$, and

$$
\|u v\|_{1}=\sum_{i=1}^{n}\left|u_{i} v_{i}\right| \leqslant \max _{j=1, \ldots, n}\left|v_{j}\right| \sum_{i=1}^{n}\left|u_{i}\right|=\|u\|_{1}\|v\|_{\infty}
$$

The same argument applies to the case $p=\infty, q=1$. Last, in the case $p, q \in(1, \infty)$ we first recall Young's inequality: If $s, t \geqslant 0$ then

$$
\begin{equation*}
s t \leqslant \frac{s^{p}}{p}+\frac{t^{q}}{q} \tag{3}
\end{equation*}
$$

We get

$$
\begin{array}{rlr}
\frac{\|u v\|_{1}}{\|u\|_{p}\|v\|_{q}} & =\frac{1}{\|u\|_{p}\|v\|_{q}} \sum_{i=1}^{n}\left|u_{i} v_{i}\right|=\sum_{i=1}^{n} \frac{\left|u_{i}\right|}{\|u\|_{p}} \frac{\left|v_{i}\right|}{\|v\|_{q}} & \\
& \leqslant \sum_{i=1}^{n} \frac{\left|u_{i}\right|^{p}}{p\|u\|_{p}^{p}}+\frac{\left|v_{i}\right|^{q}}{q\|v\|_{q}^{q}} & \text { (by Young's inequality) } \\
& =\frac{\sum_{i=1}^{n}\left|u_{i}\right|^{p}}{p\|u\|_{p}^{p}}+\frac{\sum_{i=1}^{n}\left|v_{i}\right|^{q}}{q\|v\|_{q}^{q}} & \\
& =\frac{\|u\|_{p}^{p}}{p\|u\|_{p}^{p}}+\frac{\|v\|_{q}^{q}}{q\|v\|_{q}^{q}}=\frac{1}{p}+\frac{1}{q} \\
& =1 & \text { (by (1)). }
\end{array}
$$

Now multiply the above by $\|u\|_{p}\|v\|_{q}$ to get (2).
Theorem 6 (Hölder's inequality, infinite-dimensional version). Let $p \in[1, \infty]$ and let q be its conjugate exponent. Then

$$
\begin{equation*}
\|a b\|_{\ell^{1}} \leqslant\|a\|_{\ell^{p}}\|b\|_{\ell^{q}} \quad \forall a \in \ell^{p}(\mathbb{K}), b \in \ell^{q}(\mathbb{K}), \tag{4}
\end{equation*}
$$

where $a b$ is the sequence $(a b)(i)=a(i) b(i)$.

Proof. For an arbitrary $n \in \mathbb{N}$, apply (2) to the vectors $u=(a(1), \ldots, a(n))$ and $v=(b(1), \ldots, b(n))$ to get

$$
\sum_{i=1}^{n}|a(i) b(i)| \leqslant\|u\|_{p}\|v\|_{q}
$$

From the fact that $\|u\|_{p}=\left(\sum_{i=1}^{n}|a(i)|^{p}\right)^{1 / p} \leqslant\left(\sum_{i=1}^{\infty}|a(i)|^{p}\right)^{1 / p}=\|a\|_{\ell^{p}}$, and likewise for v, we get

$$
\sum_{i=1}^{n}|a(i) b(i)| \leqslant\|a\|_{\ell^{p}}\|b\|_{\ell^{q}} .
$$

Taking the limit $n \rightarrow \infty$ now yields (4).
Remark 7. Hölder's inequality is useful in many applications. For instance, Hölder's inequality implies that if a sequence a lies in both $\ell^{p_{1}}$ and $\ell^{p_{2}}$ for some $p_{1}, p_{2} \in[1, \infty]$, then it also lies in every space "in between". (Such a result is sometimes called an interpolation result.) Indeed, assume that, say, $p_{1}<p_{2}<\infty$, and let $p \in\left(p_{1}, p_{2}\right)$. Then there is some $\alpha \in(0,1)$ such that $p=$ $\alpha p_{1}+(1-\alpha) p_{2}$. Apply Hölder's inequality with exponent $\frac{1}{\alpha}$ (whose conjugate exponent is $\frac{1}{1-\alpha}$) to get

$$
\begin{aligned}
\sum_{i=1}^{\infty}|a(i)|^{p} & =\sum_{i=1}^{\infty}|a(i)|^{\alpha p_{1}}|a(i)|^{(1-\alpha) p_{2}} \\
& \leqslant\left(\sum_{i=1}^{\infty}\left(|a(i)|^{\alpha p_{1}}\right)^{1 / \alpha}\right)^{1 /(1 / \alpha)}\left(\sum_{i=1}^{\infty}\left(|a(i)|^{(1-\alpha) p_{2}}\right)^{1 /(1-\alpha)}\right)^{1 /(1 /(1-\alpha))} \\
& =\left(\sum_{i=1}^{\infty}|a(i)|^{p_{1}}\right)^{\alpha}\left(\sum_{i=1}^{\infty}|a(i)|^{p_{2}}\right)^{1-\alpha} \\
& =\|a\|_{\ell^{p_{1}}}^{\alpha p_{1}}\|a\|_{\ell^{p_{2}}}^{(1-\alpha) p_{2}}<\infty
\end{aligned}
$$

The case $p_{2}=\infty$ is easier:

$$
\sum_{i=1}^{\infty}|a(i)|^{p}=\sum_{i=1}^{\infty}|a(i)|^{p_{1}}|a(i)|^{p-p_{1}} \leqslant\|a\|_{\ell \infty}^{p-p_{1}} \sum_{i=1}^{\infty}|a(i)|^{p_{1}}<\infty .
$$

Remark 8. Combining Remarks 4 and 7, we see that if $a \in \ell^{p}(\mathbb{K})$ then also $a \in \ell^{r}(\mathbb{K})$ for all $r \in[p, \infty]$. (Exercise: Show by example that $a \in \ell^{p}(\mathbb{K})$ does not necessarily imply $a \in \ell^{r}(\mathbb{K})$ for $r<p$.)

In order to show that $\|\cdot\|_{\ell^{p}}$ is a norm, we first show that its finite-dimensional version $\|\cdot\|_{p}$ is a norm.

Theorem 9. For every $p \in[1, \infty]$ and $n \in \mathbb{N}$, the function $\|\cdot\|_{p}$ is a norm on \mathbb{K}^{n}.

Proof. It is clear that $\|u\|_{p}>0$ for all $u \neq 0$, and that $\|u\|_{p}=0$ implies $u=0$. Let $u \in \mathbb{K}^{n}$ and $\alpha \in \mathbb{K}$. If $p<\infty$ then $\|\alpha u\|_{p}=\left(\sum_{i=1}^{n}\left|\alpha u_{i}\right|^{p}\right)^{1 / p}=$ $|\alpha|\left(\sum_{i=1}^{n}\left|u_{i}\right|^{p}\right)^{1 / p}=|\alpha|\|u\|_{p}$. For $p=\infty$ we have $\|\alpha u\|_{\infty}=\max _{i=1, \ldots, n}\left|\alpha u_{i}\right|=$ $|\alpha| \max _{i=1, \ldots, n}\left|u_{i}\right|=|\alpha|\|u\|_{\infty}$.

Last, we show the triangle inequality. If $u, v \in \mathbb{K}^{n}$ and $p=1$ then

$$
\|u+v\|_{1}=\sum_{i=1}^{n}\left|u_{i}+v_{i}\right| \leqslant \sum_{i=1}^{n}\left|u_{i}\right|+\left|v_{i}\right|=\|u\|_{1}+\|v\|_{1} .
$$

If $p=\infty$ then

$$
\begin{aligned}
\|u+v\|_{\infty} & =\max _{i=1, \ldots, n}\left|u_{i}+v_{i}\right| \leqslant \max _{i=1, \ldots, n}\left(\left|u_{i}\right|+\left|v_{i}\right|\right) \\
& \leqslant \max _{i=1, \ldots, n}\left|u_{i}\right|+\max _{i=1, \ldots, n}\left|v_{i}\right|=\|u\|_{\infty}+\|v\|_{\infty}
\end{aligned}
$$

Finally, if $p \in(1, \infty)$, then

$$
\begin{aligned}
\|u+v\|_{p}= & \sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{p}=\sum_{i=1}^{n}\left|u_{i}+v_{i}\right| \cdot\left|u_{i}+v_{i}\right|^{p-1} \\
\leqslant & \sum_{i=1}^{n}\left|u_{i}\right| \cdot\left|u_{i}+v_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|v_{i}\right| \cdot\left|u_{i}+v_{i}\right|^{p-1} \\
\leqslant & \left(\sum_{i=1}^{n}\left|u_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{(p-1) q}\right)^{1 / q} \\
& +\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{(p-1) q}\right)^{1 / q}
\end{aligned}
$$

where we have applied Hölder's inequality (2). Since $q=\frac{p}{p-1}$ we get $(p-1) q=p$. Divide both sides by $\left(\sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{(p-1) q}\right)^{1 / q}$ to get

$$
\left(\sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{p}\right)^{1-1 / q} \leqslant\|u\|_{p}+\|v\|_{p}
$$

Since $1-1 / q=1 / p$, the left-hand side equals $\|u+v\|_{p}$, so we are done.
Theorem 10. $\left(\ell^{p}(K),\|\cdot\|_{\ell^{p}}\right)$ is a Banach space (a complete normed vector space) for every $p \in[1, \infty]$.
Proof. The proof consist of three parts: ℓ^{p} is a vector space, $\|\cdot\|_{\ell^{p}}$ is a norm, and this space is complete.

Claim: $\|\cdot\|_{\ell^{p}}$ is a norm. It is clear that $\|u\|_{\ell^{p}}>0$ for all $u \neq 0$, and that $\|u\|_{\ell^{p}}=0$ implies $u=0$. Let $a \in \ell^{p}(\mathbb{K})$ and $\alpha \in \mathbb{K}$. If $p<\infty$ then $\|\alpha a\|_{\ell^{p}}=\left(\sum_{i=1}^{\infty}|\alpha a(i)|^{p}\right)^{1 / p}=|\alpha|\left(\sum_{i=1}^{\infty}|a(i)|^{p}\right)^{1 / p}=|\alpha|\|a\|_{\ell^{p}}$. For $p=\infty$ we have $\|\alpha a\|_{\ell \infty}=\sup _{i \in \mathbb{N}}|\alpha a(i)|=|\alpha| \sup _{i \in \mathbb{N}}|a(i)|=|\alpha|\|a\|_{\ell \infty}$. Last, we show the triangle inequality. If $a, b \in \ell^{p}(\mathbb{K})$ and $p=\infty$ then
$\|a+b\|_{\ell \infty}=\sup _{i \in \mathbb{N}}|a(i)+b(i)| \leqslant \sup _{i \in \mathbb{N}}|a(i)|+|b(i)| \leqslant \sup _{i \in \mathbb{N}}|a(i)|+\sup _{i \in \mathbb{N}}|b(i)|=\|a\|_{\ell \infty}+\|b\|_{\ell \infty}$.
Finally, if $p \in(1, \infty)$, let $n \in \mathbb{N}$ be an arbitrary integer and define $u, v \in \mathbb{K}^{n}$ by $u=(a(1), \ldots, a(n))$ and $v=(b(1), \ldots, b(n))$. Then

$$
\left(\sum_{i=1}^{n}|a(i)+b(i)|^{p}\right)^{1 / p}=\|u+v\|_{p} \leqslant\|u\|_{p}+\|v\|_{p} \leqslant\|a\|_{\ell^{p}}+\|b\|_{\ell^{p}}
$$

Taking the limit $n \rightarrow \infty$ yields $\|a+b\|_{\ell^{p}}$ on the left-hand side.
Claim: $\ell^{p}(\mathbb{K})$ is a vector space. Most of the axioms follow immediately; we only show that $\ell^{p}(\mathbb{K})$ is closed under addition and multiplication by scalars. Indeed, from the fact that $\|\cdot\|_{\ell^{p}}$ is a norm on $\ell^{p}(\mathbb{K})$, we find that $\|\alpha a\|_{\ell^{p}}=$ $|\alpha|\|a\|_{\ell^{p}}<\infty$ whenever $\alpha \in \mathbb{K}$ and $a \in \ell^{p}(\mathbb{K})$, implying that also $\alpha a \in \ell^{p}(\mathbb{K})$. If $a, b \in \ell^{p}(\mathbb{K})$ then $\|a+b\|_{\ell^{p}} \leqslant\|a\|_{\ell^{p}}+\|b\|_{\ell^{p}}<\infty$, so also $a+b \in \ell^{p}(\mathbb{K})$.

Claim: $\left(\ell^{p}(\mathbb{K}),\|\cdot\|_{\ell^{p}}\right)$ is complete. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $\ell^{p}(\mathbb{K})$. Then for every $\varepsilon>0$ there is some $N \in \mathbb{N}$ such that $\left\|a_{n}-a_{m}\right\|_{\ell^{p}}<\varepsilon$ when $n, m \geqslant N$, so in particular,

$$
\left|a_{n}(i)-a_{m}(i)\right| \leqslant\left\|a_{n}-a_{m}\right\|_{\ell^{p}}<\varepsilon \quad \forall i \in \mathbb{N}
$$

It follows that for each $i \in \mathbb{N}$, the sequence $\left\{a_{n}(i)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{K}. Since \mathbb{K} is complete, $\left\{a_{n}(i)\right\}_{n \in \mathbb{N}}$ is convergent, converging to some $a(i) \in \mathbb{K}$. We claim that the sequence $a=(a(1), a(2), \ldots)$ lies in $\ell^{p}(\mathbb{K})$ and that $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ converges to a. We split the proof into the cases $p=\infty$ and $p<\infty$.
$p=\infty:$ Let $\varepsilon>0$ and let N be as above. Then $\left|a(i)-a_{n}(i)\right|=\lim _{m \rightarrow \infty} \mid a_{m}(i)-$ $a_{n}(i) \mid \leqslant \varepsilon$ for all $n \geqslant N$ and $i \in \mathbb{N}$, so

$$
|a(i)| \leqslant\left|a(i)-a_{n}(i)\right|+\left|a_{n}(i)\right| \leqslant \varepsilon+\left\|a_{n}\right\|_{\ell^{p}}
$$

Since this holds for every $i \in \mathbb{N}$ we get $\|a\|_{\ell^{\infty}} \leqslant \varepsilon+\left\|a_{n}\right\|_{\ell^{p}}<\infty$, so $a \in \ell^{\infty}(\mathbb{K})$. Moreover, $\left\|a-a_{n}\right\|_{\ell \infty}=\sup _{i \in \mathbb{N}}\left|a(i)-a_{n}(i)\right| \leqslant \varepsilon$, so we conclude that $a_{n} \rightarrow a$ as $n \rightarrow \infty$.
$p<\infty$: Let $\varepsilon>0$ and let N be as above. For every $n, I \in \mathbb{N}$ we have
so $\left\|a-a_{n}\right\|_{\ell^{p}} \leqslant \varepsilon$. Hence, $\left\|a-a_{n}\right\|_{\ell^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Last, from the inverse triangle inequality,

$$
\|a\|_{\ell^{p}} \leqslant\left\|a_{n}\right\|_{\ell^{p}}+\left\|a-a_{n}\right\|_{\ell^{p}} \leqslant\left\|a_{n}\right\|_{\ell^{p}}+\varepsilon<\infty
$$

so $a \in \ell^{p}(\mathbb{K})$.

We complete this note by showing that ℓ^{p} has a (Schauder) basis whenever $p<\infty$.

Proposition 11. $\ell^{p}(\mathbb{K})$ is infinite-dimensional for all $p \in[1, \infty]$. If $e_{n} \in \ell^{p}(\mathbb{K})$ is given by

$$
e_{n}=(0, \ldots, 0,1,0, \ldots)
$$

(the 1 occuring in the nth position), then $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis for $\ell^{p}(\mathbb{K})$ for every $p \in[1, \infty)$, but not for $\ell^{\infty}(\mathbb{K})$.

Proof. The set $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is infinite and linearly independent, so $\ell^{p}(\mathbb{K})$ is infinitedimensional. If $p<\infty$ and $a \in \ell^{p}(\mathbb{K})$, let $\alpha_{i}=a(i)$ for each $i \in \mathbb{N}$. Then the partial sum $s_{n}=\sum_{i=1}^{n} \alpha_{i} e_{i}=(a(1), \ldots, a(n), 0, \ldots)$ satisfies

$$
\left\|a-s_{n}\right\|_{\ell^{p}}=\left(\sum_{i=n+1}^{\infty}|a(i)|^{p}\right)^{1 / p} .
$$

From the fact that $\sum_{i=1}^{\infty}|a(i)|^{p}<\infty$, the above sum must converge to 0 as $n \rightarrow \infty$. It follows that $a=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$. This proves that $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis for $\ell^{p}(\mathbb{K})$.

For $\ell^{\infty}(\mathbb{K})$, let $a=(1,1, \ldots) \in \ell^{\infty}(\mathbb{K})$. If α_{i} are such that $a=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$ then necessarily $\alpha_{i}=1$ for all i. But

$$
\left\|a-s_{n}\right\|_{\ell \infty}=\|(0, \ldots, 0,1,1, \ldots)\|_{\ell \infty}=1
$$

a contradiction. Hence, $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is not a Schauder basis for $\ell^{\infty}(\mathbb{K})$.
It can also be shown that ℓ^{∞} does not possess any Schauder basis. In this sense, ℓ^{∞} is "much bigger" than the other ℓ^{p} spaces.

