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In this note we define the `p spaces (pronounced “ell-pee”, or sometimes
“little ell-pee”, to distinguish it from Lp) and list some of their properties. The
starting point is real-valued sequences {ai}i∈N in R, which we can think of as
“infinite-dimensional vectors” (a1, a2, a3, . . . ) ∈ R∞. The space R∞ is too big
to have an interesting structure, so instead we study smaller (but still infinite-
dimensional) subspaces, namely the `p spaces.

Notation. In this note we will think of a sequence {ai}i∈N in K (where K is
one of the fields R or C) as the function

a : N→ K, a(i) = ai.

It should be clear that each sequence {ai}i∈N in K gives rise to one and only one
such function a : N → K, and vice versa. We will therefore refer to a function
a : N→ K as a sequence (in K). The reason for viewing sequences as functions
becomes apparent when we talk about sequences of sequences of numbers.

We first state the finite-dimensional variant of `p.

Definition 1. Let K = R or K = C and let p ∈ [1,∞]. For n ∈ N we define the
p-norm of a vector u ∈ Kn as

‖u‖p =

{(∑n
i=1 |ui|p

)1/p
if p <∞

maxi=1,...,n |ui| if p =∞.

Definition 2. Let K = R or K = C and let p ∈ [1,∞]. For a sequence a : N→ K
we define

‖a‖`p =

{(∑
i∈N |a(i)|p

)1/p
if p <∞

‖a‖`∞ = supi∈N |a(i)| if p =∞
and we set

`p(K) =
{
a : N→ K : ‖a‖`p <∞

}
.

Example 3. If a(i) = 1
i then

∑
i∈N |a(i)|p =

∑
i∈N

1
ip , which is finite only when

p > 1. Clearly, |a(i)| 6 1 for all i, so ‖a‖`∞ < ∞. Hence, a ∈ `p(R) for all p ∈
(1,∞], but not for p = 1. Similarly, if b(i) = 1√

i
then

∑
i∈N |b(i)|p =

∑
i∈N

1
ip/2

,

which is finite only when p > 2.

Remark 4. It is not hard to see that `p(K) ⊂ `∞(K) for every p ∈ [1,∞), but
not vice versa. Indeed, if a ∈ `p(K) then

∑∞
i=1 |a(i)|p < ∞, so in particular

|a(i)|p → 0 as i → ∞, which is equivalent to |a(i)| → 0 as i → ∞. Thus, a is
a sequence converging to 0, so it must be bounded. To see that the converse
inclusion is not true it is enough to observe that a = (1, 1, . . . ) ∈ `∞(K) but
a /∈ `p(K) for every p <∞.
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In order to show that `p(K) is a normed vector space we first prove Hölder’s
inequality For some p ∈ [1,∞] we define its conjugate exponent q ∈ [1,∞] by

q =

{
p
p−1 if p <∞
1 if p =∞.

Note that
1

p
+

1

q
= 1, (1)

and that q is the only element of [1,∞] satisfying this identity. (Here, we write
1/∞ = 0.) Note also that p = 2 is the only exponent which is its own conjugate.

Theorem 5 (Hölder’s inequality, finite-dimensional version). Let p ∈ [1,∞]
and let q be its conjugate exponent. For any n ∈ N we have

‖uv‖1 6 ‖u‖p‖v‖q ∀ u, v ∈ Kn (2)

where uv = (u1v1, . . . , unvn) ∈ Kn.

Proof. If u = 0 or v = 0 then (2) follows immediately, so we may assume
u, v 6= 0. If p = 1 then q =∞, and

‖uv‖1 =

n∑
i=1

|uivi| 6 max
j=1,...,n

|vj |
n∑
i=1

|ui| = ‖u‖1‖v‖∞.

The same argument applies to the case p = ∞, q = 1. Last, in the case
p, q ∈ (1,∞) we first recall Young’s inequality: If s, t > 0 then

st 6
sp

p
+
tq

q
. (3)

We get

‖uv‖1
‖u‖p‖v‖q

=
1

‖u‖p‖v‖q

n∑
i=1

|uivi| =
n∑
i=1

|ui|
‖u‖p

|vi|
‖v‖q

6
n∑
i=1

|ui|p

p‖u‖pp
+
|vi|q

q‖v‖qq
(by Young’s inequality)

=

∑n
i=1 |ui|p

p‖u‖pp
+

∑n
i=1 |vi|q

q‖v‖qq

=
‖u‖pp
p‖u‖pp

+
‖v‖qq
q‖v‖qq

=
1

p
+

1

q

= 1 (by (1)).

Now multiply the above by ‖u‖p‖v‖q to get (2).

Theorem 6 (Hölder’s inequality, infinite-dimensional version). Let p ∈ [1,∞]
and let q be its conjugate exponent. Then

‖ab‖`1 6 ‖a‖`p‖b‖`q ∀ a ∈ `p(K), b ∈ `q(K), (4)

where ab is the sequence (ab)(i) = a(i)b(i).
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Proof. For an arbitrary n ∈ N, apply (2) to the vectors u = (a(1), . . . , a(n)) and
v = (b(1), . . . , b(n)) to get

n∑
i=1

|a(i)b(i)| 6 ‖u‖p‖v‖q.

From the fact that ‖u‖p =
(∑n

i=1 |a(i)|p
)1/p

6
(∑∞

i=1 |a(i)|p
)1/p

= ‖a‖`p , and
likewise for v, we get

n∑
i=1

|a(i)b(i)| 6 ‖a‖`p‖b‖`q .

Taking the limit n→∞ now yields (4).

Remark 7. Hölder’s inequality is useful in many applications. For instance,
Hölder’s inequality implies that if a sequence a lies in both `p1 and `p2 for
some p1, p2 ∈ [1,∞], then it also lies in every space “in between”. (Such a
result is sometimes called an interpolation result.) Indeed, assume that, say,
p1 < p2 <∞, and let p ∈ (p1, p2). Then there is some α ∈ (0, 1) such that p =
αp1 + (1− α)p2. Apply Hölder’s inequality with exponent 1

α (whose conjugate
exponent is 1

1−α ) to get

∞∑
i=1

|a(i)|p =

∞∑
i=1

|a(i)|αp1 |a(i)|(1−α)p2

6

( ∞∑
i=1

(
|a(i)|αp1

)1/α)1/(1/α)( ∞∑
i=1

(
|a(i)|(1−α)p2

)1/(1−α))1/(1/(1−α))

=

( ∞∑
i=1

|a(i)|p1
)α( ∞∑

i=1

|a(i)|p2
)1−α

= ‖a‖αp1`p1 ‖a‖
(1−α)p2
`p2 <∞.

The case p2 =∞ is easier:

∞∑
i=1

|a(i)|p =

∞∑
i=1

|a(i)|p1 |a(i)|p−p1 6 ‖a‖p−p1`∞

∞∑
i=1

|a(i)|p1 <∞.

Remark 8. Combining Remarks 4 and 7, we see that if a ∈ `p(K) then also
a ∈ `r(K) for all r ∈ [p,∞]. (Exercise: Show by example that a ∈ `p(K) does
not necessarily imply a ∈ `r(K) for r < p.)

In order to show that ‖·‖`p is a norm, we first show that its finite-dimensional
version ‖ · ‖p is a norm.

Theorem 9. For every p ∈ [1,∞] and n ∈ N, the function ‖ · ‖p is a norm on
Kn.

Proof. It is clear that ‖u‖p > 0 for all u 6= 0, and that ‖u‖p = 0 implies

u = 0. Let u ∈ Kn and α ∈ K. If p < ∞ then ‖αu‖p =
(∑n

i=1 |αui|p
)1/p

=

|α|
(∑n

i=1 |ui|p
)1/p

= |α|‖u‖p. For p =∞ we have ‖αu‖∞ = maxi=1,...,n |αui| =
|α|maxi=1,...,n |ui| = |α|‖u‖∞.
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Last, we show the triangle inequality. If u, v ∈ Kn and p = 1 then

‖u+ v‖1 =

n∑
i=1

|ui + vi| 6
n∑
i=1

|ui|+ |vi| = ‖u‖1 + ‖v‖1.

If p =∞ then

‖u+ v‖∞ = max
i=1,...,n

|ui + vi| 6 max
i=1,...,n

(
|ui|+ |vi|

)
6 max
i=1,...,n

|ui|+ max
i=1,...,n

|vi| = ‖u‖∞ + ‖v‖∞.

Finally, if p ∈ (1,∞), then

‖u+ v‖p =

n∑
i=1

|ui + vi|p =

n∑
i=1

|ui + vi| · |ui + vi|p−1

6
n∑
i=1

|ui| · |ui + vi|p−1 +

n∑
i=1

|vi| · |ui + vi|p−1

6

(
n∑
i=1

|ui|p
)1/p( n∑

i=1

|ui + vi|(p−1)q
)1/q

+

(
n∑
i=1

|vi|p
)1/p( n∑

i=1

|ui + vi|(p−1)q
)1/q

where we have applied Hölder’s inequality (2). Since q = p
p−1 we get (p−1)q = p.

Divide both sides by
(∑n

i=1 |ui + vi|(p−1)q
)1/q

to get(
n∑
i=1

|ui + vi|p
)1−1/q

6 ‖u‖p + ‖v‖p.

Since 1− 1/q = 1/p, the left-hand side equals ‖u+ v‖p, so we are done.

Theorem 10. (`p(K), ‖ · ‖`p) is a Banach space (a complete normed vector
space) for every p ∈ [1,∞].

Proof. The proof consist of three parts: `p is a vector space, ‖ · ‖`p is a norm,
and this space is complete.

Claim: ‖ · ‖`p is a norm. It is clear that ‖u‖`p > 0 for all u 6= 0, and
that ‖u‖`p = 0 implies u = 0. Let a ∈ `p(K) and α ∈ K. If p < ∞ then

‖αa‖`p =
(∑∞

i=1 |αa(i)|p
)1/p

= |α|
(∑∞

i=1 |a(i)|p
)1/p

= |α|‖a‖`p . For p =∞ we
have ‖αa‖`∞ = supi∈N |αa(i)| = |α| supi∈N |a(i)| = |α|‖a‖`∞ . Last, we show the
triangle inequality. If a, b ∈ `p(K) and p =∞ then

‖a+b‖`∞ = sup
i∈N
|a(i)+b(i)| 6 sup

i∈N
|a(i)|+|b(i)| 6 sup

i∈N
|a(i)|+sup

i∈N
|b(i)| = ‖a‖`∞+‖b‖`∞ .

Finally, if p ∈ (1,∞), let n ∈ N be an arbitrary integer and define u, v ∈ Kn by
u = (a(1), . . . , a(n)) and v = (b(1), . . . , b(n)). Then(

n∑
i=1

|a(i) + b(i)|p
)1/p

= ‖u+ v‖p 6 ‖u‖p + ‖v‖p 6 ‖a‖`p + ‖b‖`p .
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Taking the limit n→∞ yields ‖a+ b‖`p on the left-hand side.
Claim: `p(K) is a vector space. Most of the axioms follow immediately; we

only show that `p(K) is closed under addition and multiplication by scalars.
Indeed, from the fact that ‖ · ‖`p is a norm on `p(K), we find that ‖αa‖`p =
|α|‖a‖`p < ∞ whenever α ∈ K and a ∈ `p(K), implying that also αa ∈ `p(K).
If a, b ∈ `p(K) then ‖a+ b‖`p 6 ‖a‖`p + ‖b‖`p <∞, so also a+ b ∈ `p(K).

Claim:
(
`p(K), ‖ · ‖`p

)
is complete. Let {an}n∈N be a Cauchy sequence in

`p(K). Then for every ε > 0 there is some N ∈ N such that ‖an − am‖`p < ε
when n,m > N , so in particular,

|an(i)− am(i)| 6 ‖an − am‖`p < ε ∀ i ∈ N.

It follows that for each i ∈ N, the sequence {an(i)}n∈N is a Cauchy sequence in
K. Since K is complete, {an(i)}n∈N is convergent, converging to some a(i) ∈ K.
We claim that the sequence a = (a(1), a(2), . . . ) lies in `p(K) and that {an}n∈N
converges to a. We split the proof into the cases p =∞ and p <∞.

p =∞: Let ε > 0 and let N be as above. Then |a(i)−an(i)| = limm→∞ |am(i)−
an(i)| 6 ε for all n > N and i ∈ N, so

|a(i)| 6 |a(i)− an(i)|+ |an(i)| 6 ε+ ‖an‖`p .

Since this holds for every i ∈ N we get ‖a‖`∞ 6 ε + ‖an‖`p < ∞, so
a ∈ `∞(K). Moreover, ‖a − an‖`∞ = supi∈N |a(i) − an(i)| 6 ε, so we
conclude that an → a as n→∞.

p <∞: Let ε > 0 and let N be as above. For every n, I ∈ N we have(
I∑
i=1

|a(i)− an(i)|p
)1/p

= lim
m→∞

(
I∑
i=1

|am(i)− an(i)|p
)1/p

︸ ︷︷ ︸
6‖an−am‖`p<ε

6 ε,

so ‖a − an‖`p 6 ε. Hence, ‖a − an‖`p → 0 as n → ∞. Last, from the
inverse triangle inequality,

‖a‖`p 6 ‖an‖`p + ‖a− an‖`p 6 ‖an‖`p + ε <∞,

so a ∈ `p(K).

We complete this note by showing that `p has a (Schauder) basis whenever
p <∞.

Proposition 11. `p(K) is infinite-dimensional for all p ∈ [1,∞]. If en ∈ `p(K)
is given by

en = (0, . . . , 0, 1, 0, . . . )

(the 1 occuring in the nth position), then {en}n∈N is a Schauder basis for `p(K)
for every p ∈ [1,∞), but not for `∞(K).
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Proof. The set {en}n∈N is infinite and linearly independent, so `p(K) is infinite-
dimensional. If p < ∞ and a ∈ `p(K), let αi = a(i) for each i ∈ N. Then the
partial sum sn =

∑n
i=1 αiei = (a(1), . . . , a(n), 0, . . . ) satisfies

‖a− sn‖`p =

( ∞∑
i=n+1

|a(i)|p
)1/p

.

From the fact that
∑∞
i=1 |a(i)|p < ∞, the above sum must converge to 0 as

n→∞. It follows that a =
∑∞
i=1 αiei. This proves that {en}n∈N is a Schauder

basis for `p(K).
For `∞(K), let a = (1, 1, . . . ) ∈ `∞(K). If αi are such that a =

∑∞
i=1 αiei

then necessarily αi = 1 for all i. But

‖a− sn‖`∞ = ‖(0, . . . , 0, 1, 1, . . . )‖`∞ = 1,

a contradiction. Hence, {en}n∈N is not a Schauder basis for `∞(K).

It can also be shown that `∞ does not possess any Schauder basis. In this
sense, `∞ is “much bigger” than the other `p spaces.
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