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In this note we define the ¢P spaces (pronounced “ell-pee”, or sometimes
“little ell-pee”, to distinguish it from LP) and list some of their properties. The
starting point is real-valued sequences {a;};cy in R, which we can think of as
“infinite-dimensional vectors” (a1, as,as,...) € R®. The space R* is too big
to have an interesting structure, so instead we study smaller (but still infinite-
dimensional) subspaces, namely the ¢P spaces.

Notation. In this note we will think of a sequence {a;};en in K (where K is
one of the fields R or C) as the function

a: N =K, a(i) = a;.

It should be clear that each sequence {a;};en in K gives rise to one and only one
such function a: N — K, and vice versa. We will therefore refer to a function
a: N = K as a sequence (in K). The reason for viewing sequences as functions
becomes apparent when we talk about sequences of sequences of numbers.

We first state the finite-dimensional variant of ¢P.

Definition 1. Let K=R or K= C and let p € [1,00]. For n € N we define the
p-norm of a vector u € K" as

n p 1/p .
Jully = {(Zz—l )" i p < oo

max;=1,. n|u;| if p=o0.

Definition 2. Let K =R or K = C and let p € [1, 00]. For asequence a: N — K

we define Y
laller = 4 Cienla@P)™ifp<oo
lalle= = sup;ey la(i)| if p= o0

and we set
PK)={a:N=K : |afe < oo}.

Example 3. If a(i) = 1 then >, [a(i)|? = 3, oy =, which is finite only when
p > 1. Clearly, |a(i)| < 1 for all 4, so ||al/~ < co. Hence, a € £P(R) for all p €
(1, 00], but not for p = 1. Similarly, if b(i) = % then > .y [6(0)1P = > cn “J%,
which is finite only when p > 2.

Remark 4. It is not hard to see that ¢(K) C ¢>°(K) for every p € [1,00), but
not vice versa. Indeed, if a € ¢P(K) then > <, |a(i)[? < oo, so in particular
|a(i)|P — 0 as ¢ — oo, which is equivalent to |a(i)] — 0 as ¢ — co. Thus, a is
a sequence converging to 0, so it must be bounded. To see that the converse
inclusion is not true it is enough to observe that a = (1,1,...) € £°(K) but
a ¢ (P(K) for every p < oo.



In order to show that ¢P(K) is a normed vector space we first prove Holder’s
inequality For some p € [1, 00] we define its conjugate exponent q € [1,00] by

B % if p<oo
1= 1 if p = oco.

Note that
! + L 1 (1)
p g
and that ¢ is the only element of [1, co] satisfying this identity. (Here, we write
1/00 = 0.) Note also that p = 2 is the only exponent which is its own conjugate.

Theorem 5 (Holder’s inequality, finite-dimensional version). Let p € [1, 0]
and let q be its conjugate exponent. For any n € N we have

Juvlly < [Jullpllvlly Vw0 e K" (2)
where uv = (U101, . . ., Upvy) € K",
Proof. If u = 0 or v = 0 then (2) follows immediately, so we may assume
u,v # 0. If p =1 then ¢ = oo, and

n n
Juvlly = fuvs| < max Joj] D fuil = Jull1[v]o-
i=1 J=hen s T

The same argument applies to the case p = oo, ¢ = 1. Last, in the case
t

p,q € (1,00) we first recall Young’s inequality: If s,¢ > 0 then
P4
st< 4 (3)
p q
We get
[[uv]l2 1 - — ui] |vil
= |u’U| =
lullpllvllg — lullplvlg ; o im1 [ullp llvllq
n
T 1 : :
< + (by Young’s inequality)
h ; pllulls  allvllg
Xl | Sl
pllullp qllvllg
ol ey 11
pllully ~ qllvlli  p g
=1 (by (1))
Now multiply the above by |Ju||,||v], to get (2). O

Theorem 6 (Holder’s inequality, infinite-dimensional version). Let p € [1, o0]
and let q be its conjugate exponent. Then

labller < llaller[[Bllea ¥ @ € £7(K), b€ £9(K), (4)

where ab is the sequence (ab)(i) = a()b(i).



Proof. For an arbitrary n € N, apply (2) to the vectors v = (a(1),...,a(n)) and
v=(b(1),...,b(n)) to get

> la@b(@)] < [lullllollg-

i=1

From the fact that ||ull, = (>, a(i)|p)1/p < (X, |a(i)|p)1/z) = ||al|¢r, and

likewise for v, we get
n

> _1a(@b(@)] < flaler [bles

Taking the limit n — oo now yields (4). O

Remark 7. Holder’s inequality is useful in many applications. For instance,
Hoélder’s inequality implies that if a sequence a lies in both ¢P* and (P2 for
some p1,py € [1,00], then it also lies in every space “in between”. (Such a
result is sometimes called an interpolation result.) Indeed, assume that, say,
p1 < p2 < 00, and let p € (p1,p2). Then there is some a € (0,1) such that p =
ap1 + (1 — a)pe. Apply Holder’s inequality with exponent é (whose conjugate
exponent is %) to get

o0 oo
Z|a(i)|” = z:|a(i)|0”m\a(i)\(l_’l)p2
=1 =1
N L\ e ) /0
N lap1 1/« a 1/(1—«
<(z<|a<z>|p) ) (Z (i]0-m) )

i=1 =1
00 « 0o 1—
- (zmwm) <Z|a<i>|p2>
=1 =1
1—
= [lallgH|a]| s P2 < oo

The case py = 00 is easier:

Zla )P = Zla PHa@ ™ < llaflz" Zla(i)l’“ < oo,
i=1

Remark 8. Combining Remarks 4 and 7, we see that if a € ¢?(K) then also
a € £"(K) for all r € [p,o0]. (Exercise: Show by example that a € ¢(K) does
not necessarily imply a € ¢"(K) for r < p.)

In order to show that ||-||¢» is a norm, we first show that its finite-dimensional
version || - ||, is a norm.

Theorem 9. For every p € [1,00] and n € N, the function || - ||, is a norm on
K™.

Proof. Tt is clear that |lull, > 0 for all u # 0, and that |ju|, = 0 implies
u=0. Let u € K" and o € K. If p < 0o then [Joull, = (>, |aui\p)1/p =

1
0l (7 i) 77 = o]l For p = o0 we have ] = maic
la| maxi=1,..n [u;] = |||l o

nlou;| =

.....



Last, we show the triangle inequality. If u,v € K™ and p = 1 then

n n
lutolly = fus +0i <Y fuil + Joil = [Julls + o).
i=1

i=1
If p = oo then
lu +v|loo = max |u; +v;] < max (|ul| + |vi|)
i=1,...,n i=1,...,n

< max Ju;|+ max |vi| = [Jullec + [[0]lo-
i=1,...,n i=1,...,n

Finally, if p € (1,00), then

n n
lu+ |, = Z |ug +v;|P = Z i + v - i + [Pt
i=1 i=1

n n
< Z g - Jus —|—Ui|p71 + Z v - |ug +’Uz’|p71
i=1 i=1

n 1/q
( |uz|p> (mewq)
i=1
n 1/q
(S (o)
i=1

where we have applied Holder’s inequality (2). Since ¢ = p% we get (p—1)g =
Divide both sides by (37, |u; + v;| P19 )Uq to get

n 1-1/q
(Z s + ) < [lully + ollp-
=1

Since 1 —1/g = 1/p, the left-hand side equals ||u + v||,, so we are done. O

Theorem 10. (¢P(K), || - |ler) is a Banach space (a complete normed vector
space) for every p € [1,00].

Proof. The proof consist of three parts: ¢P is a vector space, | - ||¢» is a norm,
and this space is complete.
Claim: || - |le» is @ norm. It is clear that ||ulls > 0 for all uw # 0, and

that [Juler = 0 implies u = 0. Let a € #(K) and o € K. If p < oo then

N py1/P N py1/P
laaller = (3272 laa(@)[P) " = la| (3252, |a(@)[?) " = o laller. For p = oo we
have ||aal|g~ = sup;ey |aa(i)] = |a|sup;ey |a(i)| = |a|||al|e=. Last, we show the
triangle inequality. If a,b € ¢P(K) and p = oo then

lla+bll¢~ = s;ugla(i)%(i)l < sup |a(@)|+[b(4)] < sup |a(i )I+sup|b( )l = llalle=+[bll¢=
1€ 1€

Finally, if p € (1,00), let n € N be an arbitrary integer and define u,v € K™ by
u=(a(l),...,a(n)) and v = (b(1),...,b(n)). Then

n 1/p
(Z la(i) + b(i)l”> = llu+llp < llull, + [[vllp < llaller + [[b]]er
i=1



Taking the limit n — oo yields ||a + b||¢» on the left-hand side.

Claim: P(K) is a vector space. Most of the axioms follow immediately; we
only show that ¢P(K) is closed under addition and multiplication by scalars.
Indeed, from the fact that || - |[¢» is a norm on ¢P(K), we find that ||aalle» =
lafllaller < 0o whenever o € K and a € ¢°(K), implying that also aa € £7(K).
If a,b € (P(K) then ||a + b||¢e» < ||aller + [|b]ler < 00, s0 also a + b € £P(K).

Claim: (¢7(K), || - |le) is complete. Let {an}nen be a Cauchy sequence in
¢P(K). Then for every ¢ > 0 there is some N € N such that ||a, — amlle < €
when n,m > N, so in particular,

|an (D) — am(?)] < |lan — amllw <& VieN.

It follows that for each i € N, the sequence {a, (i) }nen is a Cauchy sequence in
K. Since K is complete, {ay, (i) }nen is convergent, converging to some a(i) € K.
We claim that the sequence a = (a(1),a(2),...) lies in ¢?(K) and that {a, }nen
converges to a. We split the proof into the cases p = co and p < oco.

p =o0: Let £ > 0 and let N be as above. Then |a(i)—ay, (7)| = limy, 00 |am (4) —
an(i)] <eforalln > N and i € N, so

la())] < la(i) = an(D)] + lan(D)] <&+ [lan e
Since this holds for every ¢ € N we get |lallse < € + ||an|er < 00, s0O

a € £*(K). Moreover, ||a — apl[¢~ = sup;ey|a(i) — an(i)] < €, so we
conclude that a,, — a as n — oo.

p < oot Let € >0 and let N be as above. For every n,I € N we have

I 1/p I 1/p
(Z la(i) - anu)P) = lim_ (Z am(i) anw) <e
i=1 ;

g‘lan_am”lp <e

s0 |la — anller < e. Hence, ||a — apllee — 0 as n — oo. Last, from the
inverse triangle inequality,

laller < llanller + lla = anller < lanller +& < 00,
so a € (P(K).
O

We complete this note by showing that ¢” has a (Schauder) basis whenever
p < o0.

Proposition 11. ¢?(K) is infinite-dimensional for all p € [1,00]. If e, € P(K)
is given by
en =(0,...,0,1,0,...)

(the 1 occuring in the nth position), then {en tnen s a Schauder basis for (P (K)
for every p € [1,00), but not for £°(K).



Proof. The set {e, }nen is infinite and linearly independent, so ¢7(K) is infinite-
dimensional. If p < co and a € (P(K), let o; = a(i) for each ¢ € N. Then the

partial sum s, = > -, ae; = (a(l),...,a(n),0,...) satisfies
00 1/p
la = snller = ( > |a(i)|p> :
i=n—+1

From the fact that Y ;2 |a(i)|P < oo, the above sum must converge to 0 as
n — oo. It follows that a = Y2, a;e;. This proves that {e, }nen is a Schauder
basis for ¢7(K).

For (>*(K), let a = (1,1,...) € £*°(K). If a; are such that a = > ;- a;e;
then necessarily «; = 1 for all i. But

la = snllee = 11(0,...,0,1,1,... )]l =1,
a contradiction. Hence, {e,}nen is not a Schauder basis for £>°(K). O

It can also be shown that ¢°° does not possess any Schauder basis. In this
sense, £*° is “much bigger” than the other ¢P spaces.



