
The Monte Carlo method in a nutshell
Ulrik Skre Fjordholm

September 22, 2020

Let us assume you wish to approximate the integral If you need to integrate over an arbi-
trary interval [a, b] ⊂ R, perform a
change of variables.I(f) =

∫ 1

0
f (x) dx

for some continuous function f : [0, 1] → R. The integral I(f)
can be thought of as the average value of f over [0, 1], so what we
are asking for is: What is the average, or “expected”, value of the
function f over the interval [0, 1]? In this note we review the Monte
Carlo approximation of I(f), and we prove an error estimate. The
impatient reader may skip to the rigorous explanation on pp. 3–5.

The Monte Carlo method was invented and developed by Stanislaw
Ulam1 and his colleagues. While being hospitalized for a longer pe- 1 Stanislaw Ulam (1909–1984) was

a Polish–American physicist and
mathematician who worked on the
Manhattan project to develop the
first atomic bomb. Among his many
achievements, he is perhaps best
known for the Ulam–Teller design of
the hydrogen bomb.

riod of time, Ulam spent his time playing solitaire, and became
interested in computing the probability p of a game of solitaire
coming out successfully. Even for a first-rate mathematician like
Ulam, this proved too difficult to compute, but he came up with an
approximation that could easily be carried out: Play a large number
(say, M ∈ N) of games of solitaire, and note the number of times n
that the game comes out successfully. The true answer will then be
approximately p ≈ n/M.

Ulam quickly understood that the approach could be used for
problems in nuclear physics, and involved his colleague John von
Neumann in the endeavour to apply this new Monte Carlo method2 2 Supposedly named after the Monte

Carlo Casino in Monaco, which Ulam’s
uncle frequented.

using the newly developed electronic computers. Generally speak-
ing, the Monte Carlo consists of computing a large number of sam-
ples, and then averaging over these.

There are at least three ingredients that make n/M a good ap-
proximation of the true probability p:

(i) M must be moderately large,

(ii) the deck must be well-shuffled at the start of each game,

(iii) each game must be independent of the others.

As we will see, the error in the approximation scales as 1/
√

M,
which explains the first point. For the second point, if the deck
isn’t well-shuffled then certain starting decks (and hence, certain
outcomes of the game) will occur more often than others, making
the computation skewed. For the third point, if one experiment
influences successive experiments, then again the computation will
be skewed.

A quick explanation

Fix some M ∈ R. The Monte Carlo approximation to I(f) takes M
random numbers X1, . . . , XM, uniformly distributed in the interval

the monte carlo method in a nutshell 2

[0, 1], and returns On a computer you would compute
pseudo-random numbers, say, using the
Python function random.random().IM(f) =

1
M

M

∑
m=1

f (Xm).

We can experimentally observe that IM(f)→ I(f) as M→ ∞.

Exercise. Implement the Monte Carlo method in your favourite
programming language. Test it using f (x) = cos(x) and f (x) =

e−x2
, and with M = 2, 4, 8, . . . , 210.

A slightly less wrong explanation

There are at least two issues with the above explanation: First, the
“randomness” is not clearly defined, and second, each sample (or
“experiment”) f (Xm) isn’t necessarily independent from the others.

The seed

As you might know, there is no such thing as a “random number”
– a number is a number, no more, no less. Concretely, a pseudo-
random number generator does not generate numbers on its own,
but depends on an input variable ω called the seed, lying in some The Python random.seed() func-

tion takes an integer in the set
Ω = {1, 2, 3, . . . , 219937}.

set Ω which we can call the set of outcomes. Thus, the “random num-
bers” Xm are really functions of ω, and as such, so is the approxi-
mation IM(f):

IM(f)(ω) =
1
M

M

∑
m=1

f (Xm(ω)).

(The functions Xm : Ω → [0, 1] are random variables; more on this
later.) In this sense, the Monte Carlo approximation is random –
it depends on the choice of the seed. Some seeds might give an
accurate approximation, and some not so accurate.

Independence

Without further assumptions on the random variables X1, . . . , XM,
we might as well have chosen them to be equal: X1 = · · · = XM,
reducing the approximation to IM(f)(ω) = f (X1(ω)). As you
might imagine, this would be a terrible approximation of I(f). Successive calls to the Python

function random.random() (or an
analogous function in other pro-
gramming languages) will gener-
ate independent random variables
X1(ω), X2(ω), X3(ω),

What is lacking is not randomness, but independency: The random
variables X1, . . . , XM must be independent from one another. Infor-
mally speaking, Xm is independent from Xn if knowing the value of
Xm(ω) will not make it any easier to guess the value of Xn(ω).

the monte carlo method in a nutshell 3

A (mostly) rigorous explanation

For a more rigorous treatment we will need some concepts from
probability theory:

• Fix some set Ω, the set of outcomes. Its members ω ∈ Ω will not
necessarily be numbers, vectors or functions; instead, we will
treat Ω as an abstract set of objects.

• A random variable is a function X : Ω → R (or X : Ω → Rd). A
random variable can be composed with an arbitrary function
f : R→ R and yield a new random variable f (X) : Ω→ R.

• The expected value is an operator E which, when applied to a
random variable X : Ω → R yields a single number E[X] ∈ R

called the expected value of X. We require that:

E is linear: E[αX + Y] = αE[X] + E[Y] for every α ∈ R and
random variables X, Y : Ω→ R

E has unit mass: If X is constant, say, X(ω) = a for all ω ∈ Ω for
some a ∈ R, then E[X] = a.

The collection (Ω, E) can be called a probability space.

• Two random variables X, Y : Ω → R are independent if for all Informally speaking, independency
means that the knowledge of X(ω)
will not enable you to guess what
Y(ω) is, or vice versa.

continuous functions f , g : R→ R we have

E[f (X)g(Y)] = E[f (X)]E[g(Y)].

• Two random variables X, Y : Ω→ R are identically distributed if Identically distributed random vari-
ables “visit the same function values
equally often”, or “have the same
likelihood of returning a given value”.

E[f (X)] = E[f (Y)]

for all continuous f : R→ R.

• A random variable X : Ω → R is uniformly distributed in the
interval [a, b] if

E[f (X)] =
1

b− a

∫ b

a
f (x) dx

for every continuous function f : R→ R.

Example. Perhaps the prime example of a probability space is the
unit hypercube Ω = [0, 1]d (where d ∈N), along with

E[X] =
∫

Ω
X(ω) dω =

∫ 1

0
· · ·

∫ 1

0
X(ω1, . . . , ωd) dω1 · · · dωd.

If d = 1 and

It might be a good idea to draw the
graphs of X, Y.

X(ω) = ω, Y(ω) =

2ω if 0 6 ω 6 1/2

2ω− 1 if 1/2 < ω 6 1
∀ ω ∈ [0, 1]

then X, Y are identically distributed (they are both uniformly dis-
tributed in [0, 1]), but they are not independent. If d = 2 and

X(ω1, ω2) = ω1, Y(ω1, ω2) = ω2 ∀ ω ∈ [0, 1]2

the monte carlo method in a nutshell 4

then X, Y are identically distributed (they are both uniformly dis-
tributed in [0, 1]) and independent.

Exercise. Check each claim in the above example.

The Monte Carlo approximation

We can now define the Monte Carlo method. Assume that we wish
to approximate E[f (X)] for some random variable X : Ω → R and It will soon become clear what E[f (X)]

has to do with I(f).some continuous function f : R→ R. Let X1, X2, . . . , XM be random
variables which are mutually independent and which all have the
same distribution as X. The Monte Carlo approximation to E[f (X)] is

IM(f)(ω) =
1
M

M

∑
m=1

f (Xm(ω)) ∀ ω ∈ Ω.

An error estimate

We now prove an estimate of the error in the Monte Carlo approx-
imation. Since IM(f) is itself a random variable, we cannot guaran-
tee that the error E[f (X)] − IM(f)(ω) will be small regardless of
the seed ω. We will only be able to guarantee that the average error
is small.

Our measure of error will be the mean square error The mean square error measures how
much, on average, IM(f) deviates from
E[f (X)].

EM(f) =
√

E
[(

E[f (X)]− IM(f)
)2
]
.

We square both sides and compute:

EM(f)2 = E
[
E[f (X)]2 − 2E[f (X)]IM(f) + IM(f)2

]
= E[f (X)]2 − 2E[f (X)]E[IM(f)] + E

[
IM(f)2]. (since E is linear and has unit mass)

For the second term we can compute

E[IM(f)] =
1
M

M

∑
m=1

E[f (Xm)] (since E is linear)

=
1
M

M

∑
m=1

E[f (X)] (since X and Xm are identically dis-
tributed)

= E[f (X)].

For the third term we get

E
[
IM(f)2] = E

[(
1
M ∑M

m=1 f (Xm)
) (

1
M ∑M

n=1 f (Xn)
)]

=
1

M2

M

∑
m=1

M

∑
n=1

E
[

f (Xm) f (Xn)
]

(since E is linear)

=
1

M2

M

∑
m=1

M

∑
n=1
n 6=m

E[f (Xm)]E[f (Xn)] +
1

M2

M

∑
m=1

E
[

f (Xm)
2] (since Xm and Xn are independent

when n 6= m)

=
1

M2

M

∑
m=1

M

∑
n=1
n 6=m

E[f (X)]2 +
1

M2

M

∑
m=1

E
[

f (X)2] (since Xm, Xn and X are identically
distributed)

the monte carlo method in a nutshell 5

=
M2 −M

M2 E[f (X)]2 − 1
M

E
[

f (X)2]
=

(
1− 1

M

)
E[f (X)]2 − 1

M
E
[

f (X)2].
Inserting these two computations in the expression for the error
EM(f)2, we get

EM(f)2 = E[f (X)]2 − 2E[f (X)]2 +

(
1− 1

M

)
E[f (X)]2 +

1
M

E
[

f (X)2]
=

E
[

f (X)2]−E[f (X)]2

M
.

The expression Var[f (X)] = E
[

f (X)2]−E[f (X)]2 is the variance of Exercise: Show that Var[f (X)] =

E
[(

f (X)−E[f (X)]
)2].the random variable f (X). Taking square roots we conclude:

Theorem 1. The mean square error of the Monte Carlo approximation is σ[Y] is the standard deviation of Y.
Both the variance and the standard
deviation give an indication of how
much, on average, the random variable
deviates from its expected value.

EM(f) =
σ[f (X)]√

M

where σ[f (X)] =
√

Var[f (X)].

Since the standard deviation σ[f (X)] is a constant, the Monte
Carlo error scales as M−1/2. In order to reduce the expected error
by a factor 1/2, you need to increase M by a factor 22 = 4.

Application to numerical integration

We choose now a random variable X : Ω → R which is uniformly
distributed in the interval [0, 1], that is,

E[f (X)] =
∫ 1

0
f (x) dx ∀ f ∈ C(R).

Then the Monte Carlo approximation IM(f) = 1
M ∑M

m=1 f (Xm) will
give an approximation of the integral I(f) =

∫ 1
0 f (x) dx, and the

error in this approximation scales as M−1/2.
This can easily be generalized to multidimensional integrals. We

say that a random variable X : Ω → Rd is uniformly distributed in the If X(1), . . . , X(d) : Ω → R are
mutually independent and uni-
formly distributed in [0, 1], then
X =

(
X(1), . . . , X(d)) : Ω → Rd is

uniformly distributed in [0, 1]d (show
this!).

set [0, 1]d if

E[f (X)] =
∫ 1

0
· · ·

∫ 1

0
f (x1, . . . , xd) dx1 · · · dxd ∀ f ∈ C(Rd).

The Monte Carlo approximation will yield an approximation to
E[f (X)], which is precisely the integral of f over [0, 1]d.

Note carefully that the error scales as M−1/2, regardless of the
dimension d. This is in stark contrast to more standard quadrature
methods, whose error scales as M−k/d, where k is the accuracy
of the quadrature method. If d is very large, then the error will
converge to zero very slowly – this is the curse of dimensionality.
Thus:

The Monte Carlo method does not suffer
from the curse of dimensionality.

	A quick explanation
	A slightly less wrong explanation
	A (mostly) rigorous explanation

