
Lecture notes for MAT3440 – Dynamical systems
Part I: Dynamical systems

Ulrik Skre Fjordholm

May 23, 2022



Contents

1 Introduction 4
1.1 Motivation — the SIR model . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview of the notes . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Linear systems 5
2.1 General linear system . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Linear systems with constant coefficients . . . . . . . . . . . . . . . 6

2.2.1 The matrix exponential . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 The fundamental theorem . . . . . . . . . . . . . . . . . . . 7
2.2.3 The solution for diagonalizable systems . . . . . . . . . . . . 8
2.2.4 Dealing with complex eigenvalues . . . . . . . . . . . . . . . 8

2.3 *Non-diagonalizable systems . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 The Jordan normal form . . . . . . . . . . . . . . . . . . . . 8
2.3.2 The solution of the linear system . . . . . . . . . . . . . . . . 9

2.4 Two-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Stability of linear systems . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Inhomogeneous linear systems . . . . . . . . . . . . . . . . . . . . . 11

3 Well-posedness 12
3.1 Lipschitz continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Global well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The flow 15
4.1 The flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 !-limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 *Liouville’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Phase portraits 22
5.1 Phase portraits in one dimension . . . . . . . . . . . . . . . . . . . . 22
5.2 Phase portraits in two dimensions . . . . . . . . . . . . . . . . . . . 22
5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



6 Stability of fixed points 23
6.1 Types of stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Stability for scalar equations . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Linearized stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 The stable manifold theorem . . . . . . . . . . . . . . . . . . . . . . 27
6.5 The Hartman–Grobman theorem . . . . . . . . . . . . . . . . . . . . 28
6.6 Phase portraits, revisited . . . . . . . . . . . . . . . . . . . . . . . . 30
6.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Analysis via scalar functions 31
7.1 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Stability analysis by Lyapunov functions . . . . . . . . . . . . . . . . 32
7.3 Gradient flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.4.1 Symplectic maps . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Periodic orbits 41
8.1 Stability of periodic orbits . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 The Poincaré–Bendixson theorem . . . . . . . . . . . . . . . . . . . 41
8.3 Proof of the Poincaré–Bendixson theorem . . . . . . . . . . . . . . . 42
8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Bifurcations 49
9.1 Saddle-node bifurcations . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2 Hopf bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Facts from linear algebra and analysis 57

B Solutions to selected problems 58

2



Note to the reader

Parts marked with * are considered optional, and are not essential for understanding
the remaining parts of the material.

TODO: Dependency graph
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Chapter 1

Introduction

A continuous dynamical system, or simply dynamical system, is an ordinary differential
equation of the form

Pu.t/ D F.u.t// (1)

where uWR! Rn is the unknown and F WRn ! Rn is a given function.

1.1 Motivation — the SIR model

1.2 Overview of the notes
Well-posedness. Linear systems. Stability of fixed points. Periodic orbits.

1.3 Preliminaries
Basics about separable first-order equations, linear second-order equations with con-
stant coefficients, non-autonomous to autonomous, high-order to first-order.
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Chapter 2

Linear systems

A linear system is an ODE which can be written as

Pu.t/ D A.t/u.t/C h.t/ (2.1)

for given functions AWR! Rn�n and hWR! Rn. Any ODE which cannot be written
in the above form is called nonlinear. The function h is the inhomogeneous part or
inhomogeneity of (2.1). If h � 0 then the system is homogeneous, while if not it is
non-homogeneous. If A.t/ � A 2 Rn�n then (2.1) is said to have constant coefficients.

Linear systems are important both because they are simple enough that we can solve
them exactly, and because they can be used as a tool for understanding the behaviour
of nonlinear systems. The main source of linear systems is via linearization. Consider
a nonlinear ODE Pv D F.v; t/, and assume that v� is a fixed point for the ODE — that
is, a point such that if v.0/ D v� then v.t/ D v� for all t . (This is equivalent to stating
that F.v�; t / D 0 for all t .) Taylor expanding around v� yields

Pv.t/ D F.v.t/; t/ D F.v�; t /„ ƒ‚ …
D0

CDvF.v
�; t /.v.t/ � v�/CO

�
kv.t/ � v�k2

�
D DvF.v

�; t /.v.t/ � v�/CO
�
kv.t/ � v�k2

�
:

If v0 is close to v� then we may expect v.t/ to stay close to v�, at least for some time.
Then kv.t/ � v�k2 � 0, so letting u.t/ WD v.t/ � v�, we see that

Pu.t/ � A.t/u.t/

where A.t/ WD F.v�; t /. Thus, u satisfies a homogeneous linear equation — at least
approximately. We will return to linearization as a tool for understanding nonlinear
systems in Chapter 6.

2.1 General linear system
Basic well-posedness result (refer to next chapter).

Superposition. The space of solutions and its dimension. Solving non-homogeneous
equations (general+particular solution).
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2.2 Linear systems with constant coefficients(
Pu D Au

u.0/ D u0
(2.2)

2.2.1 The matrix exponential
Definition 2.1. The matrix norm (also called operator norm) of a matrix A 2 Rn�n is

kAkL WD sup
u2Rn

u¤0

kAuk

kuk
:

(Here and elsewhere, the norm of a vector is the Euclidean norm.)

Theorem 2.2. The matrix norm has the following properties:

(i) It is a norm on Rn�n, i.e., for all A;B 2 Rn�n and ˛ 2 R,

(a) kAkL ⩾ 0, with kAkL D 0 if and only if A D 0n,

(b) k˛AkL D j˛jkAkL,

(c) kAC BkL ⩽ kAkL C kBkL.

(ii) It is compatible with the norm k � k, in the sense

kAuk ⩽ kAkLkuk 8 A 2 Rn�n; u 2 Rn:

(iii) It is sub-multiplicative:

kABkL ⩽ kAkLkBkL 8 A;B 2 Rn�n:

Definition 2.3. The matrix exponential of a matrix A 2 Rn�n is defined as

eA WD In C

1X
kD1

1

kŠ
Ak : (2.3)

Theorem 2.4. The matrix exponential has the following properties.

(i) The series (2.3) converges for every A 2 Rn�n

(ii) keAkL ⩽ ekAkL

(iii) e0n D In

(iv) If A;B 2 Rn�n commute, i.e. AB D BA, then eAeB D eACB

(v) eA is invertible for every A 2 Rn�n, with .eA/�1 D e�A

(vi) If .�; r/ is an eigenpair for A, then .e�; r/ is an eigenpair for eA

(vii) Let �max D maxiD1;:::;n Re.�i /, the maximal real part of the eigenvalues of A.
For any " > 0 there is some C > 0 such that

ketAkL ⩽ Ce.�maxC"/t for all t ⩾ 0:
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Definition 2.5. A matrix A 2 Rn�n is diagonalizable if there is a diagonal matrix
ƒ D diag.�1; : : : ; �n/, where �1; : : : ; �n 2 C, and an invertible matrix R 2 Cn�n
such that

A D RƒR�1: (2.4)

Letting r1; : : : ; rn 2 Rn denote the column vectors of R and multiplying (2.4) by
R from the right, we see that

Ark D �krk ; k D 1; : : : ; n;

so .�k ; rk/ are eigenpairs of A. Since invertibility of R is equivalent to the linear
independence of its column vectors, we conclude that diagonalizability is equivalent to
the existence of n linearly independent eigenvectors r1; : : : ; rn.

IfA itself is a diagonal matrix,A D diag.�1; : : : ; �n/, thenAk D diag.�k1 ; : : : ; �
k
n/,

so from (2.4) we see that
eA D diag

�
e�1 ; : : : ; e�n

�
:

More generally, if A is merely diagonalizable, then

eA D In C

1X
kD1

1

kŠ
.RƒR�1/k D In C

1X
kD1

1

kŠ
RƒR�1RƒR�1 � � �RƒR�1

D In C

1X
kD1

1

kŠ
RƒkR�1 D In CR

 
1X
kD1

1

kŠ
ƒk

!
R�1

D R

 
In C

1X
kD1

1

kŠ
ƒk

!
R�1 D ReƒR�1:

Since ƒ is diagonal, the above is very easy to compute. In particular, for any u 2 Rn,

eAu D Reƒ R�1u„ƒ‚…
DWv

D Reƒv:

Writing out the product eƒv and inserting R D
�
r1 : : : rn

�
, we see that

eAu D v.1/e�1r1 C � � � C v
.n/e�nrn; where v WD R�1u:

2.2.2 The fundamental theorem
The fundamental theorem for linear systems (solution formula). Write out and interpret
the solution for diagonalizable systems.

Theorem 2.6. The function M WR! Rn�n defined by M.t/ WD etA satisfies(
PM D AM

M.0/ D In:
(2.5)

In particular, the solution to the linear system (2.2) is

u.t/ D etAu0: (2.6)

The function M is called the fundamental solution to the problem (2.2). It is “fun-
damental” in the sense that it can be used to construct the solution (2.6) to the general
initial value problem.
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2.2.3 The solution for diagonalizable systems
If A is diagonalizable then we can compute the solution rather easily. If A D RƒR�1

then tA D R.tƒ/R�1, so tA is also diagonalizable. Thus,

u.t/ D etAu0 D Re
tƒR�1u0:

Denote v0 WD R�1u0, and note that u0 D v
.1/
0 r1C� � �Cv

.n/
0 rn, that is, the components

v
.1/
0 ; : : : ; v

.n/
0 are the coefficients u0 in the basis fr1; : : : ; rng. From the above we see

that
u.t/ D v

.1/
0 e�1tr1 C � � � C v

.n/
0 e�ntrn: (2.7)

Clearly, u.0/ D v.1/0 r1 C � � � C v
.n/
0 rn D u0, and as time evolves, each eigenvector rk

is scaled by a factor e�k t .

2.2.4 Dealing with complex eigenvalues
LetA be diagonalizable, as in the previous section. If an eigenvalue �k ofA is complex,
then the corresponding eigenvector rk might also be complex. Thus, the terms in (2.7)
are complex, but by some miracle, the solution u.t/ is real-valued.

2.3 *Non-diagonalizable systems

2.3.1 The Jordan normal form
Assume now that A 2 Rn�n is not diagonalizable. Every matrix has n eigenvalues
�1; : : : ; �n, and if �k ¤ �l then corresponding eigenvectors rk and rl are linearly
independent. Thus, the only way that a matrix can be non-diagonalizable, is that two
or more eigenvalues are equal — its algebraic multiplicity �A.�k/ is greater than 1
— and there are too few eigenvectors — �G.�k/, the number of linearly independent
eigenvectors corresponding to �k , is strictly smaller than �A.�k/.

The following theorem, which we will not prove, shows that the idea of diagonal-
ization can be generalized slightly so that it applies to any square matrix.

Theorem 2.7 (The Jordan normal form). LetA 2 Rn�n and let �1; : : : ; �m 2 C (where
m ⩽ n) be the distinct eigenvalues of A. Then there is an invertible matrix R 2 Cn�n
such that

A D RƒR�1; ƒ D

0BBB@
J1

J2
: : :

Jm

1CCCA
where Jk is the matrix

Jk D

0BBB@
�k 1

�k 1
: : :

�k

1CCCA 2 Cqk�qk

and where qk D �A.�k/ for k D 1; : : : ; m is the algebraic multiplicity of the eigen-
value �k . The decomposition A D RƒR�1 is the Jordan normal form of A. Each
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“block” Jk is a Jordan block. If r is one of the column vectors of R, and the corre-
sponding column in ƒ lies in block Jk , then we say that r is a generalized eigenvector
for �k .

Remark 2.8. We can write Jk D �kIqk
CNqk

, where Iq D
�
ıi;j

�
i;jD1;:::;q

is the q�q
identity matrix, and Nq D

�
ıi;j�1

�
i;jD1;:::;q

. 4

To get an idea of how to compute the Jordan normal form of A, let us concentrate
on one Jordan block, say, Jk . Let n1 ⩽ n2 be such that Jk lies in columns n1; : : : ; n2 in We have n1 D q1 C � � � C

qk�1C1 and n2 D q1C� � �C

qk .
the matrixƒ. Let r1; : : : ; rq be the vectors lying in the corresponding column numbers
n1; : : : ; n2 in R. Right-multiplying the identity A D RƒR�1 by R gives AR D Rƒ,
and columns n1; : : : ; n2 of this identity read

Ar1 D �kr1; Ar2 D r1 C �kr2; : : : Arq D rq�1 C �krq :

Reordering these equations yields�
A � �kI

�
r1 D 0;

�
A � �kI

�
r2 D r1; : : :

�
A � �kI

�
rq D rq�1

From these identities, we can see that the generalized eigenvectors r1; r2; : : : ; rq of �k
satisfy �

A � �kI
�p
rj

(
¤ 0 for all p D 0; 1; : : : ; j � 1
D 0 for p D j:

(2.8)

In fact, it can be shown that the above property uniquely determines the generalized
eigenvectors, in the sense that if the columns of R have been chosen to satisfy (2.8),
then R is invertible, and A D RƒR�1. This gives us an algorithm for computing the
Jordan normal form:

Algorithm 2.9 (Computing the Jordan normal form). Let A 2 Rn�n. Then A D
RƒR�1, where R and ƒ are computed as follows:

1. Compute the (distinct) eigenvalues �1; : : : ; �m 2 C of A.

2. For each k D 1; : : : ; m:

(a) Let q D �A.�k/, the algebraic multiplicity of �k . q is the smallest number such
that

�
A� �kI

�qC1
D 0.(b) Let Jk D �kIq CNq be the kth Jordan block.

(c) Find nonzero vectors r1; : : : ; rq 2 Cn satisfying�
A � �kI

�j
rj D 0; j D 1; : : : ; q:

3. Assemble the vectors rk as the columns of a matrixR in the order that you found
them.

4. Define ƒ D diag.J1; : : : ; Jm/.

2.3.2 The solution of the linear system
Let A D RƒR�1 be the Jordan normal form of A. Just as for diagonalizable matrices,
we can easily show that the matrix exponential of A is

etA D RetƒR�1; where etƒ D

0BBB@
etJ1

eJ2

: : :

etJm

1CCCA
9



for any t 2 R. The question is therefore how to compute the matrix exponential of a
Jordan block. Dropping the k subscript for the moment, let J D �Iq C Nq 2 Cq�q
be such a block. By computing powers of J and noting that N 2

q D
�
ıi;j�2

�
i;j

, N 3
q D A matrix whose qth power is

zero (for a sufficiently large in-
teger q) is called nilpotent.

�
ıi;j�3

�
i;j

, and so on up to N q
q D 0, it is straightforward to show that

etJ D

q�1X
`D0

et�

`Š
N `
q D e

t�

0BBBBBB@
1 t t2

2
� � �

tq�1

.q�1/Š

1 t � � �
tq�2

.q�2/Š

: : :
:::

1 t

1

1CCCCCCA
(where q is the dimension of the Jordan block).

Example 2.10. LetA D
�
� 1

0 �

�
for some � 2 R. ThenA is already in Jordan normal

form with R D I2. We get

etA D

�
e�t te�t

0 e�t

�
:

Therefore, the solution to the problem Pu D Au, u.0/ D .x0; y0/T is

u.t/ D e�t
�
x0 C ty0
y0

�
: 4

2.4 Two-dimensional systems
(put this as a separate chapter?)

2.5 Stability of linear systems
Definition 2.11. Consider the linear system Pu D Au, whereA 2 Rn�n has eigenvalues
�1; : : : ; �n 2 C and eigenvectors r1; : : : ; rn 2 Cn. We define the stable subspace,
centre subspace and unstable subspace as

Es D span
˚
Re.ri /; Im.ri / W Re.�i / < 0g

Ec D span
˚
Re.ri /; Im.ri / W Re.�i / D 0g

Eu D span
˚
Re.ri /; Im.ri / W Re.�i / > 0g:

TODO: Decomposition of u into Es;Ec ;Eu.

Proposition 2.12. Consider the linear system Pu D Au, u.0/ D u0 ¤ 0. Then

(i) u.t/! 0 as t !1 if and only if u0 2 Es

(ii) u.t/! 0 as t ! �1 if and only if u0 2 Eu

(iii) u.t/ is bounded for all t 2 R if and only if u0 2 Ec .
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2.6 Inhomogeneous linear systems
Consider now the inhomogeneous linear system with constant coefficients,(

Pu D AuC h.t/

u.0/ D u0
(2.9)

for some u0 2 Rn and hWR ! Rn. Recalling that the solution to the homogeneous
problem (2.2) is u.t/ D M.t/u0, where M.t/ WD etA, we make the educated guess
that the solution of (2.9) is u.t/ D M.t/g.t/, for some function gWR ! Rn. Then
u.0/ DM.0/g.0/ D g.0/, so the initial data forces g.0/ D u0. Next,

Pu D PMg CM Pg D AMg CM Pg D AuCM Pg:

Thus, in order to satisfy (2.9), we need M Pg D h, or Pg.t/ D M.t/�1h.t/. Simply
integrating with respect to t yields

g.t/ D g.0/C

Z t

0

M.s/�1h.s/ ds D u0 C

Z t

0

e�sAh.s/ ds:

Inserting into our definition of u yields

u.t/ DM.t/g.t/ D etAu0 C e
tA

Z t

0

e�sAh.s/ ds;

which, upon bringing etA inside the integral, yields the solution formula

u.t/ D etAu0 C

Z t

0

e.t�s/Ah.s/ ds: (2.10)

The above procedure for solving inhomogeneous differential equations is an example
of Duhamel’s principle.
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Chapter 3

Well-posedness

We now move on to general, possibly nonlinear, differential equations(
Pu D F.u; t/

u.0/ D u0:
(3.1)

Before we start to analyse solutions to this problem, we need to establish well-posedness.
We say that a differential equation is well-posed if

(i) a solution exists

(ii) the solution is unique

(iii) the solution depends continuously on the data.

Existence and uniqueness should be obvious requirements — how can we treat (3.1) as
a model of a real-world phenomenon if a solution doesn’t exist, or if it predicts several
different, conflicting outcomes?

Requirement (iii) deserves a closer look. If we denote the solution of (3.1) by
'.t Iu0/ D u.t/, then continuous dependence on the data means that '.t Iu0/ should
be a continuous function of u0, for every t 2 R. In other words, a small change in the
data u0 should only lead to a (relatively) small change in '.t Iu0/. This requirement
will have important consequences later on, but for now we note what might happen if
condition (iii) is not satisfied. In real life, measurement errors are inevitable. Thus,
if '.t Iu0/ depends discontinuously on the data, then these measurement errors would
lead to completely erroneous predictions at time t . In this chapter we show how a
reasonable condition on F will guarantee that (3.1) is well-posed.

We end this introduction with several counterexamples to well-posedness.

Example 3.1. The equation(
Pu D F.u/

u.0/ D 0;
where F.u/ D

(
1 if u < 0
�1 if u ⩾ 0

does not have a solution. 4

Example 3.2. The equation

Pu D u2; u.0/ D 1

does not have a solution for all t 2 R. 4
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Example 3.3. The equation

Pu D
p
juj; u.0/ D 0

has infinitely many solutions. 4

3.1 Lipschitz continuity
Definition 3.4. A function F WRn � R! Rn is (globally) Lipschitz continuous in the
first variable if there is some L ⩾ 0 such that

kF.u; t/ � F.v; t/k ⩽ Lku � vk 8 u; v 2 Rn; t 2 R: (3.2)

The smallest constant L for which the above is true is the Lipschitz constant of F .

If F is autonomous we say that it is Lipschitz continuous if the above holds.

Lemma 3.5. Assume that F.�; t / 2 C 1.Rn;Rn/ for every t 2 R. Let L 2 .0;1/.
Then the following are equivalent:

(i) F is Lipschitz continuous in the first variable, with Lipschitz constant L

(ii) kDuF.u; t/kL ⩽ L for all u 2 Rn, t 2 R.

3.2 Global well-posedness
Theorem 3.6. Assume that F WRn�R! Rn is continuous, and is Lipschitz continuous
in the first variable. Then for every u0 2 Rn there is a unique solution u of (3.1) defined
for all t 2 R. If u; v are two solutions with initial data u.0/ D u0, v.0/ D v0, then

ku.t/ � v.t/k ⩽ ku0 � v0ke
Ljt j (3.3)

for all t , where L is the Lipschitz constant of F .

3.3 Local well-posedness
Definition 3.7. A function F WRn�R! Rn is locally Lipschitz continuous in the first
variable if for every M > 0, there is some L ⩾ 0 such that

kF.u; t/ � F.v; t/k ⩽ Lku � vk 8 u; v 2 BM .0/; t 2 R: (3.4)

It is straightforward to prove a “local” variant of Lemma 3.5: A C 1 function is
locally Lipschitz continuous if and only if its Jacobian is locally bounded. If F is
autonomous then we can prove the following stronger statement.

Lemma 3.8. Every F 2 C 1.Rn;Rn/ is locally Lipschitz continuous.

Theorem 3.9 (Local existence). Assume that F WRn � R ! Rn is continuous, and is
locally Lipschitz continuous in the first variable. Then for every u0 2 Rn there are
numbers a < 0 < b and a unique function uW .a; b/! Rn solving (3.1).

13



Definition 3.10. The largest interval .a; b/ on which a solution of (3.1) exists is called
the maximal interval of existence.

Theorem 3.11. Assume that F WRn � R ! Rn is continuous, and is locally Lipschitz
continuous in the first variable. Let u0 2 Rn, and let uW .a; b/! Rn solve (3.1). Then
the following are equivalent:

(i) for any " > 0, there exists no solution of (3.1) defined on .a; b C "/

(ii) limt"b ku.t/k D 1.

The result says that the only thing that can prevent us from extending the interval
of existence beyond t D b, is that the solution “blows up” at t D b. A similar result
holds at the lower limit t D a.
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Chapter 4

The flow

Henceforth we consider an autonomous dynamical system(
Pu D F.u/

u.0/ D u0
(4.1)

and we assume that F is such that (4.1) has a unique solution, for any choice of u0 2
Rn. We will often (implicitly) assume that the maximal interval of existence is R.

4.1 The flow
Definition 4.1. The flow of (4.1) is the function ' D '.t Iu0/ which solves (4.1), that
is, (

@'
@t
.t Iu0/ D F.'.t Iu0// 8 t

'.0Iu0/ D u0:

Definition 4.2. A point u0 2 Rn is a fixed point if '.t Iu0/ D u0 for all t 2 R, or
equivalently, if F.u0/ D 0.

Definition 4.3. Let u0 2 Rn. We define

� the forward orbit at u0 as �C.u0/ WD f'.t Iu0/ W t ⩾ 0g

� the backward orbit at u0 as ��.u0/ WD f'.t Iu0/ W t ⩽ 0g

� the orbit through u0 as �.u0/ WD �C.u0/ [ ��.u0/ D f'.t Iu0/ W t 2 Rg.

The function t 7! '.t Iu0/ parametrizes each of these sets, and is sometimes called the
trajectory through u0.

We now derive an important consequence of the uniqueness of solutions of the
ODE. Let u0 2 Rn, let T 2 R and denote u.t/ D '.tCT Iu0/ and v.t/ D '.t I'.T Iu0//.
Then Pu D F.u/, Pv D F.v/, and u.0/ D '.T Iu0/, v.0/ D '.0I'.T Iu0// D '.T Iu0/.
Thus, u and v are two solutions of the same ODE with the same initial data. By unique-
ness of solutions, we must have u D v, that is:

'.t I'.T Iu0// D '.t C T Iu0/ 8 t; T 2 R: (4.2)

This is the group property of the flow. Here are some consequences of the group prop-
erty:

15



Proposition 4.4. Let u0 2 Rn. Then:

(i) For every t 2 R, the function u0 7! '.t Iu0/ is invertible, with inverse v 7!
'.�t I v/.

(ii) �.'.t Iu0// D �.u0/ for any t 2 R.

(iii) If v0 2 �.u0/ then �.u0/ D �.v0/.

(iv) Distinct orbits cannot cross. That is, if u0; v0 2 Rn are such that �.u0/ ¤
�.v0/, then �.u0/ \ �.v0/ D ;.

We leave the proof as an exercise.

4.2 Periodic orbits
Another consequence of the group property relates to so-called periodic solutions. Let
u0 2 Rn, and assume that there is some nonzero T 2 R such that '.T Iu0/ D u0, i.e.,
the trajectory returns to u0 after T seconds. If v0 2 �.u0/ is an arbitrary point on the
orbit through u0, let t 2 R be such that '.t Iu0/ D v0 (why is there such a number t?).
Then

'.T I v0/ D '.T I'.t Iu0// D '.T C t Iu0/ D '.t I'.T Iu0// D '.t Iu0/ D v0:

Hence, if there is a point u0 on an orbit such that ' returns to u0 after T seconds, then
it will also return to any other point on the orbit after T seconds. We may also assume
that T > 0, since if T < 0 then '.�T Iu0/ D '.T I'.�T Iu0// D u0, showing that
we may replace T by �T . We also see that for any k 2 Z,

'.kT Iu0/ D '.T C � � � C T Iu0/ D '.T I'.T I : : : '.T Iu0/ : : : // D u0:

Definition 4.5. An orbit �.u0/ for which there is some nonzero T 2 R for which
'.T Iu0/ D u0 is a periodic orbit. The smallest positive number T > 0 for which this
holds is called the period of the orbit.

4.3 !-limits
We can roughly divide the long-term behaviour of the trajectory through u0 into three
types:

1. u0 is a fixed point, or '.t Iu0/ approaches a fixed point as t !1,

2. u0 lies on a periodic orbit, or '.t Iu0/ approaches a periodic orbit as t !1,

3. '.t Iu0/ does not settle into a clear pattern as t !1.

Although these three types of behaviour are qualitatively very different, we can study
all of them by finding the set of points that the trajectory '.t Iu0/ approaches as t !
1.

16



Definition 4.6. Let u0 2 Rn. A point v 2 Rn is an !-limit point for u0 if there is an
increasing sequence of times tk !1 such that '.tk Iu0/! v as k !1. We define

!.u0/ WD
˚
all !-limit points of u0

	
:

Likewise, v 2 Rn is an ˛-limit point for u0 if it is an !-limit point for u0 for the
time-reversed problem Pu D �F.u/. We let ˛.u0/ denote the set of all such points.

Example 4.7. If u� is a fixed point then !.u�/ D fu�g. If �.u0/ is a periodic orbit
then !.u0/ D �.u0/. We leave the proofs as exercises for the reader. 4

The following result provides a nice characterization of !.u0/.

Proposition 4.8. Let u0 2 Rn and assume �C.u0/ is bounded. Then See Definition A.1 in the ap-
pendix for the definition of dist.

dist
�
'.t Iu0/; !.u0/

�
! 0 as t !1:

Moreover, !.u0/ is the smallest closed set with this property, in the sense that if E is
any closed set such that dist

�
'.t Iu0/; E

�
! 0, then !.u0/ � E.

Proof. Assume conversely that dist
�
'.t Iu0/; !.u0/

�
6! 0. Then there is some " > 0

and a sequence ftkgk converging to 1 such that dist
�
'.tk Iu0/; !.u0/

�
⩾ " for all

k 2 N. Since f'.tk Iu0/gk is a bounded sequence, it has a convergent subsequence,
'.tkl
Iu0/ ! v as l ! 1 for some v 2 Rn. But then both dist

�
v; !.u0/

�
⩾ " and

v 2 !.u0/, a contradiction.
To see that !.u0/ is the smallest closed set with this property, let E be any closed

set in Rn such that dist
�
'.t Iu0/; E

�
! 0 as t ! 1. Let v 2 !.u0/ and let ftkgk be

such that tk !1 and '.tk Iu0/! v as k !1. Then

0 D lim
t!1

dist
�
'.t Iu0/; E

�
D lim
k!1

dist
�
'.tk Iu0/; E

�
D dist

�
v;E

�
;

so v lies in the closure of E, which is E itself. This proves that !.u0/ � E.

Remark 4.9. The above result can be generalized to arbitrary, unbounded orbits, by
restricting to bounded sets: Assume that !.u0/ ¤ ; (see Theorem 4.10(v)). Then

lim
t!1

'.t Iu0/2BM .u0/

dist
�
'.t Iu0/; !.u0/

�
D 0

for every M > 0. We leave the proof to the interested reader. 4

We conclude the section by collecting several useful properties of !.u0/.

Theorem 4.10. Let u0 2 Rn. Then

(i) !.u0/ D !.v0/ for every v0 2 �.u0/.

(ii) !.u0/ is invariant.

(iii) !.u0/ is closed.

(iv) If v 2 !.u0/ then !.v/ � !.u0/.

(v) !.u0/ D ; if and only if '.t Iu0/ diverges as t ! 1 — that is, if for every
M > 0, there is some t0 > 0 such that k'.t Iu0/k ⩾M for all t ⩾ t0.
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(vi) !.u0/ contains a single point u� if and only if '.t Iu0/ ! u� as t ! 1. In
either case, u� is a fixed point.

Moreover, if �C.u0/ is bounded then also:

(vii) !.u0/ is nonempty.

(viii) !.u0/ is connected.

Remark 4.11. The same results — with obvious modifications — hold for the ˛-limits
of u0. 4

Remark 4.12. (vii) can be sharpened as follows: !.u0/ is empty if and only if k'.t Iu0/k !
1 as t !1. 4

Proof of Theorem 4.10.

(i) Exercise for the reader.

(ii) If v0 2 !.u0/ then there is an increasing sequence of times tk ! 1 such that
'.tk Iu0/ ! v0 as k ! 1. Let t 2 R; we claim that w WD '.t I v0/ 2 !.u0/.
Indeed, if sk D tk � t then sk !1 and '.sk Iw/ D '.tk I v0/! u0 as k !1,
so w 2 !.u0/.

(iii) Let fvkgk2N be a sequence in !.u0/ converging to v 2 Rn. We claim that
v 2 !.u0/. Let tk;l 2 R be such that tk;l !1 and '.tk;l Iu0/! yk as l !1,
for every k 2 N. For every k 2 N, let l.k/ 2 N be such that tk;l.k/ ⩾ k, and
k'.tk;l.k/Iu0/ � vkk ⩽

1
k

. Let sk D tk;l.k/. Then sk ! 1 and '.sk Iu0/ ! v

as k !1, so v 2 !.u0/.

(iv) If v 2 !.u0/ then, by (ii) and (iii), the trajectory '.t I v/ lies in the closed set
!.u0/ for every t 2 R, so any !-limit point of v must necessarily also lie in
!.u0/.

(v) If '.t Iu0/ diverges as t !1 then all subsequences f'.tk Iu0/gk2N also diverge,
and so cannot converge. Hence, !.u0/ D ;.

If '.t Iu0/ does not diverge as t ! 1 then there is some M > 0 and an in-
creasing sequence of times sk ! 1 such that k'.sk Iu0/k ⩽ M for all k 2 N.
By the Bolzano–Weierstrass theorem, there is a subsequence ftkgk of fskgk such
that f'.tk Iu0/gk converges some v 2 R. In particular, v 2 !.u0/, so !.u0/ is
nonempty.

(vi) If '.t Iu0/! u� as t !1 then the same is clearly true along any subsequence
tk !1, so !.u0/ D fu�g.

Conversely, assume that!.u0/ D fu�g, and let tk !1 be such that '.tk Iu0/!
u� as k ! 1. If '.t Iu0/ 6! u� as t ! 1 then there is some " > 0 and a se-
quence sk !1 such that k'.sk Iu0/�u�k ⩾ " for every sk . By removing some
elements of the sequences ftkgk and fskgk , we may assume that tk < sk < tkC1
for every k 2 N. LetN 2 N be large enough that k'.tk Iu0/�u�k < " for every
k ⩾ N . By continuity of ', there are �k 2 .tk ; sk � for every k ⩾ N such that
" ⩽ k'.�k Iu0/ � u�k ⩽ 2". Thus, the sequence f'.�k Iu0/gk lies in the closed,
bounded set K WD fv W kv � u�k 2 Œ"; 2"�g, and therefore has a subsequence
'.�k.l/Iu0/ converging to some v 2 K as l ! 1; in particular, v is an !-limit
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of u0. Since u� … K, the point v is distinct from u�, but at the same time,
v 2 !.u0/ D fu

�g, a contradiction.

We conclude by showing that u� is a fixed point. Indeed, if '.t Iu0/ ! u� as
t ! 1 then d

dt
'.t Iu0/ D F.'.t Iu0// ! F.u�/. If n WD F.u�/ ¤ 0, let

t0 > 0 be large enough that kF.'.t Iu0//�F.u�/k < 1
2
knk for all t ⩾ t0. Then

also n � F.'.t Iu0// ⩾ 1
2
knk2 for all t ⩾ t0. If t1 > t0 and � > 0 then

n �
�
'.t1 C � Iu0/ � '.t1Iu0/

�
D n �

Z t1C�

t1

d

dt
'.t Iu0/ dt

D

Z t1C�

t1

n � F.'.t Iu0// dt ⩾
Z t1C�

t1

1

2
knk2 dt

D
�

2
knk2:

The left-hand side converges to n �
�
u��'.t1Iu0/

�
as � !1, but the right-hand

side diverges as � !1, a contradiction.

(vii) This follows from (v).

(viii) Assume conversely that there are disjoint, nonempty open setsU1; U2 � Rn such
that !.u0/ � U1[U2 and !.u0/\Uj ¤ 0 for j D 1; 2. Select any v 2 !.u0/\
U1 andw 2 !.u0/\U2, and let fskgk , ftkgk be sequences of times going to1 as
k ! 1 such that '.sk Iu0/ ! v and '.tk Iu0/ ! w as k ! 1. By removing
some of the elements of fskgk , ftkgk , we may assume that s1 < t1 < s2 < t2 <

: : : , and therefore the corresponding values '.s1Iu0/; '.t1Iu0/; '.s2Iu0/; : : :
alternate between lying in U1 and U2. Since t 7! '.t Iu0/ is continuous, there
must be values �k 2 .sk ; tk/ such that '.�k Iu0/ … U1 [ U2. Then f'.�k Iu0/gk
is a bounded sequence lying in the closed set

�
U1 [ U2

�c , and therefore has a
convergent subsequence f'.�k.l/Iu0/gl converging to some z 2

�
U1 [ U2

�c .
This means that z both lies in !.u0/ and

�
U1 [ U2

�c , but these two sets are
disjoint — a contradiction.

4.4 *Liouville’s formula
We mention here a few facts about the Jacobian ru' which we will use later. We start
by summarizing some facts, which we will not prove. Assume that F is C 1. Then:

(i) The flow ' is C 1 in u and C 2 in t . This follows from a variant of the well-
posedness result in Chapter 3.

(ii) The Jacobian ru' satisfies ru'.0Iu0/ D In, and ru'.t Iu0/ is invertible for all
t 2 R. Indeed, if ru'.t Iu0/ were not invertible then, by the implicit function
theorem, u0 7! '.t Iu0/ could not be invertible, which contradicts Proposition
4.4(i).

(iii) The Jacobian determinant J.t Iu0/ WD det
�
ru'.t Iu0/

�
is always positive. In-

deed, J is continuous in t , satisfies J.0Iu0/ D det In D 1, and the Jacobian is
invertible, so J cannot cross from positive into non-positive numbers.
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Proposition 4.13. Define J.t Iu/ WD det.ru'.t Iu//. Then

@

@t
J.t Iu/ D J.t Iu/ divF.'.t Iu//:

As a consequence,

J.t/ D exp
�Z t

0

divF.'.sIu// ds
�
:

Proof. We will need Jacobi’s formula, which says that for any differentiable function
AWR! Rn�n,

d

dt
detA.t/ D .detA.t// tr

�
dA

dt
.t/A.t/�1

�
:

If A.t/ WD ru'.t Iu/ we have detA.t/ D J.t/ and

dA

dt
.t/ D ru P'.t Iu/ D ruF.'.t Iu//

D rF.'.t Iu//ru'.t Iu/ D rF.'.t Iu//A.t/:

Thus,
d

dt
J.t/ D J.t/ tr

�
rF.'.t Iu/

�
D J.t/ divF.'.t Iu//:

Corollary 4.14. If � � Rn, �.t/ D '.t I�/ and V.t/ D vol.�.t// then

PV .t/ D

Z
�.t/

divF.v/ dv D
Z
@�.t/

F.v/ � n dS.v/

(where @�.t/ is the boundary of �.t/ and n is the outward pointing normal).

Proof. Let J.t Iu/ WD detru.'.t Iu//. Then

V.t/ D

Z
Rn

1�.t/.v/ dv (where 1A.v/ D 1 if v 2 A
and 0 otherwise)

D

Z
Rn

1�

�
'.�t I v/

�
dv (since v 2 �.t/ iff '.�t Iv/ 2

�)

D

Z
Rn

1�.w/
ˇ̌
det
�
rw'.t Iw/

�ˇ̌
dw (change of variables w D

'.�t Iv/)

D

Z
�

J.t Iw/ dw: (by definition of J , and since
J > 0)

Thus, by Liouville’s formula,

PV .t/ D

Z
�

@

@t
J.t Iw/ dw D

Z
�

J.t Iw/ divF.'.t Iw// dw

D

Z
�.t/

divF.w/ dw: (change of variable
v D '.t Iw/)

This proves the first equality. The second equality is an application of the divergence
theorem.
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4.5 Problems
Problem 4.1. Find the flow of the scalar ODE Pu D Au, where A 2 .0;1/.

Find the orbit �.u0/ for every u0 2 R.

Problem 4.2. Prove Proposition 4.4.

Problem 4.3. Prove that there are no periodic orbits for scalar equations (n D 1).
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Chapter 5

Phase portraits

5.1 Phase portraits in one dimension

5.2 Phase portraits in two dimensions
Nullclines. Informally about stability.

5.3 Problems

Problem 5.1. Consider the problem Pu D Au, where A D
�
::: :::

::: :::

�
(TODO!). Plot

a selection of orbits �.u0/ for u0 lying in the first quadrant, i.e. u0 D .x; y/T with
x; y ⩾ 0.

Problem 5.2. Let �.u0/ be a periodic orbit with period T > 0. Show that

ft W '.t Iu0/ D u0g D fkT W k 2 Zg:

Problem 5.3. Let n D 2, and let �.u0/ be a periodic orbit. Since �.u0/ is a Jordan
curve (a closed, non-self-intersecting curve), it splits R2 in two parts, an “inside” and
an “outside”. Let v0 2 R2 lie “inside” the periodic orbit. Show that the orbit �.v0/ is
a bounded set, and use Theorem 3.11 to conclude that the solution of the ODE starting
at v0 exists for all times t 2 R.
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Chapter 6

Stability of fixed points

6.1 Types of stability
Definition 6.1. Let u� 2 Rn be a fixed point. The stable manifold at u� is the set

W s.u�/ WD
˚
u0 2 Rn W lim

t!1
'.t Iu0/ D u

�
	
: (6.1)

The unstable manifold at u� is the set

W u.u�/ WD
˚
u0 2 Rn W lim

t!�1
'.t Iu0/ D u

�
	
: (6.2)

A manifold is a subset of Rn, such as a curve or a surface, which is “smooth”
enough — it can be (locally) parametrized by a smooth function. Manifolds are labelled
by their dimension, which is the number of parameters needed to parametrize the set.
Thus, a curve is one-dimensional, a surface two-dimensional, and so on. A trivial
example of a manifold in Rn is an open set U � Rn — this set can be parametrized by
the identity map u 7! u in Rn, and therefore has dimension n.

The stable manifold collects all those initial data that will tend to u� as time
evolves. Thus, we can informally say that the larger this set is, the more stable the
fixed point is. Although the stable (and unstable) manifold can be difficult to compute
exactly, one of the goals of this section will be to prove that these sets are indeed man-
ifolds, and to see that we can easily find their dimension and find out approximately
how they look close to u�.

The term basin of attraction is sometimes used synonymously with stable manifold.
Some authors choose to use this term in a more narrow sense, namely in the case where
the stable manifold is a neighbourhood of u�. (By our discussion above, the stable
manifold must then be, or contain, a manifold of dimension n.) Others use it more
broadly as any forward invariant set S � Rn such that '.t Iu0/! u� as t !1 for all
u0 2 S . (As seen in the next proposition, the stable/unstable manifolds are invariant.)

We summarize a few basic facts about the stable manifold, and leave the proof as
an exercise (Problem 6.2). Analogous statements about the unstable manifold follow
similarly.

Proposition 6.2. Let u� be a fixed point. Then:

(i) The stable manifold contains u�, and hence is never empty.
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(ii) The stable manifold is invariant.

(iii) u0 2 W s.u�/ if and only if !.u0/ D fu�g.

Definition 6.3. Let u� 2 Rn be a fixed point.

(i) u� is Lyapunov stable (or L-stable) if for all " > 0, there is some ı > 0 such Informally speaking, L-stability
means that by starting suffi-
ciently close to u�, you will stay
arbitrarily close to u�.

that k'.t Iu0/� u�k < " for all t ⩾ 0 whenever ku0 � u�k < ı. Put in different
terms, for every " > 0 there is some ı > 0 such that �C.u0/ � B".u�/ for any
u0 2 Bı.u0/.

(ii) u� is unstable if it is not Lyapunov stable — that is, there is some " > 0 such that
for any ı > 0, there is some u0 2 Bı.u�/ and t > 0 such that k'.t Iu0/�u�k ⩾
".

(iii) u� is !-attracting if there is some ı > 0 such that limt!1 '.t Iu0/ D u� for
every u0 2 Bı.u�/. Put in different terms, Bı.u�/ � W s.u�/.

(iv) u� is asymptotically stable (sometimes called a sink) if it is both Lyapunov stable
and !-attracting.

(v) u� is globally asymptotically stable if it is asymptotically stable and The latter statement is the same
as saying thatW s.u�/ D Rn.limt!1 '.t Iu0/ D u

� for every u0 2 Rn.

(vi) u� is repelling if it is asymptotically stable backwards in time.

An !-attracting fixed point u� is a point which “attracts” all points sufficiently
close to it — in other words, its stable manifold W s.u�/ is a neighbourhood of u�

(that is, it contains an open set containing u�).

6.2 Stability for scalar equations

6.3 Linearized stability
In this and the next section we study the stability of fixed points in terms of the lin-
earization around the fixed point. If u� is a fixed point, then, according to Taylor’s
theorem,

Pu D F.u/ D F.u�/CDF.u�/.u � u�/C g.u � u�/

for some function g such that g.v/ D O.kvk2/ for v close to 0. Letting v D u � u�

and A WD DF.u�/ and noting that F.u�/ D 0, we get

Pv D Av C g.v/: (6.3)

The key observation for proving the results in this and the next section is that when
v is close to 0, g.v/ is very small (of the order of kvk2), and therefore most of the
behaviour of v (and therefore u) is therefore determined by the linear part Av.

Definition 6.4. Let u� be a fixed point and let �1; : : : ; �n 2 C be the eigenvalues of
DF.u�/. We refer to �1; : : : ; �n as the eigenvalues of u�. We say that u� is hyperbolic
if none of the eigenvalues of u� have zero real part. If u� is hyperbolic then we call it
a saddle if at least one eigenvalue has negative real part, and at least one has positive
real part.
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Theorem 6.5. Let u� be a hyperbolic fixed point.

(i) If all of the eigenvalues of u� have negative real part, then u� is asymptotically
stable.

(ii) If at least one eigenvalue of u� has positive real part, then u� is unstable.

(iii) If all of the eigenvalues of u� have positive real part, then u� is repulsive.

Proof of Theorem 6.5(i). Letting v.t/ D u.t/� u�, we have seen that v satisfies (6.3).
Viewing this as a linear, inhomogeneous system with constant coefficients and recalling
Duhamel’s formula (2.10), we can write

v.t/ D etAv0 C

Z t

0

e.t�s/Ag.v.s// ds

where v0 D v.0/ D u0 � u�. By assumption, Re.�k/ < 0 for all k, so from Theorem
2.4(vii) we deduce that there are constants ˛;K > 0 such that

ketAkL ⩽ Ke�˛t 8t ⩾ 0;

and therefore,

kv.t/k ⩽ Ke�˛tkv0k CK

Z t

0

e�˛.t�s/kg.v.s//k ds:

Next, by the properties of g, there is some ı0 > 0 and C > 0 such that kg.v/k ⩽
Ckvk2 whenever kvk ⩽ ı0. Let now ı1 ⩽ ı0. If we can show that

kv.s/k ⩽ ı1 for every s ⩾ 0; (6.4)

we can deduce that

kv.t/k ⩽ Ke�˛tkv0k CKC

Z t

0

e�˛.t�s/kv.s/k2 ds

⩽ Ke�˛tkv0k CKCı1

Z t

0

e�˛.t�s/kv.s/k ds:

Multiplying the above by e˛t and letting  .t/ D e˛tkv.t/k yields

 .t/ ⩽ Kkv0k CKCı1

Z t

0

 .s/ ds:

By the integral form of Gronwall’s inequality we deduce that  .t/ ⩽ Kkv0ke
KCı1t ,

or equivalently,
kv.t/k ⩽ Kkv0ke

.KCı1�˛/t

Hence, if ı1 is chosen small enough thatKCı1�˛ < 0, and kv0k is small enough that
Kkv0k ⩽ ı1, then kv.t/k ⩽ ı1 for all t , so (6.4) is true.

This now proves that u� is !-attracting, since if ku0 � u�k ⩽ ı1=K then ku.t/ �
u�k ⩽ Kkv0ke

.KCı1�˛/t ! 0 as t ! 1. It also shows that u� is Lyapunov stable,
since if " > 0, then choosing ı D min.ı1=K; "=K/ and assuming that ku0 � u�k < ı

yields ku.t/ � u�k ⩽ Kku0 � u
�k ⩽ " for all t ⩾ 0.

25



Proof of Theorem 6.5(ii). We will assume, for the sake of simplicity, thatA D DF.u�/
is diagonalizable (although the result is still true otherwise). Write A D RƒR�1 for
ƒ D diag.�1; : : : ; �n/. As in the previous proof we let v D u�u�, which solves (6.3).
If w D R�1v then

Pw D ƒw C h.w/

where h.w/ D R�1g.Rw/. Just as for g, there is some ı0 > 0 and C > 0 such that
kh.w/k ⩽ Ckwk2 whenever kwk ⩽ ı0.

Assume that �1; : : : ; �n have been ordered with decreasing real part, with m ⩾ 1

positive real parts and n � m ⩾ 0 negative real parts. Thus, Re�1 ⩾ Re�2 ⩾ : : : ⩾
Re�m > 0 > Re�mC1 ⩾ : : : ⩾ Re�n. Define ˛ WD mink jRe.�k/j > 0.

Define

L.w/ D
1

2

�ˇ̌
w.1/

ˇ̌2
C � � � C

ˇ̌
w.m/

ˇ̌2
�
ˇ̌
w.mC1/

ˇ̌2
� � � � �

ˇ̌
w.n/

ˇ̌2�
The sign function is defined as

sign.r/ D

(
1 if r ⩾ 0

0 if r < 0D
1

2

nX
kD1

sign.Re.�k//
ˇ̌
w.k/

ˇ̌2
Note in particular that

L.w/ ⩽ kwk2 8 w 2 Rn: (6.5)

The k-th componentw.k/ ofw satisfies Pw.k/ D �k Pw.k/Ch.k/.w/, so a straightforward
computation yields

d

dt

ˇ̌
w.k/

ˇ̌2
D

d

dt

�
w.k/w.k/

�
D 2Re.�k/

ˇ̌
w.k/

ˇ̌2
C 2Re

�
w.k/h.k/.w/

�
:

Hence,

d

dt
L.w.t// D

nX
kD1

sign.Re.�k//
�

Re.�k/
ˇ̌
w.k/

ˇ̌2
C Re

�
w.k/h.k/.w/

��
⩾

nX
kD1

ˇ̌
Re.�k/

ˇ̌ˇ̌
w.k/

ˇ̌2
�

nX
kD1

ˇ̌
w.k/

ˇ̌ˇ̌
h.k/.w/

ˇ̌
⩾

nX
kD1

˛
ˇ̌
w.k/

ˇ̌2
� kwkkh.w/k

D ˛kwk2 � kwkkh.w/k:

Let now ı > 0 and set w0 D
�
ı 0 : : : 0

�T, so that L.w0/ D ı2=2 > 0. If ı < ı0
then kw0k D ı < ı0, so by our upper bound on h.w/ we get

d

dt
L.w.t// ⩾ ˛kwk2 � kwkkh.w/k ⩾ ˛kwk2 � Ckwk3 D kwk2

�
˛ � Ckwk

�
>
˛

2
kwk2

provided kwk < ˛=.2C /. Thus, no matter how small ı is, L.w.t// (and hence
also kw.t/k, because of (6.5)) will continue to increase until either kw.t/k D ı0 or
kw.t/k D ˛=.2C /. In particular, we cannot force kw.t/k to be arbitrarily small for all
t ⩾ 0.
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Proof of 6.5(iii). In the time-reversed problem, u� has eigenvalues with strictly nega-
tive real part, so by part (i) it is asymptotically stable. Hence, u� in the original problem
is repulsive.

Example 6.6. If the fixed point is non-hyperbolic (i.e., one eigenvalue has zero real
part) then we cannot deduce anything about stability from the eigenvalues alone. In-
deed, let n D 2 and consider the two problems

Pu D F.u/; Pv D G.v/;

where

F.u/ D Au � kuk2; G.v/ D Av C kvk2; A D

�
0 1

�1 0

�
:

The origin u� D v� D 0 is a fixed point for both problems, and the linearization of
both equations around 0 is Pw D Aw. The eigenvalues of this system are˙i . We claim
that u� is asymptotically stable, while v� is repulsive. Indeed,

d

dt
kuk2 D 2uTAu � 2kuk2 D �2kuk2

(since uTAu D 0 for any vector u), so ku.t/k2 D ku0k2e�2t ! 0 as t !1. On the
other hand,

d

dt
kvk2 D 2kvk2

so kv.t/k2 D kv0k2e2t !1 as t !1 for any v0 ¤ 0. 4

6.4 The stable manifold theorem
Definition 6.7. Let u� be a fixed point. The local stable manifold for u� of radius
ı > 0 is the set

W s
ı .u
�/ WD

˚
u0 2 W

s.u�/ W k'.t Iu0/ � u
�
k < ı 8 t ⩾ 0

	
:

Similarly, The local unstable manifold for u� of radius ı > 0 is the set

W u
ı .u

�/ WD
˚
u0 2 W

u.u�/ W k'.t Iu0/ � u
�
k < ı 8 t ⩽ 0

	
:

Theorem 6.8 (The stable manifold theorem). Let u� be a hyperbolic fixed point. Then
there is some ı > 0 such that W s

ı
.u�/ and W u

ı
.u�/ are manifolds that are tangent to

Es and Eu at u�, respectively.

Sketch of proof. We will sketch a proof for W s.u�/ only, and we will assume that
n D 2 and u� is a saddle. Then the eigenvalues of u� are real and satisfy �1 < 0 < �2.
Let A D RƒR�1 be the diagonalization of A. Recalling that v WD u � u� satisfies
(6.3), we have

Pw D ƒw C h.w/ (6.6)

where w D R�1v and h.w/ D R�1g.Rw/. We aim to show that W s
ı
.u�/ can be

parametrized as a graph over the line Es , and is tangent to Es at u D u�. Our change
of variables u 7! w maps u D u� to w� D 0 and Es to the w.1/-axis. For the sake
of notational simplicity we label the w.1/ component of w as a 2 R. Thus, we wish
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to show that there is a curve .a;  .a// which (for small jaj) parametrizes the stable
manifold of the fixed point w� D 0 of (6.6). The statement that W s.u�/ is tangent
to Es at u� is then equivalent to stating that  .0/ D 0 and that the curve .a;  .a// is
tangent to the a-axis at a D 0, which again is equivalent to  0.0/ D 0.

Write w as a function of the first component a of w0, w D w.t I a/, and use a
variant of Duhamel’s formula:

w.t I a/ WD

�
e�1ta

0

�
C

Z t

0

�
e�1.t�s/ 0

0 0

�
h.w.sI a// ds

�

Z 1
t

�
0 0

0 e�2.t�s/

�
h.w.sI a// ds

D

�
e�1ta

0

�
C

Z t

0

�
e�1.t�s/h.1/.w.sI a//

0

�
ds

�

Z 1
t

�
0

e�2.t�s/h.2/.w.sI a//

�
ds:

(6.7)

(The existence of a function satisfying (6.7) for a in an interval .�ı; ı/ follows the same
argument as the existence theorem in Chapter 3.) The proof that the above function
satisfies (6.6) is similar to that of Duhamel’s formula. We also see that

w.0I a/ D

�
a

 .a/

�
; where  .a/ WD �

Z 1
0

e��2sh.2/.w.sI a// ds:

We first claim that there is some C > 0 such that kw.t I a/k ⩽ C jaje�1t for t ⩾ 0. The
proof is similar to that of Theorem 6.5(i). From this is follows that w.t I a/! w� D 0

as t !1, so that w.0I a/ 2 W s.w�/ for every a. It also follows that w.0I 0/ D 0, so
that  .0/ D 0. Next, we have

 0.a/ D �

Z 1
0

e��2sDh.2/.w.sI a// �
@w

@a
.sI a/ ds:

But w.sI 0/ D 0, so Dh.2/.w.sI 0// D Dh.2/.0/ D 0 (the last equality following
from the fact that h is the Taylor remainder term, which is quadratic near 0). Hence,
 0.0/ D 0.

6.5 The Hartman–Grobman theorem
Definition 6.9. A functionH WU ! V (for open setsU; V � Rn) is a homeomorphism
if H is bijective and both H and its inverse H�1 are continuous.

Theorem 6.10 (The Hartman–Grobman theorem). Let u� be a hyperbolic fixed point
of (1), let ' be the flow of (1), and let  .t I v0/ WD etAv0 (where A WD rF.u�/) is the
flow of the linearized equation. Then there is a homeomorphism H WU ! V such that

H.'.t Iu0// D  .t IH.u0// 8 u0 2 U; t 2 I0 (6.8)

where I0 � R is an interval containing t D 0, andU; V � Rn are open sets containing
u� and 0, respectively.

Sketch of proof. First, by making the change of variables u 7! u�u�, we may assume
that u� D 0.
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Let us denote 't .u0/ D '.t Iu0/ and  t .u0/ D  .t Iu0/, and note that (6.8) can be
equivalently written

H ı 't D  t ıH (6.8’)

(where “ı” means composition, e.g.  t ı H.u0/ D  t .H.u0//). Let us assume for
the moment that we have found a homeomorphism NH WU ! V , where U; V � Rn are
neighbourhoods of 0, satisfying The time t D 1 has been chosen

merely for convenience.
NH ı '1 D  1 ı NH in U (6.9)

(compare with (6.8’)). Since '1 is invertible with inverse '�1, we can rewrite (6.9) as

 1 ı NH ı '�1 D NH: (6.9’)

Next, define

H WD

Z 1

0

 �s ı NH ı 's ds (6.10)

Then

 t ıH D e
tA

Z 1

0

e�sA NH ı 's ds

D

Z 1

0

e.t�s/A NH ı 's ds

D

Z 1

0

 t�s ı NH ı 's�t ds ı 't Since 's�t ı 't D 's .

D

Z 1�t

�t

 �s ı NH ı 's ds ı 't Change of variables s 7! sC t .

D

Z 0

�t

 �s ı NH ı 's ds ı 't C

Z 1�t

0

 �s ı NH ı 's ds ı 't Split the integral in two.

D

Z 1

1�t

 1�s ı NH ı 's�1 ds ı 't C

Z 1�t

0

 �s ı NH ı 's ds ı 't : Change of variables s 7! s � 1
in the first integral.

We can write the first integrand as

 1�s ı NH ı 's�1 D  �s ı  1 ı NH ı '�1 ı 's D  �s ı NH ı 's

because of (6.9’). Thus,

 t ıH D D

Z 1

1�t

 �s ı NH ı 's ds ı 't C

Z 1�t

0

 �s ı NH ı 's ds ı 't

D

Z 1

0

 �s ı NH ı 's ds ı 't D H ı 't :

It remains to prove the existence of NH . The matrix A is similar to a matrix of the
form �

N 0

0 P

�
where N 2 Rk�k and P 2 R.n�k/�.n�k/ have only eigenvalues with negative and
positive real part, respectively. Indeed, let A D RƒR�1 be the Jordan normal form
of A. Ordering the eigenvalues �1; : : : ; �m so that Re.�1/ ⩽ : : : ⩽ Re.�m0/ <
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0 < Re.�m0C1/ ⩽ : : : ⩽ Re.�m/, we can set N D diag.J1; : : : ; Jm0/ and P D
diag.Jm0C1; : : : ; Jm/. See Section 2.3. Thus, we may assume that A is a matrix of this

form. Write u D
�
x

y

�
, where x 2 Rk and y 2 Rn�k . Denoting the corresponding

components of NH by NHx ; NHy , condition (6.9) now reads(
NHx
�
'1.u/

�
D eN NHx.u/

NHy
�
'1.u/

�
D eP NHy.u/

(6.9”)

We can Taylor expand '1 to get

'1.u/ D '1.0/„ƒ‚…
D0

CD'1.0/„ ƒ‚ …
D eA

uC �.u/ D eAuC �.u/

where k�.u/k ⩽ Ckuk2 for some C > 0 for small u. Thus, the second equation of
(6.9”), after multiplying by e�P , reads

NHy.u/ D e
�P NHy

�
eAuC �.u/

�
The proof of existence of such a function NHy — which we will not give in full here —
goes via the fixed point iteration

NHy;1.u/ D u; NHy;jC1.u/ D e
�P NHy;j

�
eAuC �.u/

�
; j D 1; 2; : : : :

To prove that this iteration is a contraction, one uses the fact that �.u/ is small for
u close to 0, and that ke�P kL < 1, because the eigenvalues of �P are negative. A
similar argument works for the first component of (6.9”) when written in the form
NHx.u/ D e

N NHx.'�1.u//. Further details are provided in e.g. [Per01].

6.6 Phase portraits, revisited
TODO: Picture-by-picture example on drawing 2d phase portraits, with knowledge of
stability of fixed points, stable/unstable manifolds. Lotka–Volterra example?

6.7 Problems
Problem 6.1. Consider the linear system Pu D Au. For each of the following choices
of A, determine

(i) whether the system is a stable node, unstable node, stable focus, unstable focus,
centre, saddle, or neither of the above, and

(ii) whether the fixed point u� D 0 is Lyapunov stable, !-attracting, asymptotically
stable, globally attracting, or repelling.

(a)
�
3 2

3 4

�
(b)

�
1 2

3 6

�
(c)

�
1 2

1 0

�
(d)

�
3 5

�2 �2

�
(e)

�
�3 �2

5 2

�
(f)

�
0 �2

2 0

�
Problem 6.2. Prove Proposition 6.2.
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Chapter 7

Analysis via scalar functions

7.1 Conserved quantities
Conserved quantities are some-
times referred to as energies or
Hamiltonians.

Definition 7.1. A function EWRn ! R is a conserved quantity for (1) if E is constant
along orbits of (1), or in other words,

d

dt
E
�
'.t Iu0/

�
D 0 8 t 2 R;8 u0 2 Rn: (7.1)

Recalling the definition of level sets,

E�1.E0/ D fv 2 Rn W E.v/ D E0g for some E0 2 R;

we see that the trajectory '.t Iu0/ must move along the level set E�1.E.u0//. Using
the chain rule, we see that

d

dt
E
�
'.t Iu0/

�
D rE

�
'.t Iu0/

�
� P'.t Iu0/ D rE

�
'.t Iu0/

�
� F
�
'.t Iu0/

�
:

Thus, E is a conserved quantity if and only if

rE.v/ � F.v/ D 0 8 v 2 Rn; (7.2)

so the trajectory moves in a direction orthogonal to the vector field rE. From Calculus
we recall that rE.v/ is again orthogonal to the level set of E at v, so the trajectory
indeed moves along level sets of E.

It can be very difficult, or impossible, to find conserved quantities for a given dy-
namical system, but sometimes it is possible with a bit of algebra.

Example 7.2. Consider the predator–prey system(
Px D x.a � by/

Py D y.�c C dx/

for a; b; c; d > 0. We note that this system has two fixed points: .0; 0/ and
�
a=b; c=d

�
.

(Derive conserved quantity, plot orbits, make analysis) 4

Example 7.3. Particle moving through a conservative force field 4

Example 7.4. Pendulum (
P� D v

Pv D �g
`

sin �
(7.3)

4
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7.2 Stability analysis by Lyapunov functions
Definition 7.5. Let u� be a fixed point for (1). A function LWU ! R, where U � Rn
is an open set containing u�, is a weak Lyapunov function for u� if

(i) u� is a strict minimum:

L.u/ > L.u�/ 8 u 2 U n fu�g: (7.4)

(ii) L decreases along the trajectory:

d

dt
L.'.t Iu0// ⩽ 0 8 u0 2 U;8 t > 0 such that '.t Iu0/ 2 U: (7.5)

We say that L is a (strict) Lyapunov function for u� if property (ii) is replaced by
d
dt
L.'.t Iu0// < 0 for all u0 ¤ u�.

As for conserved quantities, we can apply the chain rule and see that property (ii)
is equivalent to

rL.v/ � F.v/ ⩽ 0 8 v 2 U: (7.5’)

We note also that if L is a strict Lyapunov function, then

rL.v/ � F.v/ < 0 8 v 2 U n fu�g: (7.6)

Remark 7.6. Condition (7.5) is somewhat cumbersome since we have to make sure
that we do not evaluate L at points '.t Iu0/ outside of U , where L is not defined. We
can simplify things by replacing U by a smaller, forward invariant set V � U , which
can be constructed as follows. We note that the constructed set is open, bounded,
forward invariant and contains u�.

SinceU is open, there is some r > 0 such thatBr .u�/ � U . Letm WD minv2@Br .u�/L.v/

and let L0 be any number satisfying L.u�/ < L0 < m. Define the set A set of this form is a strict sub-
level set of L.

V WD
˚
u 2 Br .u

�/ W L.u/ < L0
	
;

which clearly contains u�, and which is open, since it is the intersection of the open
sets Br .u�/ and L�1

�
.�1; L0/

�
. We claim that V is forward invariant. Let u0 2 V ,

and assume for contradiction that there is some t > 0 such that '.t Iu0/ … V ; we
may assume that t is the smallest such value. Then either '.t Iu0/ … Br .u

�/ or
'.t Iu0/ … L

�1
�
.�1; L0/

�
. In the first case, by continuity of ', there would have

to be some t0 2 .0; t/ such that '.t Iu0/ 2 @Br .u�/, but using the fact that L decreases
along trajectories, we get m > L.u0/ D L.'.0Iu0// ⩾ L.'.t0Iu0// ⩾ m, a con-
tradiction. On the other hand, if '.t Iu0/ lies in Br .u�/ but not L�1

�
.�1; L0/

�
then

L0 > L.u0/ ⩾ L.'.t Iu0// ⩾ L0, another contradiction. This proves our claim. 4

Theorem 7.7. Let u� be a fixed point for (1).

(i) If there exists a weak Lyapunov function for u�, then u� is Lyapunov stable.

(ii) If there exists a Lyapunov function for u�, then u� is asymptotically stable.

Proof of (i). Let LWU ! R be a weak Lyapunov function for u�, and let " > 0. By
letting " be even smaller, we may assume that B".u�/ � U . By the same procedure as
in Remark 7.6, we know that there exists some open, forward invariant set V � B".u�/
containing u�. Since V is open, there is some ı > 0 such that Bı.u�/ � V . For any
u0 2 Bı.u

�/ we then get '.t Iu0/ 2 V � B".u�/, which proves the claim.
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Proof of (ii). Let LWU ! R be a Lyapunov function for u�. As described in Remark
7.6, there exists some open, bounded, forward invariant set V � U containing u�. If
u0 2 V then either u0 D u�, or fL.'.t Iu0//gt⩾0 is a decreasing sequence of numbers
bounded from below by L.u�/, so there is some number L.u0/ ⩾ L.u�/ such that
L.'.t Iu0//! L.u0/ as t !1. Then also

rL.'.t Iu0// � F.'.t Iu0// D
d

dt
L.'.t Iu0//! 0 as t !1:

The forward orbit at u0 is bounded, since it lies in the bounded set V , so by Theorem
4.10, !.u0/ is nonempty. If Nu 2 !.u0/ then, by the above computation, rL. Nu/ �
F. Nu/ D 0, so by (7.6), we must have Nu D u�. This proves that !.u0/ D fu�g,
which by Theorem 4.10 is equivalent to stating that '.t Iu0/! u� as t !1. Letting
now ı > 0 be such that Bı.u�/ � V concludes the proof of !-stability, and hence
asymptotic stability.

Corollary 7.8. Let u� be a fixed point for (1), and assume that there exists a Lyapunov
function for u� for the time-reversed problem Pv D �F.v/. Then u� is repelling for (1).

Example 7.9. Pu D Au�ukuk2, Pv D AvC vkvk2. Then L.u/ D kuk2 is a Lyapunov
function for u� D 0, and time-reversed for v�. Stability analysis by linearization
doesn’t work. 4

Theorem 7.10. Let u� be a fixed point for (1) with a weak Lyapunov function LWU !
R. Define the set

Z WD
˚
u 2 U W rL.u/ � F.u/ D 0

	
;

and assume that for every u0 2 Z n fu�g, there is some t > 0 such that '.t Iu0/ … Z.
Then u� is asymptotically stable.

Example 7.11. Apply the above to the pendulum with friction. 4

Surprisingly, there is a converse to Theorem 7.7:

Theorem 7.12. Let u� be a fixed point for (1).

(i) If u� is Lyapunov stable then there exists a weak Lyapunov function for u�.

(ii) If u� is asymptotically stable then there exists a Lyapunov function for u�.

Proof. In both cases u� is Lyapunov function, so there is some ı > 0 such that
k'.t Iu0/ � u

�k < 1 for all u0 2 U WD Bı.u
�/. Define the function �WU ! R

by
�.u/ WD sup

s⩾0
k'.t Iu/ � u�k:

Then �.u/ 2 Œ0; 1� for all u 2 U , and it can be shown that � is continuous (we skip the
proof here). Moreover,

�.u�/ D 0; and if u ¤ u� then �.u/ > 0:

If t > 0 and u 2 U then

�.'.t Iu// D sup
s⩾0
k'.sI'.t Iu// � u�k D sup

�⩾s
k'.� Iu/ � u�k

⩽ sup
�⩾0
k'.� Iu/ � u�k D �.u/:
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It follows that � is a weak Lyapunov function for u�.
Assume now that u� is asymptotically stable. Then there is some " > 0 such that

'.t Iu0/! u� as t !1 for all u0 2 B".u�/. Let V WD U \ B".u�/, and define

L.u/ WD

Z 1
0

e�s�.'.sIu// ds for u 2 V:

We claim that L is a strict Lyapunov function. Indeed, if t ⩾ 0 and u 2 V then

L.'.t Iu// D

Z 1
0

e�s�.'.t C sIu// ds ⩽
Z 1
0

e�s�.'.sIu// ds D L.u/

(since � is a weak Lyapunov function), and hence L is a weak Lyapunov function. We
claim that there is strict inequality in the above computation whenever u ¤ u�. Indeed,
if there is equality in the above computation for some choice of t and u then necessarily
�.'.t C sIu// D �.'.sIu// for all s ⩾ 0. Thus,

�.u/ D �.'.0Iu// D �.'.t Iu// D � � � D �.'.kt Iu//

for any k 2 N. But '.kt Iu/! u� as k !1, so

�.u/ D lim
k!1

�.'.kt Iu// D �.u�/ D 0;

so u D u�.

7.3 Gradient flows
Definition 7.13. We say that a dynamical system is a gradient flow if it can be written Gradient flows are also called

gradient systems.as
Pu D �rG.u/ (7.7)

for some C 2 function GWRn ! R.

We make several observations:

1. The minus sign in (7.7) is purely for convenience. If your system is of the form
Pu D rG.u/, then replacing G by �G will put it in the form (7.7).

2. The fixed points for a gradient flow are precisely the critical points of G, i.e. the
points u� where rG.u�/ D 0.

3. Recalling that the level sets of a function are orthogonal to its gradient, we see
that the trajectories of a gradient flow are orthogonal to its level curves.

The proof of the following result is left as an exercise:

Proposition 7.14. The solution of the gradient flow (7.7) satisfies

d

dt
G.'.t Iu0// < 0

for all u0 that are not fixed points.

Example 7.15. G.x; y/ D x2.x � 1/2 C u2. TODO: Find fixed points, plot level
curves, recollecting the above observation about level curves. 4
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Theorem 7.16. Let u� be an isolated fixed point for the gradient flow (7.7), that is,
a point where rG.u�/ D 0, and such that there are no other such points in some
neighbourhood of u�. Then:

(i) If u� is a local minimum for G, then u� is asymptotically stable.

(ii) If u� is a local maximum for G, then u� is repelling.

(iii) If u� is a saddle forG then u� is a saddle fixed point; in particular, it is unstable.

Proof.

(i) Let " > 0 be such that G is the only fixed point in B".u�/. Since we have
assumed that u� is both an isolated fixed point and a local minimum, it is also
a strict local minimum, G.u�/ < G.u/ for all u 2 B".u�/ n fu�g. Then G is a
Lyapunov function for u� in U WD B".u

�/, so the result follows from Theorem
7.7(ii).

(ii) The argument is similar to (i).

(iii) Let " > 0. Since u� is a saddle, there is for every ı > 0 some u0 2 Bı.u�/ such
thatG.u0/ < G.u�/. In particular, the closed setE WD B".u�/nG�1

�
.G.u0/;1/

�
is nonempty and contains u0. Let K WD minu2E krG.u/k, which (for suffi-
ciently small ") is strictly positive since u� is an isolated critical point. We have

d

dt
G.'.t Iu0// D �krG.'.t Iu0//k

2 ⩽ �K2

for every t > 0 such that '.t Iu0/ 2 E, so G.'.t Iu0// ⩽ G.u0/ � K
2t for all

such t > 0. But G is lower-bounded in E, so ' must exit E sooner or later. The
only way that ' can exit E is by exiting B".u�/. This proves that u� is unstable.

Remark 7.17. We could have simplified the proof of Theorem 7.16 greatly by as-
suming that u� is hyperbolic — that is, none of the eigenvalues of the Hessian matrix
r2G.u�/ have zero real part. (In fact, this matrix is symmetric and hence only has real
eigenvalues.) In that case, we could appeal to Theorem 6.5 on stability via lineariza-
tion. 4

Although we cannot in general show that a gradient flow always converges to a
fixed point, we can give a rather concrete characterization of its !-limit points.

Theorem 7.18. Consider a gradient flow (7.7) and let u0 2 Rn. Then all !-limits of
u0 are fixed points and have the same G value.

Proof. If u0 is itself a fixed point then the conclusion is automatic, so assume that u0 is
not a fixed point. Let u� 2 !.u0/, and let t1 < t2 < � � � ! 1 be such that '.tk Iu0/!
u� as k !1. Then G.'.t1Iu0// < G.'.t2Iu0// < : : : , and G.'.tk Iu0//! G.u�/

as k ! 1. Then also G.'.t Iu0// ! G.u�/ as t ! 1, since t 7! G.'.t Iu0// is a
monotonously decreasing function. In particular,

0 D lim
t!1

d

dt
G.'.t Iu0// D lim

t!1
�krG.'.t Iu0//k

2
D �krG.u�/k2;

showing that rG.u�/ D 0, and therefore u� is a fixed point. Since G.'.t Iu0// con-
verges to G.u�/ as t ! 1 for any !-limit u�, all !-limits must have the same G
value.
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7.4 Hamiltonian systems
Definition 7.19. A system with unknowns q; pWR ! Rm (for some m ⩾ 1) which is
of the form (

Pq D rpH.q; p/

Pp D �rqH.q; p/
(7.8)

for some C 2 functionH WRm�Rm ! R, is called a Hamiltonian system. The function
H is the Hamiltonian function or energy of (7.8). The variables q and p are called the Also called generalized position

and generalized momentum, if
the variables do not refer to ac-
tual position and momentum of
some particle

position and momentum.

Example 7.20. LetH.q; p/ D 1
2
p2� g

`
cos q, the energy of the pendulum in Example

7.4. Then rpH D p and rqH D g
`

sin q, so the system(
Pq D p

Pp D �g
`

sin q;

which we recognize as the pendulum system (7.3), is a Hamiltonian system. 4

In a Hamiltonian system we get at least one conserved quantity “for free”:

Proposition 7.21. The Hamiltonian H is a conserved quantity for (7.8).

Proof. We use the chain rule to obtain

d

dt
H.q; p/ D rqH.q; p/ � Pq CrpH.q; p/ � Py

D rqH.q; p/ � rpH.q; p/ � rpH.q; p/ � rqH.q; p/ D 0:

Using Liouville’s Theorem from Section 4.4, we can show that Hamiltonian sys-
tems are area preserving.

Proposition 7.22. Let ' be the flow of the Hamiltonian system (7.8). If D � R2m is
any bounded set and D.t/ WD '.t ID/, then the volume of D.t/ is constant for all t .

Proof. As in Corollary 4.14, let V.t/ WD vol.D.t//. We have

divF.v/ D
mX
iD1

@F .i/

@q.i/
.v/C

@F .iCm/

@p.i/
.v/ D

mX
iD1

@2H

@p.i/@q.i/
�

@2H

@q.i/@p.i/
D 0:

Thus, by Corollary 4.14, PV .t/ D
R
D.t/

divF.v/ dv D 0, so V.t/ D V.0/ for all t .

The property of preserving area (or volume) in R2m is somewhat abstract and is
not important in itself. However, it hints at a much more powerful structural property
of Hamiltonian systems, namely symplecticity, which we explore in the next section.
As it turns out, this property is equivalent to being a Hamiltonian system, and by luck,
it is a property which is rather simple to check for numerical methods.
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7.4.1 Symplectic maps
Assume for the moment that m D 1. If u1 D .q1 p1/

T and u2 D .q2 p2/
T are given

vectors then the area of the parallelogram spanned by u1 and u2 is given by

!.u1; u2/ D q1p2 � q2p1 D u
T
1Ju2; where J D

�
0 1

�1 0

�
:

Let now gWR2 ! R2 be the linear function g.u/ D Au for some A 2 R2�2. We say
that g (or A) is symplectic if it preserves the area of all parallelograms — that is, if

!
�
g.u1/; g.u2/

�
D !.u1; u2/ 8 u1; u2 2 R:

Inserting g.u/ D Au, we see that g is symplectic if and only if uT
1A

TJAu2 D u
T
1Ju2T

for all u1; u2 2 R2, which is possible if and only if

ATJA D J: (7.9)

Problem 7.1. Show that (7.9) holds if and only if det.A/ D 1.

Problem 7.2. Let

A D

�
cos � � sin �
sin � cos �

�
; B D

�
2 0

0 1=2

�
; C D

�
2 0

0 2

�
for some � 2 Œ0; 2�/. Show that A and B are symplectic, and that C is not. For each
of the matricesD D A;B;C , a drawing of some set� � R2 (say, the unit square) and
its image D� D fDu W u 2 �g, and interpret your results.

Let now gWR2 ! R2 be an arbitrary, possibly nonlinear function. Noting that the
matrix A in (7.9) is the Jacobian of g, we say that g is symplectic if the identity (7.9)
is true for the matrix A D rg.u/, for every u 2 R2. More generally:

Definition 7.23. A C 1 function gWR2m ! R2m is symplectic if (7.9) holds for A D
rg.u/ for all u 2 R2m, where now

J WD

�
0 Im
�Im 0

�
: (7.10)

We now investigate the flow '.t Iu/ of the Hamiltonian system (7.8). First, observe
that we can write the system (7.8) as

Pu D JrH.u/ (7.11)

where rH.q; p/ D
�
@H
@q
.q; p/ @H

@p
.q; p/

�T.

Theorem 7.24 (Poincaré, 1899). Let ' be the flow of the Hamiltonian system (7.8).
Then for every t 2 R, the function u 7! '.t Iu/ is symplectic.

Proof. We need to check that for every fixed time t 2 R and u 2 R2m, the matrix
A.t/ WD r'.t Iu/ satisfies (7.9). If t D 0 then '.t Iu/ D u, so A.0/ D I , which
clearly satisfies (7.9). For a general t 2 R we see from (7.11) that

d

dt
A.t/ D r

�
d
dt
'.t Iu/

�
D r

�
JrH.'.t Iu//

�
D Jr2H.'.t Iu//r'.t Iu/ D JMA
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where M.t/ WD r2H.'.t Iu//, the Hessian matrix of H , which consists of all second-
order partial derivatives of H . Hence,

d

dt

�
ATJA

�
D
�
d
dt
A
�T
JAC ATJ

�
d
dt
A
�

D ATM TJ T JAC ATJJMA

D ATMA � ATMA

D 0

because M is symmetric and J�1 D J T D �J . Since ATJA D J when t D 0, we
conclude that ATJA D J for every t 2 R.

Perhaps even more surprising is the fact that Poincaré’s theorem holds in the con-
verse direction:

Theorem 7.25. Let 'WR�R2m ! R2m be the flow of some ODE and assume that for
each t 2 R, the map u 7! '.t Iu/ is symplectic. Then there is a function QH WR2m ! R
such that ' is the flow of the ODE with Hamiltonian QH .

Proof. We give a proof for m D 1 only. Write the components of F as F.q; p/ D�
f .q; p/

g.q; p/

�
: For a fixed u 2 R2 we can let A.t/ WD r'.t Iu/ and, as in the proof of

Theorem 7.24, find that

d

dt
A.t/ D rF.'.t Iu//A.t/:

Since ATJA D J for all t , we can differentiate and get

0 D
d

dt

�
ATJA

�
D AT�

rF TJ C JrF
�
A:

Since u 7! '.t Iu/ is invertible, the matrix A.t/ D r'.t Iu/ is always invertible, so
the above is equivalent to JrF D �rFJ . Writing out the components of this matrix
equation, we find that

@f

@q
.q; p/ D �

@g

@p
.q; p/:

But these are precisely the conditions that ensure that there is a function QH WR2 ! R
such that f .q; p/ D @ QH

@p
.q; p/ and g.q; p/ D � @ QH

@q
.q; p/.

Thus, in a certain sense, the flow map ' is symplectic if and only if the correspond-
ing ODE is Hamiltonian. The proof of the above theorem is outside the scope of these
notes.

(a) The pendulum

(b) Phase portrait

Figure 7.1: The pendulum in Ex-
ample 7.26.

Example 7.26. Consider a pendulum of length L > 0 hanging from a frictionless
joint. We can describe its position by the angle � that the pendulum makes with the
downward vertical, see Figure 7.1(a). Using Newton’s second law, one can show that
the angle behaves according to the ODE

L R� D �g sin �;

where g > 0 is the gravitational constant. Letting p D L P� , we can write the above
ODE as a Hamiltonian system with unknown .p; �/ and Hamiltonian functionH.p; �/ D
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1
2L
p2 � g cos.�/. A phase portrait of this Hamiltonian system can be seen in Figure

7.1(b). Figure 7.2 shows the evolution of the flow over time, along with a superimposed
image where each pixel follows the flow. Although the image is severely distorted over
time, its area (and the area of any section of the image) is preserved. 4

Figure 7.2: The author is transported with the flow 't , but his area is preserved over
time. The black curves are orbits of the flow.

7.5 Problems
Problem 7.3. Let GWRn ! R be a conserved quantity for (1). Show that G is a
Lyapunov function for all of its strict local minima. Be sure to specify the set U in
Definition 7.5. (Recall that a point u� 2 Rn is a strict local minimum if there is some
ı > 0 such that G.u�/ < G.u/ for all u 2 Bı.u�/ n fu�g.)

Problem 7.4. Consider the linear system Pu D Au for A 2 R2�2. Determine for what
A this system is (i) a gradient system and (ii) a Hamiltonian system. Can the system be
both?

Problem 7.5. Determine whether each of the following systems are (i) gradient flow,
(ii) Hamiltonian systems, or (iii) neither. In case (i) and (ii) use this information to
draw a phase portrait. (Use a computer to draw a contour plot, if needed — but try to
do it by hand first.)

(a) Px D �2xy2, Py D �2x2y

(b) Px D y � 3, Py D 2 � x
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(c) Px D 2xy � y2, Py D x2y

(d) Px D x2y, Py D �xy2

(e) Px D x2 � 1

(f) Px D � cos.x/ cos.y/, Py D � sin.x/ sin.y/
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Chapter 8

Periodic orbits

In this chapter we study periodic orbits, that is, orbits �.u0/ for which there is some
T > 0 such that '.T I v0/ D v0 for every v0 2 �.u0/. Necessarily then, the curve
�.u0/ is a closed, simple curve (a curve looping back on itself and which never crosses
itself).

8.1 Stability of periodic orbits
In the same way that we can ask whether a fixed point is stable, we can ask whether a
periodic orbit is stable.

Definition 8.1. Let 
 D �.u0/ be a periodic orbit.
See Definition A.1 in the ap-
pendix for the definition of dist.

� 
 is Lyapunov stable (or L-stable) if for all " > 0, there exists some ı > 0 such
that dist.'.t I v0/; 
/ < " for all t > 0 whenever dist.v0; 
/ < ı.

� 
 is orbitally !-attracting if there is some ı > 0 such that if dist.v0; 
/ < ı then
'.t I v0/! 
 as t !1.

� 
 is orbitally asymptotically attracting if it is both Lyapunov stable and orbitally
!-attracting.

� 
 is orbitally repelling if it is orbitally asymptotically attracting backwards in
time.

Example 8.2. Pu D Au, A D
�
0 1

�1 0

�
4

Example 8.3. ... 4

8.2 The Poincaré–Bendixson theorem
Theorem 8.4 (The Poincaré–Bendixson theorem). Let n D 2 and assume that �C.u0/
is bounded. Then either A result of this form, where ex-

actly one of two alternatives is
true, is a dichotomy.(i) !.u0/ contains a fixed point

(ii) !.u0/ is a periodic orbit.
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Similarly, if ��.u0/ is bounded, then the same dichotomy applies to ˛.u0/. We
postpone the proof of the theorem until the next section, and note here some conse-
quences of the theorem. The first corollary is typical for the types of results which
follow from the Poincaré–Bendixson theorem.

Corollary 8.5. Let C � R2 be a closed, bounded and forward invariant set which does
not contain any fixed points. Then for every u0 2 C , the trajectory '.t Iu0/ converges
to a periodic orbit as t !1.

Proof. If u0 2 C then �C.u0/ � C , since C is forward invariant, and therefore also
!.u0/ � C , since C is closed. But C does not contain any fixed points, so by the
Poincaré–Bendixson theorem, !.u0/ must be a periodic orbit.

We can also use the idea behind the Poincaré–Bendixson theorem to prove stability
of periodic orbits.

Corollary 8.6. Assume that u0 2 R2 does not lie on a periodic orbit, but that !.u0/ is Consult the proof of this result in
the next section for a precise for-
mulation.

periodic. Then the periodic orbit !.u0/ is asymptotically stable from the side on which
u0 lies.

The next result is somewhat technical, but is needed in the result that follows. We
postpone the proof of this result to the next section.

Lemma 8.7. Let n D 2, let u0 2 R2, and assume that �.u0/ is bounded. Then either:

(i) u0 is a fixed point

(ii) �.u0/ is periodic

(iii) At least one of ˛.u0/ and !.u0/ is a periodic orbit, and in this case, ˛.u0/ and
!.u0/ are disjoint

(iv) Both ˛.u0/ and !.u0/ contain a fixed point.

Corollary 8.8. Let n D 2 and let �.u0/ be a periodic orbit which encloses the open By “enclose U ”, we mean that
U is an open, bounded set with
boundary �.u0/. (The exis-
tence and uniqueness of this set
is given by Jordan’s curve theo-
rem; see the appendix.)

set U � R2. Then U must contain a fixed point.

Proof. Assume conversely that U does not contain a fixed point. If U contains a pe-
riodic orbit, then it is possible to choose a “smallest” periodic orbit �.v0/ � U so
that the set V � U which it encloses does not itself contain any periodic orbits. See
Lemma 8.15 in the next section for a proof of this fact.

Since V is enclosed by a periodic orbit, it is invariant, so !.w0/ � V for every
w0 2 V . We assumed that V does not contain fixed points, so by the Poincaré–
Bendixson theorem, !.w0/ must be a periodic orbit, and again by assumption, the
only periodic orbit in NV is �.u0/. Hence, !.w0/ D �.u0/ for all w0 2 V . The exact
same argument applies to the ˛-limits, so ˛.w0/ D �.u0/ for all w0 2 V . But this
contradicts Lemma 8.7.

8.3 Proof of the Poincaré–Bendixson theorem
The proof of the theorem proceeds by a sequence of lemmas. As in the previous section,
we assume that n D 2 in this entire section.

The proof relies heavily on the idea of a transversal.
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Definition 8.9. Consider Pu D F.u/ in n D 2 dimensions. A transversal ` is a closed
line segment in R2 containing no fixed points and no point where F is tangential to `.
If u0 2 R2 we say that ` is a transversal for u if ` is a transversal and u is an interior By interior point we mean that

u 2 ` and that u is not one of
the endpoints of `.

point of `.

We note that every closed line segment in R2 can be written as

` D
˚
u 2 R2 W ku0 � uk ⩽ r; .u0 � u/ � � D 0

	
for some r > 0, u0 2 R2 and a nonzero vector � 2 R2. The conditions of being a
transversal can then be summarized as (potentially after replacing � by ��)

F.u/ � � > 0 8 u 2 `:

Thus, all orbits that hit ` must cross it, and must do so in the direction �. With this in-
terpretation it would be easy to extend the definition of transversals also to dimensions
n > 2, but we will only use them when n D 2.

Lemma 8.10. Every u0 2 R2 which is not a fixed point has a transversal. This result can be generalized to
Rn for n > 2.

Proof. Let � WD F.u0/, which is nonzero. The function F is continuous, so there is
some ı > 0 such that kF.u0/�F.u/k ⩽ k�k=2 for all u 2 Bı.u0/. Since � D F.u0/
we have

kF.u0/ � F.u/k
2
D k�k2 � 2F.u/ � � C kF.u/k2 ⩽ k�k2=4;

while on the other hand, by the inverse triangle inequality, kF.u/k ⩾
ˇ̌
k�k � k� �

F.u/k
ˇ̌
⩾ k�k=2. Reordering the above estimate yields

F.u/ � � ⩾
1

2

�
3

4
k�k2 C kF.u/k2

�
⩾
1

2

�
3

4
k�k2 C

1

4
k�k2

�
D
1

2
k�k2 > 0:

Thus, the set ` D
˚
u 2 R2 W ku0�uk ⩽ ı; .u0�u/ �� D 0

	
is a transversal of u0.

The next result says that points sufficiently close in space to a transversal, also
have trajectories that are close to the transversal in time. In particular, we can modify a
sequence converging to a point on a transversal such that each element of the sequence
lies on the transversal.

Lemma 8.11. Let u0 not be a fixed point and let ` be a transversal for u0.

(i) For every " > 0, there is some ı > 0 such that for any v0 2 Bı.u0/ there is
some t 2 Œ�"; "� such that '.t I v0/ 2 `.

(ii) If fvkgk is a sequence in Rn converging to u0, then there is a sequence �k ! 0

such that if Qvk WD '.�k I vk/, then Qvk 2 ` for large k, and still Qvk ! u0.
This proof is tedious and can
safely be skipped.Proof of (i). By shrinking `, we may assume that it is of the form

` D
˚
u 2 R2 W ku0 � uk ⩽ r; .u0 � u/ � � D 0

	
for some unit vector � 2 R2 and r > 0. Define

M WD sup
u2Br .u0/

kF.u/k; m WD inf
u2Br .u0/

F.u/ � �:

43



Since F.u0/ � � > 0, we may assume that r is small enough that m > 0. Let

ı D min
�
m";

r

1CM=m

�
and note that ı < r . Let v0 2 Bı.u0/, and assume that v0 lies in direction �� with
respect to ` (the proof of the opposite direction is analogous). We have

d

dt

��
'.t I v0/ � u0

�
� �
�
D F.'.t I v0// � � ⩾ m;

for all t such that '.t I v0/ 2 Br .u0/. Since .v0 � u0/ � � ⩾ �kv0 � u0k ⩾ �ı, we get�
'.t I v0/ � u0

�
� � ⩾ �ı C tm:

Thus, as long as '.t I v0/ 2 Br .u0/, there is some t0 > 0 with t0 ⩽ ı=m ⩽ " such that�
'.t0I v0/ � u0

�
� � D 0. We claim that indeed '.t I v0/ 2 Br .u0/ for jt j ⩽ ı=m. We

have

d

dt
k'.t I v0/ � u0k

2
D
�
'.t I v0/ � u0

�
� F.'.t I v0// ⩽Mk'.t I v0/ � u0k;

so d
dt
k'.t I v0/ � u0k ⩽M , whence

k'.t I v0/ � u0k ⩽ kv0 � u0k CMt ⩽ ı CMı=m D ı.1CM=m/ ⩽ r

whenever t ⩽ ı=m, by our choice of ı. This proves our claim.

The next lemma says that if a trajectory hits a transversal, it must leave it immedi-
ately, and in particular, that a periodic orbit can hit the transversal at most once. This
result uses the fact that n D 2 in a fundamental way.

Lemma 8.12. Let n D 2, let ` be a transversal and let u0 2 R2. Then:

(i) If a < b and u0 2 R2, then the set ft 2 Œa; b� W '.t Iu0/ 2 `g is finite (or empty).

(ii) If �.u0/ is periodic then it intersects ` in at most one point.

(iii) !.u0/ can intersect ` in at most one point.

Proof. (i) Assume conversely that there are distinct t1; t2; � � � 2 Œa; b� such that '.tk Iu0/ 2
` for all k 2 N. Since Œa; b� is compact, we can take a subsequence ftk.j /gj2N such
that tk.j / ! t� 2 Œa; b� as j !1. Then also '.tk.j /Iu0/! v� WD '.t�Iu0/ 2 ` as
j !1. Let

vj WD
'.t�Iu0/ � '.tk.j /Iu0/

t� � tk.j /
; j 2 N:

On one hand, vj !
@'
@t
.t�Iu0/ D F.v�/ as j ! 1, which is not parallel to ` (since

` is a transversal), but on the other hand, vj is parallel to ` for all j — a contradiction.
(ii) Let �.u0/ be an orbit which intersects ` at two distinct points '.t1Iu0/ ¤

'.t2Iu0/, at times t1 < t2. We aim to prove that �.u0/ cannot be periodic. According
to the first part of this lemma, �.u0/ can intersect ` in at most finitely many times
t 2 Œt1; t2�, so we can let t2 be the first time of intersection after t1. Then the flow either
looks like case (a) or (b); let us assume that we are in situation (a). Let

(a)

(b)
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S WD
˚
'.t Iu0/ W t 2 Œt1; t2�

	
[ S 0

where S 0 is the line segment between '.t1Iu0/ and '.t2Iu0/ — note that S 0 � `. The

The set S

curve S is a Jordan curve (a closed curve which does not intersect itself), so by the
Jordan Curve Theorem (see the appendix), it separates the plane into two open sets U
and V , both with S as its boundary, and where U is bounded (the “inside”) and V is
unbounded (the “outside”). The set U is forward invariant, since no orbit can cross the
set

˚
'.t Iu0/ W t 2 Œt1; t2�

	
, and since every orbit through S 0 must cross from V into

U . Moreover, F.'.t Iu0// points into U , so '.t Iu0/ 2 U for some t > t2. But then
'.t Iu0/ 2 U for all t > t2, so the orbit can never return to '.t1Iu0/ … U . Thus, the
orbit cannot be periodic.

(iii) is proved similarly to (ii), and is left as an exercise to the interested reader.

Lemma 8.13. Let n D 2, u0 2 R2 and assume that �.u0/ \ !.u0/ ¤ ;. Then either
u0 is a fixed point, or �.u0/ is a periodic orbit.

Proof. Assume that u0 is not a fixed point. By assumption, there is some s 2 R such
that '.sIu0/ 2 !.u0/. Let ` be a transversal of '.sIu0/, as prescribed by Lemma
8.10. Let ftkgk2N be such that tk ! 1 and '.tk Iu0/ ! '.sIu0/ as k ! 1. By
Lemma 8.11, as long as k ⩾ N for some N 2 N, we can modify each tk slightly so
that '.tk Iu0/ 2 `, and still tk !1 and '.tk Iu0/! '.sIu0/ as k !1. By Lemma
8.12, !.u0/ can intersect ` in at most one point, and since �.'.sIu0// � !.u0/, also
�.'.sIu0// can intersect ` in at most one point. Since '.sIu0/ 2 `, this one point
must be '.sIu0/, and therefore, '.tk Iu0/ D '.sIu0/ for all k ⩾ N . Hence, the orbit
is periodic.

Lemma 8.14. Let n D 2, u0 2 R2, and assume that �C.u0/ is bounded. If !.u0/
contains no critical points, but there is some periodic orbit �.v0/ � !.u0/, then
�.v0/ D !.u0/.

Proof. Assume !.u0/ does not contain any critical points, and the orbit through v0 2
!.u0/ is periodic, but �.v0/ ¤ !.u0/. Then �.v0/ ⫋ !.u0/, since !.u0/ is invariant
(by Theorem 4.10(ii)). Since �C.u0/ is bounded, we know that !.u0/ is connected
(by Theorem 4.10(viii)), so for every k 2 N, there is some vk 2 !.u0/ n �.v0/ with
dist.vk ; �.v0// < 1

k
— otherwise, we could partition !.u0/ into two open, disjoint

sets. The set �.v0/ is bounded, so by taking a subsequence k.j /, there is some Nv 2
�.v0/ such that vk.j / ! Nv as j !1.

Let ` be a transversal of Nv, as prescribed in Lemma 8.10. By Lemma 8.11, there
are times tj ! 0 so that wj WD '.tj I vk.j // lie on `, and still wj ! Nv. The set
!.u0/ n �.v0/ is invariant, so we are guaranteed that wj 2 !.u0/ n �.v0/. But by
Lemma 8.12(iii), !.u0/ can intersect ` in only one point, which must be Nv, so wj D Nv
for all j . Thus, wj both lies in �.v0/ and in !.u0/ n �.v0/, which is absurd.

Proof of the Poincaré–Bendixson theorem. Assume that!.u0/ does not contain a fixed
point. Let v0 2 !.v0/ and let w0 2 !.v0/ (both sets are nonempty, since the orbits are
bounded). Note that both !.v0/ and �.v0/ are subsets of !.u0/. Let ` be a traversal
of w0. By Lemma 8.12(iii), !.u0/ intersects ` in at most one point, which must be w0.
We have w0 2 !.v0/, so there are t1 < t2 < � � � ! 1 such that '.tk I v0/ ! w0 as
k !1. By Lemma 8.11 we can modify each tk slightly so that '.tk I v0/ 2 ` for all k,
but still tk !1 and '.tk I v0/! w0 as k !1. But '.tk I v0/ 2 !.u0/ for all k, and
!.u0/ only intersects ` at w0, so '.tk I v0/ D w0 for all k. Hence, the orbit through w0
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is periodic. By Lemma 8.14, !.u0/ cannot have a periodic orbit as a proper subset, so
!.u0/ must itself be periodic.

Proof of Corollary 8.6. Denote 
 WD !.u0/. Since 
 is a periodic orbit, it separates R2
into two open, connected components U; V , one of which is bounded, the other not.
Let us assume that, say, u0 2 U . We will prove that:

(i) For every " > 0 there is some ı > 0 such that if v0 2 U satisfies dist.v0; 
/ < ı
then dist.'.t I v0/I 
/ < " for all t ⩾ 0.

(ii) There is some ı0 > 0 such that if v0 2 U satisfies dist.v0; 
/ < ı0 then
'.t I v0/! 
 as t !1.

Let Nu 2 
 , and let ` be a transversal of Nu. Then the forward trajectory '.t Iu0/ hits `
infinitely often, at times t1 < t2 < : : : . Let " > 0, and let T > 0 be such that

dist
�
'.t Iu0/; 


�
< " 8 t ⩾ T:

Let N 2 N be such that tN ⩾ T . As in the proof of Lemma 8.12(ii), let

S WD
˚
'.t Iu0/ W tN ⩽ t ⩽ tNC1

	
[ S 0

where S 0 � ` is the line segment between '.tN Iu0/ and '.tNC1I v0/. Then 
 and
S “sandwich” a set C � U , i.e., @C D 
 [ S . This set is forward invariant, since
its boundary consists of the orbits 
 and

˚
'.t Iu0/ W tN ⩽ t ⩽ tNC1

	
, as well

as the line segment S 0, through which orbits can only pass into C . Defining now
ı D min

�
dist.'.t Iu0/; 


�
, we see that if v0 2 U satisfies dist.v0; 
/ < ı, then auto-

matically v0 2 C , so dist.'.t I v0/; 
/ < ", by our choice of N . This proves Lyapunov
stability.

To prove !-attractiveness, it is enough to note that any orbit in the above set C
must converge to 
 , so we can choose ı0 to be any of the numbers ı above.

Proof of Lemma 8.7. Assume that neither (i), (ii) nor (iv) is the case. The Poincaré–
Bendixson theorem then says that either ˛.u0/ or !.u0/ must be periodic. We claim
that these sets must be disjoint, so assume for the sake of contradiction that there is
some v0 2 ˛.u0/\!.u0/. Then v0 lies on a periodic orbit, so the periodic orbit �.v0/
is a subset of both ˛.u0/ and !.u0/ (since both sets are invariant).

Let ` be a transversal of v0. Let 0 < t1 < t2 < � � � ! 1 and 0 > s1 > s2 > � � � !
�1 be such that both '.tk Iu0/ and '.sk Iu0/ converge to v0 as k !1. By modifying
tk ; sk slightly, as in Lemma 8.11, we may assume that '.tk Iu0/ and '.sk Iu0/ both lie
on ` for all k. The same type of argument as in the proof of Lemma 8.12(ii) shows
that '.tk Iu0/; '.tkC1Iu0/; '.tkC2Iu0/; : : : must intersect ` in a monotone manner:
Necessarily, '.tkC1Iu0/ 2 ..'.tk Iu0/; v0// for all k, where ..u; v// � R2 is the open
line segment between the points u and v. More generally, if t 2 R is any time where
'.t Iu0/ 2 `, then '.t Iu0/ 2 ..'.tk Iu0/; v0// if and only if t > tk . The sequence
'.sj Iu0/ lies on ` and converges to v0, so for sufficiently large j , it lies on the line
segment ..'.tk Iu0/; v0// for some k. But then sj > tk > 0 > sj , a contradiction.

The following result is needed in the proof of Corollary 8.8.

Lemma 8.15. Let n D 2 and let �.u0/ be a periodic orbit which encloses the open set
U . Then at least one of the following is true:

(i) U contains a fixed point
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(ii) There is some v0 2 U such that �.v0/ is periodic, and such that the set V which
�.v0/ encloses does not itself contain periodic orbits.

Proof. Assume that U does not contain a fixed point. We claim that we can find a
“smallest” periodic orbit in U , to which we can apply the above argument. To this
end, let P be the set of all periodic orbits in U , and assume that P contains at least one
element (otherwise we are already done). For an orbit 
 2 P , we let U
 be the “inside”
of 
 , and let u
 D

�
u
.1/

 ; u

.2/



�
be the point on 
 with the smallest x-coordinate (and

smallest y-coordinate, if several points have the same x-coordinate). Note that

if 
1; 
2 2 P and 
2 � U
1
; then u.1/
1

< u.1/
2
: (8.1)

Let w.1/ D sup
2P u
.1/

 . Since fu
g
2P is a bounded set in U , there is some sequence

f
kgk2N in P such that u
k
! .w.1/; w.2// as k !1 for some w.2/ 2 R. Necessar-

ily, w 2 U . The set !.w/ cannot contain a fixed point, by assumption, so by Poincaré–
Bendixson, it must be a periodic orbit, i.e. !.w/ 2 P . Moreover, w.1/ D u

.1/

!.w/
, and

w.1/ ⩾ u
.1/

 for all 
 2 P , so U!.w/ does not contain any periodic orbits, because of

(8.1). Setting v0 D w and V D U!.v/ completes the proof.

8.4 Problems
Problem 8.1. Consider the system

Px D �y C x
�
r4 � 3r2 C 1

�
Py D x C y

�
r4 � 3r2 C 1

�
where r D

p
x2 C y2.

(a) Show that Pr D r
�
r4 � 3r2 C 1

�
.

(b) Show that the origin is an unstable focus, and that this is the only fixed point.

(c) Show that Pr < 0 on the circle r D 1 and that Pr > 0 on the circle r D 2.
Deduce from the Poincaré–Bendixson theorem that there is a periodic orbit in
the annulus A WD f.x; y/ 2 R2 W 1 < r < 2g.

(d) Use the Poincaré–Bendixson theorem to show that there is a periodic orbit in
the annulus B WD f.x; y/ 2 R2 W 0 < r < 1g.

(e) Explain why there are no other periodic orbits for this system. Determine the
stability of both orbits according to the classification in Definition 8.1.

(f) Find !.u0/ and ˛.u0/ for all u0 2 R2.

Problem 8.2. Consider the system

Px D x � y � x3

Py D x C y � y3:

It is a fact that this system has a single fixed point, at the origin.

(a) Show that the origin is an unstable focus.
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(b) Show that Pr D r � x4Cy4

r
.

(c) Use the Poincaré–Bendixson theorem to show that the system has at least one
periodic orbit in the annulus A WD f.x; y/ 2 R2 W 1=2 < r < 2g.

(d) Use a computer to draw a phase portrait in the domain �2 ⩽ x; y ⩽ 2.
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Chapter 9

Bifurcations

Most differential equations coming from real-world applications have one or more pa-
rameters a1; : : : ; am 2 R. These might represent, say, the stiffness of a spring, or heat
conductivity of a material, or gravitational force, etc. Thus, we want to solve

Pu D Fa.u/ (9.1)

where we now explicitly express the dependence of F on the parameters a. In this
chapter we will mostly assume that a 2 R. We will also assume that F is continuous
with respect to both u and a (and in many places also several times differentiable), so
that a small change in a will lead to a small change in F .

Model parameters are rarely known exactly, so it is important to know how sensitive
the solution is to the choice of a — will a small change in a lead to a correspondingly
small change in u? Generally, a bifurcation is when a small change in a leads to a
qualitative change in the solution, such as

� fixed points being created or destroyed

� periodic orbits being created or destroyed

� the type of stability of a fixed point or periodic orbit changing.

Example 9.1. Consider the scalar equation

Pu D u2 C a

for some parameter a 2 R. If a > 0 there are no fixed points; if a D 0 there is one
fixed point, namely u� D 0; and if a < 0 then there are two fixed points, namely
u�� D �

p
�a and u�C D

p
�a. Using the theory from Section 6.2, we see that u�� is

repelling while u�C is asymptotically stable.
We conclude that increasing a from negative to positive values, we see that the two

fixed points u�
˙

approach one another (a < 0), merge (a D 0), and disappear (a > 0).
It is clear that a big change in the qualitative behaviour of solutions occurs near the
value a� D 0. This type of bifurcation is called a saddle-node bifurcation — more
on this later. We can summarize our analysis in the bifurcation diagram in Figure 9.1,
which displays the fixed points for different values of a. The curve u�� is dotted to
indicate that these fixed points are unstable.

0 1
�1

0

1

Figure 9.1: Bifurcation diagram
for the system in Example 9.1.
Horizontal axis a, vertical axis
u.

4
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Let us develop some heuristics for the conditions that must be in place for a bifur-
cation to occur. Assume that (9.1) has a fixed point u� for values of a in some interval.
Since the location of the fixed point might change as a is altered, the fixed point is a
function of the parameter: u� D u�.a/. Assume now that the stability of u� changes
as the parameter crosses some threshold a�, so e.g.

� u�.a/ is asymptotically stable for a < a�

� u�.a/ is unstable for a > a�.

We know from Chapter 6 that the stability of hyperbolic fixed points can be character-
ized in terms of the sign of the real parts of the eigenvalues of DFa.u�/, so it seems
necessary that

the fixed point u� is non-hyperbolic at the bifurcation value a D a�. (9.2)

In particular, if the equation is scalar (i.e., n D 1) then necessarily @Fa�

@u
.u�/ D 0.

(Check this!)
It turns out that a similar property holds at a bifurcation where a fixed point is

created or destroyed. Again, let u� be a fixed point for (9.1) for some value of a D
a� 2 R, so that Fa�.u�/ D 0. Let us assume for the moment that the Jacobian
matrix DuFa�.u�/ is non-singular. We can then apply the implicit function theorem
(cf. Theorem A.3) to deduce the existence of a neighbourhood U of a� and a function
gWU ! Rn such that

g.a�/ D u� and Fa.g.a// D 0 for all a 2 U:

In other words: For all values of a close to a�, there is a single fixed point g.a/ close
to u�. Thus, under our assumption that DuFa�.u�/ is non-singular, there can be no
creation or destruction of fixed points close to u�! Since being singular is the same
as having 0 as an eigenvalue, and a fixed point with 0 as an eigenvalue is in particular
non-hyperbolic, we deduce again that a bifurcation where a fixed point is created or
destroyed must satisfy (9.2).

9.1 Saddle-node bifurcations
We have already seen an example of a saddle-node bifurcation in Example 9.1. More
concretely, we say that (9.1) undergoes a saddle-node bifurcation at a D a� near the
point u� if u� is a fixed point for (9.1) with a D a�, and both of the following are
satisfied:

� There are two fixed points close to u� for values a < a�.

� There are no fixed points close to u� for values a > a�.

(If the above holds with the inequalities a < a� and a > a� switched around, then we
still call it a saddle-node bifurcation.)

The following theorem gives a sufficient condition for the existence of a saddle-
node bifurcation, and is typical of the types of results that can be found in bifurcation
theory.

Theorem 9.2. Let n D 1 and assume that .a�; u�/ 2 R � R is a point where

50



(i) Fa�.u�/ D 0

(ii) @Fa�

@u
.u�/ D 0

(iii) @2Fa�

@u2 .u�/ ¤ 0

(iv) @Fa�

@a
.u�/ ¤ 0.

Then the system (9.1) undergoes a saddle-node bifurcation at a� near u�.

Proof. Let us denote G.a; u/ WD Fa.u/, so that our conditions can be written

(i) G
�
a�; u�

�
D 0

(ii) @G
@u

�
a�; u�

�
D 0

(iii) @2G
@u2

�
a�; u�

�
¤ 0

(iv) @G
@a

�
a�; u�

�
¤ 0.

Using properties (i) and (iv) in the implicit function theorem, we deduce the existence
of a neighbourhood U of u� and a function aWU ! R so that a.u�/ D a� and

G.a.u/; u/ D 0 for all u 2 U: (9.3)

In other words, u is a fixed point for (9.1) for the parameter a D a.u/. Differentiating
(9.3) and inserting u D u� yields

0 D
d

du

�
G.a.u/; u/

�ˇ̌̌
uDu�

D
@G

@a

�
a�; u�

�
a0.u�/C

@G

@u

�
a�; u�

�
:

Conditions (ii) and (iv) say that @G
@a

is nonzero and @G
@u

is zero at
�
a�; u�

�
, so necessarily

a0.u�/ D 0. Differentiating (9.3) a second time and inserting u D u� yields

0 D
d2

du2

�
G.a.u/; u/

�ˇ̌̌
uDu�

D
@2G

@a2

�
a�; u�

�
a0.u�/2 C

@2G

@a@u

�
a�; u�

�
a0.u�/C

@G

@a

�
a�; u�

�
a00.u�/

C
@2G

@u@a

�
a�; u�

�
a0.u�/C

@2G

@u2

�
a�; u�

�
:

Using (iii), (iv) and the fact that a0.u�/ D 0, we can solve for a00.u�/ to find that

a00.u�/ D �

@2G
@u2

�
a�; u�

�
@G
@a

�
a�; u�

� ¤ 0:
Thus, we have shown that a.u�/ D a�, a0.u�/ D 0, and a00.u�/ ¤ 0. Let us assume
that, say, a00.u�/ > 0; a similar analysis follows in the negative case. Then a is convex
near u�, so for values a0 > a� there are two points u��; u

�
C on either side of u� such

that a.u��/ D a.u�C/ D a0 — in other words, there are two fixed points u��; u
�
C for

the value a D a0. On the other hand, when a0 < a� there are no points u� such that
a.u�/ D a0 — in other words, there are no fixed points for the value a D a0. This
proves that the system undergoes a saddle-node bifurcation at a�.
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Remark 9.3. Condition (i) of Theorem 9.2 simply says that u� is a fixed point. As we
have seen from the discussion in the introduction of this chapter (cf. (9.2)), condition
(ii) is necessary for the appearance of a bifurcations. Conditions (iii) and (iv) require
a bit more work to interpret, but they both say that some numbers must be nonzero.
Since most numbers are nonzero, we can infer that (iii) and (iv) are false only in very
special cases. Thus, we can interpret Theorem 9.2 as saying that for scalar equations,
the typical form of bifurcations is a saddle-node bifurcation. 4

Example 9.4. Here is an example of a bifurcation in a scalar equation which is not a
saddle-node bifurcation. Consider the scalar equation

Pu D u3 � au

for a 2 R. The value u� D 0 is always a fixed point; if a ⩽ 0 then it is the only fixed
point, while if a > 0 there are two more fixed points, u�

˙
D ˙
p
a. Using the theory

from Section 6.2, we see that u� D 0 is repelling for a < 0 and a sink for a > 0, while
u�
˙

are repelling.
Thus, the system undergoes a bifurcation at a D 0 where three fixed points (a >

0) emerge from one fixed point (a < 0). Such a bifurcation is called a pitchfork
bifurcation; Figure 9.2 shows a bifurcation diagram. The reader should check that the
conditions of Theorem 9.2 are not satisfied (Problem 9.2). 4

0 1
�1

0

1

Figure 9.2: Bifurcation diagram
for the system in Example 9.4.
Horizontal axis a, vertical axis
u.

Example 9.5. Here is an example of a saddle-node bifurcation in two dimensions.
Consider the system given in polar coordinates by(

Pr D r.1 � r2/

P� D sin.�/2 C a

for a parameter a 2 R. It is clear that the origin (r D 0) is always a fixed point, and by
noting that Pr > 0 when r is small but positive, we see that the origin is repelling.

Since r.1 � r2/ D 0 only when r D 0 or r D 1, the only other fixed points must
lie on the unit circle r D 1. Such a fixed point would need to satisfy sin.�/2 C a D 0,
which is only possible when a 2 Œ�1; 0�. (The reader should check this.) At a D 0

there are two fixed points at angles � D 0 and � D � . Similarly, at a D �1 there are
two fixed points at angles � D �

2
and � D 3�

2
. When a 2 .�1; 0/, a fixed point would

have to satisfy sin.�/2 D �a, i.e. sin.�/ D ˙
p
�a, which has four solutions:

� D arcsin
�
˙
p
�a
�
; � D arcsin

�
˙
p
�a
�
C �:

Thus, apart from the origin, the system has the following fixed points:

� none when a < �1

� two when a D �1

� four when �1 < a < 0

� two when a D 0

� none when a > 0.

Clearly, a bifurcation occurs at a D �1 and at a D 0.

�1 0
0

�=2

�

3�=2

2�

Figure 9.3: Bifurcation diagram
for the system in Example 9.5.
Horizontal axis a, vertical axis
� .

Checking the stability of each fixed point using the theory in Section 6.2, we find
that the fixed points alternate between being stable and unstable; a bifurcation diagram
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is shown in Figure 9.3. (Since the system is two-dimensional, a full bifurcation diagram
should be three-dimensional, but this would be difficult to visualize. However, we
know that r D 1 for all fixed points of interest, so we plot only the � component.)
From this diagram we clearly see that saddle-node bifurcations occur at a D �1 near
� D �=2 and � D 3�=2, and at a D 0 near � D 0 (which is the same as � D 2�) and
� D � . All points lie on the unit circle r D 1. 4

9.2 Hopf bifurcations
So far we have seen bifurcations where two or more fixed points merge. Since fixed
points are usually easy to find, such bifurcations are easy to identify. We will now
study a more complex case, where a fixed point and a periodic orbit merge.

Definition 9.6. We say that (9.1) undergoes a Hopf bifurcation at a� near u� if Also called an Andronov–Hopf
bifurcation.

� for a < a� there is a single fixed point near u�

� for a > a� there is a single fixed point and a periodic orbit near u�.

Although the above definition is somewhat informal, the reader should be able to
understand it using the intuition from the previous section. Note that a Hopf bifurcation
can only happen in dimensions n ⩾ 2, since there are no periodic solutions in scalar
equations.

Example 9.7. Let a 2 R be a parameter and consider the planar system(
Px D ax � y � x

�
x2 C y2

�
Py D x C ay � y

�
x2 C y2

�
;

which can be written in polar coordinates as(
Pr D r

�
a � r2

�
P� D 1:

The only fixed point for the system is the origin. When a < 0 we have Pr < 0 for all
r > 0, while when a > 0 we have Pr > 0 for small r > 0. Thus, the origin is attracting
for a < 0 and repelling for a > 0.

�0:5 0 0:5 1

0

0:5

1

Figure 9.4: Bifurcation diagram
for the system in Example 9.7.
Horizontal axis a, vertical axis
r .

When a > 0 there is also a periodic orbit along the circle r D r� WD
p
a. Since

Pr > 0 for r < r� and Pr < 0 for r > r�, the periodic orbit is attracting. Figure 9.4
shows a bifurcation diagram for this system, where fixed points are shown in red and
periodic orbits are outlined in blue. As in Example 9.5, we only show one of the two
coordinates, for the sake of clarity. 4

The previous example was rather easy to analyse since its formulation in polar
coordinates was very simple. The system in the next example does not admit such a
simple reformulation.

Example 9.8. Consider the Lotka–Volterra model8̂̂<̂
:̂
Px D x

�
1 �

x

K
�

y

1C x

�
Py D y

�
ı

x

1C x
� 


� (9.4)
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where K; ı; 
 > 0 are parameters satisfying 
 < ı. The unknowns x and y represent
the number of species in populations of prey and predators, respectively. In the ab-
sence of predators, the growth factor 1� x

K
will move the prey population towards the

carrying capacity K of the environment. The decay factor � y
1Cx

is the rate at which
the predators kill off prey; it increases linearly with the size of the predator population,
but it decays as x increases. The latter effect is reflected in the natural fact that there
are limits to how much each predator can eat each day. Turning to the second equation,
the predator population increases at the rate ı x

1Cx
, where ı is the predator’s benefit of

consumption. Note that the growth factor x
1Cx

is upper bounded as x increases, again
reflecting the natural effect that there are bounds to how much a predator can eat. Last,

 is the death rate of predators.

0 K�1
2

K

0

1

0 ˛�

0

Figure 9.5: Nullclines Nx (top)
and Ny (bottom) for the system
in Example 9.8.

The nullclines are

Nx D
˚
x D 0

	
[
˚
y D .1C x/

�
1 � x=K

�	
;

Ny D
˚
y D 0

	
[
˚
x D ˛�

	
where we have defined ˛� WD ˛

1�˛
and ˛ WD 


ı
< 1. The nullclines are depicted in

Figure 9.5. Taking the intersection of the nullclines, we find the following fixed points:

Extinction: .x; y/ D .0; 0/, exists for all parameter values

Prey-only: .x; y/ D .K; 0/, exists for all parameter values

Coexistence: .xc ; yc/ D
�
˛�; .1C ˛�/

�
1 � ˛�=K

��
, exists only when ˛� < K.

Recalling thatK represents the amount of food available to the prey population, we see
that a scarcity of food for the prey (specifically, K < ˛�) will eliminate coexistence as
a steady state, leading to the possible extinction of the predator.

Letting F denote the right-hand side of (9.4), we compute the Jacobian

rF.x; y/ D

 
1 � 2x

K
�

y

.1Cx/2
�

x
1Cx

ıy

.1Cx/2
ı
�
x
1Cx
� ˛

�! :
We use the linearized system to analyse the stability of each fixed point:

Extinction: We have

rF.0; 0/ D

�
1 0

0 �


�
;

so the extinction state is a saddle, with stable manifold parallel to r1 D
�
0

1

�
and unstable manifold parallel to r2 D

�
1

0

�
(see Section 6.4). These can be

interpreted as signifying the death of predators in the absence of prey, and the
increase of prey in the absence of predators, respectively.

Prey-only: We have

rF.K; 0/ D

 
�1 �

K
1CK

0 ı
�

K
1CK
� ˛

�! ;
whose eigenvalues are�1 and ı

�
K
1CK
�˛

�
. The second eigenvalue is negative if

and only if K
1CK

< ˛, which is equivalent to K < ˛�. Thus, the prey-only state
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is attracting when food is scarce (K < ˛�), and a saddle when food is abundant
(K > ˛�). We also note that when K > ˛�, the stable manifold W s.K; 0/ is

parallel to r1 D
�
1

0

�
, and the unstable manifold is tangent to r2 which, although

having a messy expression, points in a direction where y grows and x shrinks.

Coexistence: Recall that this state only exists when K > ˛�. We have

rF.xc ; yc/ D

 
˛
�
1 �

�
1C˛
1�˛

�
=K
�
�˛

1 � ˛ 1CK
K

0

!
:

The expression for the corresponding eigenvalues �1, �2 is big and ugly, but
since we are only interested in the stability of the fixed point, we proceed some-
what indirectly to determine the sign of Re.�/.

From linear algebra we know that �1�2 D det.rF / and �1 C �2 D tr.rF /, so

�1�2 D ˛
�
1 � ˛ 1CK

K

�
; �1 C �2 D ˛

�
1 �

�
1C˛
1�˛

�
=K
�
:

We have assumed that K > ˛�, which is equivalent to ˛ < K
1CK

, so �1�2 > 0.
Thus, either �1; �2 is a nonzero complex conjugate pair, or they are real, nonzero
numbers of the same sign. Next, denotingK� WD 1C˛

1�˛
and noting thatK� > ˛�,

we have the following possibilities for �1 C �2:

�1 C �2

8̂<̂
:
< 0 if K < K�

D 0 if K D K�

> 0 if K > K�:

Combined with the fact that �1�2 > 0, we deduce the following regimes:

� K < K�: Re.�1/;Re.�2/ < 0

� K D K�: Re.�1/ D Re.�2/ D 0 and Im.�1/; Im.�2/ ¤ 0

� K > K�: Re.�1/;Re.�2/ > 0.

We conclude that .xc ; yc/ is attracting when ˛� < K < K� and repelling when
K > K�.

0 ˛� K�

0

˛�

Figure 9.6: Bifurcation diagram
for the fixed points of the system
in Example 9.8. Horizontal axis
K, vertical axis x.

Figure 9.6 shows a bifurcation diagram of the fixed points of our system, where K
is the bifurcation parameter, and the fixed points are represented by their x coordinate.
From the diagram it is clear that the system has at least three bifurcations: The first
at K D 0 and x D 0, where the extinction and prey-only states merge; the second at
K D ˛� and x D ˛�, where the prey-only and coexistence states merge; and a third
one at K D K� and x D ˛� where the coexistence state loses its stability. As it turns
out, this bifurcation is a Hopf bifurcation, but it requires some work to prove this. We
proceed with an outline of a proof.

Consider the fixed point .K; 0/, and assume that K > K�, so that .xc ; yc/ is re-
pelling. The nullclines are depicted in Figure 9.7. It is straightforward to check that the
eigenvector r2 corresponding to the unstable subspace points in a direction above the
parabola defining the Nx nullcline. Thus, by the stable manifold theorem, there is an
orbit � emanating from .K; 0/, moving up aboveNx . Necessarily, � continues through
the vertical segment in Ny above .xc ; yc/, down through Nx again, right through Ny ,
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0 ˛� K�1
2

K�K
0

1

0 ˛� K�1
2

K�K
0

1

Figure 9.7: NullclinesNx (red) andNy (blue) whenK > K�. Fixed points are marked
in green.

and up through Nx again. The loop just described defines the boundary of a forward
invariant domain K containing .xc ; yc/. There is only one fixed point in K, and that
point is repelling, so .xc ; yc/ … !.�/. Hence, using the Poincaré–Bendixson theorem,
we can be sure that there is a periodic orbit somewhere inK. This proves the existence
of a periodic orbit near .xc ; yc/ when K > K�. The proof that there is no periodic
orbit when K < K� is more intricate, and is skipped here. 4

9.3 Problems
Problem 9.1. Use Theorem 9.2 to verify that the system in Example 9.1 undergoes a
saddle-node bifurcation at a� D 0 near u� D 0.

Problem 9.2. Check that the conditions of Theorem 9.2 are not satisfied at a� D 0 and
u� D 0 in the system in Example 9.1.

Problem 9.3. Consider the planar system in Example 9.7. We analysed the system
by converting to polar coordinates, but the same analysis can be done directly to the
system expressed in Cartesian coordinates, as follows.

(a) Show that the origin .x; y/ D .0; 0/ is a fixed point, and that there are no
other fixed points.

(b) Linearize the system around the origin and show that it is attracting for a < 0
and repelling for a > 0.

(c) When a > 0, show that there is a periodic orbit along the circle C with radius
p
a centred at the origin.

Hint: Show first that C is invariant.

(d) When a > 0, show that the periodic orbit is attracting.

Hint: Let L.x; y/ D x2 C y2. Show that PL > 0 when .x; y/ lies on the inside
of C and PL < 0 when it lies outside of C .
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Appendix A

Facts from linear algebra and
analysis

TODO: Definition of matrix norm. Basic properties. Gronwall’s inequality, both dif-
ferential and integral form.

We say that a function is C k (for some k ⩾ 1) if it is k times differentiable, and all
derivatives are continuous.

Definition A.1. If u 2 Rn and A � Rn, we define

dist.u; A/ WD inf
˚
ku � vk W v 2 A

	
: (A.1)

S � R2 is a Jordan curve if
it is closed and does not self-
intersect. More precisely, there
is a continuous, surjective func-
tion 
 W Œ0; 1� ! S so that

.0/ D 
.1/ and 
 is injective
on Œ0; 1/.

Theorem A.2 (The Jordan Curve Theorem). Let S be a Jordan curve. Then its com-
plement R2 n S consists of precisely two components U; V � R2, where U is bounded
and V is unbounded.

Theorem A.3 (The implicit function theorem). Let f 2 Rn � Rm ! Rn be a C k

function and let .x0; y0/ 2 Rn � Rm be a point where f .x0; y0/ D 0, and where the
matrixDxf .x0; y0/ is non-singular. Then there is a neighbourhood U of y0 and a C k

function gWU ! Rn such that g.y0/ D x0 and

f .g.y/; y/ D 0 8 y 2 U:
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Appendix B

Solutions to selected problems

Problem 4.2 We have

�.'.t Iu0// D f'.sI'.t Iu0// W s 2 Rg D f'.s C t Iu0/ W s 2 Rg
D f'.� Iu0/ W � 2 Rg D �.u0/

which is (i). For (ii), if v0 2 �.u0/ then v0 D '.t Iu0/ for some t 2 R, so the
claim follows from (i). For (iii), assume conversely that �.u0/ ¤ �.v0/ but there
exist u 2 �.u0/ \ �.v0/. We will show that v0 2 �.u0/, which by (ii) implies
that �.u0/ D �.v0/, which contradicts our assumption. Let t; s 2 R be such that
'.t Iu0/ D '.sI v0/ D u. Then

'.t � sIu0/ D '.�sI'.t Iu0// D '.�sIu/ D '.�sI'.sI v0// D '.�s C sI v0/ D v0

so v0 2 �.u0/. This concludes the proof.

Problem 5.2 Let A and B denote the left-hand and right-hand side sets, respectively.
If k 2 Z then '.kT Iu0/ D '.T I : : : '.T Iu0/ : : : / D u0, so kT 2 A, and therefore
A � B . Conversely, if t 2 A, let k 2 Z be the largest number such that kT ⩽ t , and
let s D t � kT 2 Œ0; T /. Then

'.sIu0/ D '.t � kT Iu0/ D '.�kT I'.t Iu0// D '.�kT Iu0/ D u0:

Since, by definition, T is the smallest positive number with the property '.T Iu0/ D
u0, and s < T , we must have s D 0. Then t D kT , so t 2 B . Hence, A � B .

Problem 5.3 Since �.u0/ is a closed curve, it is bounded, so �.u0/ � BM .0/ for
some M > 0. The orbit of v0 cannot cross the Jordan curve �.u0/, so �.v0/ also
lies in BM .0/. In particular, the orbit through v0 is bounded, so by Theorem 3.11, the
solution through v0 exists for all times.

Problem 6.1

(a) Eigenvalues are 1 and 6, so this is an unstable node. Solutions are of the form
u.t/ D ˛etr1Cˇe

6tr2 for ˛; ˇ 2 R. From this we see that the origin is repelling.

(b) Eigenvalues are 0 and 7, so this neither of the categories in (i). The solution
is of the form u.t/ D ˛r1 C ˇe

7tr2 for ˛; ˇ 2 R, so whenever ˇ ¤ 0, the
solution diverges. Therefore, u� is neither L-stable nor !-attracting. Backwards
in time the origin is L-stable, but not !-attracting, since initial data along r1 stay
constant.
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(c) Eigenvalues are �1 and 2, so this is a saddle. Solutions are of the form u.t/ D

˛e�tr1 C ˇe
2tr2. Since there are solutions starting close to the origin which

diverge when either t ! 1 or t ! �1, the origin is neither L-stable, !-
attracting or repelling.

(d) Eigenvalues are 1
2
˙ i 1

2

p
15, so this is an unstable focus. Since all solutions have

a coefficient et=2, the origin is repelling.

(e) Eigenvalues are �1
2
˙ i 1

2

p
15, so this is a stable focus. Since all solutions have

a coefficient e�t=2, the origin is asymptotically stable.

(f) Eigenvalues are ˙2i , so this is a centre. Since all solutions are linear com-
binations of the functions cos.2t/ and sin.2t/, the origin is L-stable, but not
!-attracting.

Problem 7.3 Any conserved variable G of (1) automatically satisfies (7.5). If u� is a
strict local minimum for G — that is, there is some ı > 0 such that G.u�/ < G.u/ for
all u 2 Bı.u�/ n fu�g— then it is necessarily a critical point for (1), since if '.t Iu�/
ever moves away from u� then G would have to increase. Condition (7.5) is therefore
satisfied e.g. in U WD Bı.u�/.

Problem 7.4 Denote A D
�
a b

c d

�
: To be a gradient system there would have to be

some G D G.x; y/ for which � @G
@x
.x; y/ D ax C by and � @G

@y
.x; y/ D cx C dy, so

G.x; y/ D �
a

2
x2 � bxy C f .y/; G.x; y/ D �cxy C

d

2
y2 C g.x/

for functions f; gWR! R. Matching terms yields f .y/ D �d
2
y2, g.x/ D �a

2
x2 and

b D c. Hence, the matrix A must be symmetric in order for the system to be a gradient
flow.

A similar computation shows that A must satisfy a D �d for the system to be
Hamiltonian. In order to be both, A would have to be of the form

A D

�
a b

�b �a

�
for a; b 2 R. This would yield H.x; y/ D axy C b

2
y2 C b

2
x2

Problem 7.5 TODO: Draw phase portraits

(a) Gradient flow with G.x; y/ D x2y2

(b) Hamiltonian system with H.x; y/ D .x � 2/2 C .y � 3/2

(c) Neither a gradient flow nor a Hamiltonian system

(d) Hamiltonian system with H.x; y/ D x2y2

(e) Gradient flow with G.x/ D x � x3

(f) Hamiltonian system with H.x; y/ D cos x siny.
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global, 13
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Lotka–Volterra model, 31
Lyapunov function, 32
Lyapunov stable

fixed point, 24
orbit, 41

manifold
stable, 23
unstable, 23

orbit, 15
backward, 15
forward, 15

orbitally !-attracting, 41
orbitally asymptotically attracting, 41
orbitally repelling, 41

period, 16
periodic orbit, 16, 41
predator–prey system, 31

repelling, 24, 33

sink, 24
stable

asymptotically, 24, 32
globally asymptotically, 24
Lyapunov, 32

stable subspace, 10
symplectic function, 37

trajectory, 15
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unstable, 24
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