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MOBIUS FUNCTIONS AND POSET POLYNOMIALS

Let P be a locally finite partially ordered set (poset).
The Mobius function of P is u : P x P — Z, defined recursively by

u(xy) =0 ifx Ly
Y. u(x,z) =6y, ifx<y

‘=>/1,( (K/x)\. ]
{’1 Y XL )<1 If P has a 0 and rank function p, its
characteristic polynomial is
2~ -) N
S xp(t) = Y up (0, x)t(P)=p)
xeP

£ it Xo(h) > EE-3t 43
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HYPERPLANES AND GEOMETRIC LATTICES

rk(I) := dim(a; | i € I)

= codim () (a;)* =: p(I)

i€l



CRYPTOMORPHISMS (M ATROIDS)

S = {atoms of L}, rk(I) = p(VI)

e

Functions rk : 25 — N

satisfying (R)

Chain-finite lattices

L satisfying (G1)

7

L={ACS|1k(AUs) >rk(A)foralls ¢ A}

Xee(8) ™ xe (1)

(S finite)




FINITE MATROIDS

Rank functions / intersection posets

... of central hyperplane arrangements

Representable m.

Orientable m.

...of pseudosphere arrangements

Number of “regions”: = xu(—1)

matroids / geometric lattices

(tropical linear spaces)

Infinite example: set of all subspaces of V.



AFFINE HYPERPLANE ARRANGEMENT (K = R)

1 1
[all‘er n3, “4] - |: 1 _1 é 0 :|/ (hlr bZr b3/ b4) - (OIOIO/ 1)
o e P():

c:




AFFINE HYPERPLANE ARRANGEMENTS (K = R)

[0(1,062,063,064] = |: 1 _1 é (1) :|/ (blr bZr b3/b4) - (0/0101 1)
> I such that N;c H; # @
A1 {2} {3} {4}
b {1,2},{1,3},{2,3},{1,4},{2,4}
{1,2, 3}
N
o These are the central sets.

The family of central sets K C 25 is an abstract simplicial complex.

(Tle:if e Kand ] C I, then | € K)

For I € K setrk(I) := dim(a; | i € I). This defines a semimatroid.

[Kawahara ‘04, Ardila ‘07]



CRYPTOMORPHISMS (SEMIMATROIDS)

K:={ICA(L)| VI +Q},

P

Functionsrk : K — IN

satisfying (R+)

k(1) = p(v1)

Chain-finite semilattices

L satisfying (G1) & (G2)

L={AeK|rk(A") >rk(A)forall A’ € K,A' D A}

xei(8) "2 x . (8)

(S finite)




ABSTRACT THEORY

Semimatroid (/C, rk) / intersection posets £

of affine hyperplane arrangements

of “pseudoarrangements” -

[Baum-Zhu ‘15, D.-Knauer DGC "24]

semimatroids / geometric semilattices




TORIC ARRANGEMENTS

[al,a2,a3] = [ ! b :|

1 -1 0




TORIC ARRANGEMENTS

1 11
1 -1 0

X x
8 @ P(A): i

The pair (rk, m) satisfies the axioms of an arithmetic matroid...

[a1,a5,a3] = { }; for I C [n]: m(I) := #Tor(Z%/ (a;);).

[d’Adderio-Moci ‘13, Brandén-Moci ‘14 |
... but it does not determine P(/): no cryptomorphism.
[Pagaria “17]
But P (/) determines ring H*(M(</),Q)
[Callegaro, D"Adderio, D., Migliorini, Pagaria]



EXAMPLE: COXETER ARRANGEMENTS

Let®: {ay,...,a,} C 7 roots of Coxeter system of type ABCD.

Let <7p be the associated Abelian arrangement.

G=R G=2¢!

/
/|

Linear, toric, elliptic:

— Explicit description of P (/) via “enriched partitions” [Bibby ‘18]
- P(«) is EL-shellable [D.-Girard-Paolini 19]



EXAMPLE: COXETER ARRANGEMENTS

Let®: {ay,...,a,} C 7 roots of Coxeter system of type ABCD.

Let <7p be the associated Abelian arrangement.

G=R G=2¢!

/
/|

Toric case: @ is “covered”

LZZ

by the associated affine

Weyl reflection arrangement.



TRANSLATIVE ACTIONS

Understand abelian arrangements as ”“quotients” of linear, periodic ones.

L% <=2

—) periodic (translations) Toric, Elliptic, etc.

Xagx +¢ \ If x and gx have upper bound, then x = gx.
/ \ |

. - P(t) ~ P /2%

For all Abelian arrangements:



GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:

L: a chain-finite geometric semilattice;

}oc:GC)[,

G: a group acting on £ by poset automorphisms.

Pu=L/G:={GCGx|xe L}; Gx < Gy iff x <gy forsomeg € G.
This is a poset (eg., since £ has a rank function)

Definition. A c.-f. poset P with 0 is geometric if it satisfies (G1), (G2).

Theorem. Let G O P be a translative action. If P is geometric, so is P/G.

Corollary. If the action « is translative, then P, is a geometric poset.

So P(</) is geometric for every abelian arrangement 7.



GROUP ACTIONS ON GEOMETRIC SEMILATTICES
From now:
L: a chain-finite geometric semilattice;

n:GOL

G: a group acting on £ by poset automorphisms.

Pu=L/G:={GCGx|xe L}; Gx < Gy iff x <gy forsomeg € G.

This is a poset with rank function p, and set of atoms E,. For I C E, let
rky (1) := maxpy(VI), my(I) :=#V L
Theorem. (Eq, rky) is a (semi)matroid if and only if « is translative.

Definition.

E mzx x _ 1 ko (E)—rkq (I) (]/ o 1)|I|7rka(1)

ICE,



GROUP ACTIONS ON SEMIMATROIDS

bet G bea gm“"/—\
A G-semimatroid A G-geometric semilattice
w: GO (K,1k) x:GOL
is an action of G is an action of G
on a semimatroid (/C, rk) on a geometric semilattice £
by automorphisms of /. by poset-automorphisms.

\/

CRYPTOMORPHISM! v

If a is translative: (1) Ty (x,y) has positive coefficients

@) xp,(t) = (—=1)*EI T, (1 —t,0) [D.-Riedel ‘18]



COMING SOON....

Consider an action &« : G O L and the associated

Z mzx x o 1 rky (E)—rke (1) (]/ 1

ICE

If « is translative then:

— Ta(x,y) satisfies deletion-contraction recursion
— Yet, m, is not necessarily arithmetic

— More structure of L/G

— Stanley-Reisner rings.

J11=rke(D)



