TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY

LECTURE 1: ARRANGEMENTS AND MATROIDS.

Emanuele Delucchi IDSIA USI/SUPSI Lugano, Switzerland.

ASGARD24 University of Oslo, may 27, 2024.

✓ - set of subsetsof ambient space X

 $M(\mathscr{A}):=X\setminus\cup\mathscr{A}$

Geometry Combinatorics

 $\mathcal{P}(\mathscr{A})$: poset of conn. comp. of intersections.

 $x \leq y$ if $x \supseteq y$

???

MÖBIUS FUNCTIONS AND POSET POLYNOMIALS

Let \mathcal{P} be a locally finite partially ordered set (poset).

The Möbius function of \mathcal{P} is $\mu : \mathcal{P} \times \mathcal{P} \to \mathbb{Z}$, defined recursively by

$$\begin{cases} \mu(x,y) = 0 & \text{if } x \leq y \\ \sum_{x \leq z \leq y} \mu(x,z) = \delta_{x,y} & \text{if } x \leq y \end{cases}$$

If \mathcal{P} has a $\widehat{0}$ and rank function ρ , its characteristic polynomial is

$$\chi_{\mathcal{P}}(t) := \sum_{x \in \mathcal{P}} \underline{\mu_{\mathcal{P}}(\widehat{0}, x)} t^{\rho(\mathcal{P}) - \rho(x)}$$
$$\chi_{\mathcal{P}}(t) = t^2 - \mathbf{3}t + \mathbf{3}$$

 \mathscr{A} - set of subsets of ambient space *X*

 $M(\mathscr{A}) := X \setminus \cup \mathscr{A}$

 $\mathcal{P}(\mathscr{A})$: poset of conn. comp. of intersections.

 $x \leq y$ if $x \supseteq y$

 $\chi_{\gamma}(1) = t^2 - 3t + 3$ $\chi_{\gamma}(0) = 3$

 $\chi_{p}(t) = t^{3} - 5t^{2} + 3t - 4$ $\chi_{p}(-1) = -18$

Hyperplanes and geometric lattices

$$a_{1} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, a_{2} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, a_{3} = \begin{pmatrix} 0\\1\\0 \end{pmatrix},$$
$$a_{4} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, a_{5} = \begin{pmatrix} 0\\-1\\2 \end{pmatrix}.$$

 $\mathsf{rk}(I) := \dim \langle a_i \mid i \in I \rangle$

$$= \operatorname{codim} \bigcap_{i \in I} (a_i)^{\perp} =: \rho(I)$$

CRYPTOMORPHISMS (MATROIDS)

(S finite)

FINITE MATROIDS

Infinite example: set of all subspaces of *V*.

Affine hyperplane arrangement ($\mathbb{K} = \mathbb{R}$)

$$[\alpha_1, \alpha_2, \alpha_3, \alpha_4] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{bmatrix}, \quad (b_1, b_2, b_3, b_4) = (0, 0, 0, 1)$$

Affine hyperplane arrangements ($\mathbb{K} = \mathbb{R}$)

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{bmatrix}, \quad (b_1, b_2, b_3, b_4) = (0, 0, 0, 1)$$

$$I \text{ such that } \bigcap_{i \in I} H_i \neq \emptyset$$

$$\{1, j \in I\}, j \in I\} = \{1, j \in I\}, j \in I\}$$

I such that $\cap_{i \in I} H_i \neq \emptyset$ {}, {1}, {2}, {3}, {4} {1,2}, {1,3}, {2,3}, {1,4}, {2,4} {1,2,3} These are the *central sets*.

The family of central sets $\mathcal{K} \subseteq 2^S$ is an abstract simplicial complex.

(I.e.: if $I \in \mathcal{K}$ and $J \subseteq I$, then $J \in \mathcal{K}$)

For $I \in \mathcal{K}$ set $\operatorname{rk}(I) := \dim \langle a_i \mid i \in I \rangle$. This defines a semimatroid.

[Kawahara '04, Ardila '07]

CRYPTOMORPHISMS (SEMIMATROIDS)

ABSTRACT THEORY

TORIC ARRANGEMENTS

$$[a_1, a_2, a_3] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

TORIC ARRANGEMENTS

The pair (rk, *m*) satisfies the axioms of an arithmetic matroid...

[d'Adderio-Moci '13, Brändén-Moci '14]

... but it does not determine $\mathcal{P}(\mathscr{A})$: no cryptomorphism.

[Pagaria '17]

But $\mathcal{P}(\mathscr{A})$ determines ring $H^*(M(\mathscr{A}), \mathbb{Q})$

[Callegaro, D'Adderio, D., Migliorini, Pagaria]

EXAMPLE: COXETER ARRANGEMENTS

Let $\Phi : \{a_1, \ldots, a_n\} \subseteq \mathbb{Z}^d$ roots of Coxeter system of type *ABCD*. Let \mathscr{A}_{Φ} be the associated Abelian arrangement.

Linear, toric, elliptic:

- Explicit description of $\mathcal{P}(\mathscr{A})$ via "enriched partitions" [Bibby '18]
- $\mathcal{P}(\mathscr{A})$ is EL-shellable [D.-Girard-Paolini '19]

EXAMPLE: COXETER ARRANGEMENTS

Let $\Phi : \{a_1, \ldots, a_n\} \subseteq \mathbb{Z}^d$ roots of Coxeter system of type *ABCD*. Let \mathscr{A}_{Φ} be the associated Abelian arrangement.

TRANSLATIVE ACTIONS

Understand abelian arrangements as "quotients" of linear, periodic ones.

Toric, Elliptic, etc.

If *x* and *gx* have upper bound, then x = gx.

For all Abelian arrangements:

 $\mathcal{P}(\mathscr{A}) \simeq \mathcal{P}(\mathscr{A}^{\restriction}) / \mathbb{Z}^d$

GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:

G: a group acting on \mathcal{L} by poset automorphisms. $\left\{ \alpha : G \circlearrowright \mathcal{L} \right\}$

 $\mathcal{P}_{\alpha} = \mathcal{L}/G := \{Gx \mid x \in \mathcal{L}\}; \quad Gx \leq Gy \text{ iff } x \leq gy \text{ for some } g \in G.$

This is a poset (eg., since \mathcal{L} has a rank function)

Definition. A c.-f. poset *P* with $\hat{0}$ is geometric if it satisfies (G1), (G2).

Theorem. Let $G \bigcirc P$ be a translative action. If P is geometric, so is P/G.

Corollary. If the action α is translative, then \mathcal{P}_{α} is a geometric poset. So $\mathcal{P}(\mathscr{A})$ is geometric for every abelian arrangement \mathscr{A} .

GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:

 $\mathcal{L}: a \text{ chain-finite geometric semilattice;} \\ G: a group acting on <math>\mathcal{L}$ by poset automorphisms. $\left\{ \alpha : G \circlearrowright \mathcal{L} \right\}$

$$\mathcal{P}_{\alpha} = \mathcal{L}/G := \{Gx \mid x \in \mathcal{L}\}; \qquad Gx \leq Gy \text{ iff } x \leq gy \text{ for some } g \in G.$$

This is a poset with rank function ρ_{α} and set of atoms E_{α} . For $I \subseteq E_{\alpha}$ let

$$\operatorname{rk}_{\alpha}(I) := \max \rho_{\alpha}(\vee I), \qquad m_{\alpha}(I) := \# \vee I.$$

Theorem. (E_{α} , rk_{α}) is a (semi)matroid if and only if α is translative.

Definition.

$$T_{\alpha}(x,y) := \sum_{I \subseteq E_{\alpha}} m_{\alpha}(I)(x-1)^{\mathrm{rk}_{\alpha}(E) - \mathrm{rk}_{\alpha}(I)}(y-1)^{|I| - \mathrm{rk}_{\alpha}(I)}$$

GROUP ACTIONS ON SEMIMATROIDS

If α is translative: (1) $T_{\alpha}(x, y)$ has positive coefficients

(2) $\chi_{\mathcal{P}_{\alpha}}(t) = (-1)^{\operatorname{rk}(E_{\alpha})} T_{\alpha}(1-t,0)$ [D.-Riedel '18]

COMING SOON....

Consider an action α : $G \circlearrowright \mathcal{L}$ and the associated

$$T_{\alpha}(x,y) = \sum_{I \subseteq E} m_{\alpha}(I)(x-1)^{\mathrm{rk}_{\alpha}(E) - \mathrm{rk}_{\alpha}(I)}(y-1)^{|I| - \mathrm{rk}_{\alpha}(I)}$$

If *α* **is translative** then:

- $-T_{\alpha}(x, y)$ satisfies deletion-contraction recursion
- Yet, m_{α} is not necessarily arithmetic
- More structure of \mathcal{L}/G
- Stanley-Reisner rings.