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• •A - set of subsets
of ambient space X

M(A ):= X \ [A

Geometry

Combinatorics

P(A ): poset of
conn. comp. of

intersections.

x  y if x ◆ y
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MÖBIUS FUNCTIONS AND POSET POLYNOMIALS

Let P be a locally finite partially ordered set (poset).

The Möbius function of P is µ : P ⇥ P ! Z, defined recursively by
8
><

>:

µ(x, y) = 0 if x 6 y

Â
xzy

µ(x, z) = dx,y if x  y

If P has a b0 and rank function r, its

characteristic polynomial is

cP (t) := Â
x2P

µP (b0, x)t
r(P)�r(x)

-
=>u(x,x)= 1

f
2 -2

2 1

(2-1 -I - I -

was

f2-o M(5 ,5) = 1 Xp(t) = +2 - 3t + 3



• •A - set of subsets
of ambient space X

M(A ):= X \ [A

Geometry
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intersections.
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HYPERPLANES AND GEOMETRIC LATTICES
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CRYPTOMORPHISMS (MATROIDS)

Functions rk : 2S ! N

satisfying (R)

Chain-finite lattices

L satisfying (G1)

S = {atoms of L}, rk(I) = r(_I)

L = {A ✓ S | rk(A [ s) > rk(A) for all s 62 A}

crk(t)
thm.
= cL(t)

(S finite)



FINITE MATROIDS

Rank functions / intersection posets

... of central hyperplane arrangements

Representable m.

Orientable m.

...of pseudosphere arrangements

Number of ”regions”: = crk(�1)

matroids / geometric lattices

(tropical linear spaces)

Infinite example: set of all subspaces of V.



AFFINE HYPERPLANE ARRANGEMENT (K = R)

[a1, a2, a3, a4] =

"
1 1 1 1
1 �1 0 0

#
, (b1, b2, b3, b4) = (0, 0, 0, 1)

A : P(A ):

V

H1 H2 H3 H4 H5

cA : P(cA ):

V

H1 H2 H3 H4 H5



AFFINE HYPERPLANE ARRANGEMENTS (K = R)

[a1, a2, a3, a4] =

"
1 1 1 1
1 �1 0 0

#
, (b1, b2, b3, b4) = (0, 0, 0, 1)

A :

I such that \i2I Hi 6= ∆

{}, {1}, {2}, {3}, {4}

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}

{1, 2, 3}

These are the central sets.

The family of central sets K ✓ 2S is an abstract simplicial complex.

(I.e.: if I 2 K and J ✓ I, then J 2 K)

For I 2 K set rk(I) := dimhai | i 2 Ii. This defines a semimatroid.

[Kawahara ‘04, Ardila ‘07]



CRYPTOMORPHISMS (SEMIMATROIDS)

Functions rk : K ! N

satisfying (R+)

Chain-finite semilattices

L satisfying (G1) & (G2)

K := {I ✓ A(L) | _I 6= ∆}, rk(I) = r(_I)

L = {A 2 K | rk(A
0) > rk(A) for all A

0 2 K, A
0 ) A}

crk(t)
thm.
= cL(t)

(S finite)



ABSTRACT THEORY

Semimatroid (K, rk) / intersection posets L

of affine hyperplane arrangements

of “pseudoarrangements”

[Baum-Zhu ‘15, D.-Knauer DGC ’24]

semimatroids / geometric semilattices



TORIC ARRANGEMENTS

[a1, a2, a3] =

"
1 1 1
1 �1 0

#

; for I ✓ [n]: m(I) := #Tor(Zd/haiiI).

A : P(A ):

The pair (rk, m) satisfies the axioms of an arithmetic matroid...

[d’Adderio-Moci ‘13, Brändén-Moci ‘14 ]

... but it does not determine P(A ): no cryptomorphism.

[Pagaria ‘17]

But P(A ) determines ring H
⇤(M(A ), Q)

[Callegaro, D’Adderio, D., Migliorini, Pagaria]
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TORIC ARRANGEMENTS

[a1, a2, a3] =

"
1 1 1
1 �1 0

#
; for I ✓ [n]: m(I) := #Tor(Zd/haiiI).

A : P(A ):

The pair (rk, m) satisfies the axioms of an arithmetic matroid...

[d’Adderio-Moci ‘13, Brändén-Moci ‘14 ]

... but it does not determine P(A ): no cryptomorphism.

[Pagaria ‘17]

But P(A ) determines ring H
⇤(M(A ), Q)

[Callegaro, D’Adderio, D., Migliorini, Pagaria]



EXAMPLE: COXETER ARRANGEMENTS

Let F : {a1, . . . , an} ✓ Zd roots of Coxeter system of type ABCD.

Let AF be the associated Abelian arrangement.

G = R

COXETER GROUPS

OI - a root system of type ABCD
. Ee Kd weight lattice

.

to - associated abelian arrangement .

G -

- IR .
G -

- S
'

-

Linear
,

toric
, elliptic .

① Explicit description of Cto via
"

enriched partitions
"

I Bibby )

② Eto is EL - shell able LD
.

 
- Girard - Paolini )
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② Eto is EL - shell able LD
.

 
- Girard - Paolini )

Linear, toric, elliptic:

– Explicit description of P(A ) via ”enriched partitions” [Bibby ‘18]

– P(A ) is EL-shellable [D.-Girard-Paolini ‘19]
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COXETER GROUPS

OI - a root system of type ABCD
. Is Kd weight lattice

.

Aq - associated abelian arrangement .

G -

- IR .
G -

- S
'

4€
-

22

Toric case : AOI
"

covered
"

by the associated affine

Weyl reflection arrangement .

/Z2

Toric case: AF is ”covered”

by the associated affine

Weyl reflection arrangement.



TRANSLATIVE ACTIONS

Understand abelian arrangements as ”quotients” of linear, periodic ones.

A �:

MOTIVATION

Understand abelian arrangements as

"

quotients
"

of linear
, periodic ones

.

( Z ' ) periodic ( translations ) toric , Elliptic ,&c .

Poset of  intersections :
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If x and gx have upper bound, then x = gx.

For all Abelian arrangements:

P(A ) ' P(A �)/Zd



GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:
L: a chain-finite geometric semilattice;

G: a group acting on L by poset automorphisms.

)
a : G � L

Pa = L/G := {Gx | x 2 L}; Gx  Gy iff x  gy for some g 2 G.

This is a poset (eg., since L has a rank function)

Definition. A c.-f. poset P with 0̂ is geometric if it satisfies (G1), (G2).

Theorem. Let G � P be a translative action. If P is geometric, so is P/G.

Corollary. If the action a is translative, then Pa is a geometric poset.

So P(A ) is geometric for every abelian arrangement A .



GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:
L: a chain-finite geometric semilattice;

G: a group acting on L by poset automorphisms.

)
a : G � L

Pa = L/G := {Gx | x 2 L}; Gx  Gy iff x  gy for some g 2 G.

This is a poset with rank function ra and set of atoms Ea. For I ✓ Ea let

rka(I) := max ra(_I), ma(I) := # _ I.

Theorem. (Ea, rka) is a (semi)matroid if and only if a is translative.

Definition.

Ta(x, y) := Â
I✓Ea

ma(I)(x � 1)rka(E)�rka(I)(y � 1)|I|�rka(I)



GROUP ACTIONS ON SEMIMATROIDS

Let G be a group

A G-semimatroid

a : G � (K, rk)

is an action of G

on a semimatroid (K, rk)

by automorphisms of K.

A G-geometric semilattice

a : G � L

is an action of G

on a geometric semilattice L

by poset-automorphisms.

CRYPTOMORPHISM! X

If a is translative: (1) Ta(x, y) has positive coefficients

(2) cPa(t) = (�1)rk(Ea)
Ta(1 � t, 0) [D.-Riedel ‘18]



COMING SOON....

Consider an action a : G � L and the associated

Ta(x, y) = Â
I✓E

ma(I)(x � 1)rka(E)�rka(I)(y � 1)|I|�rka(I)

If a is translative then:

– Ta(x, y) satisfies deletion-contraction recursion

– Yet, ma is not necessarily arithmetic

– More structure of L/G

– Stanley-Reisner rings.


