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GROUP ACTIONS ON SEMIMATROIDS
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Figure 2. Arrangements of pseudolines corresponding to the dele-
tion S/{ei}i (l.h.s.), and the contraction S/{e0} (r.h.s.), where S is
the semimatroid of Example 1.8. Again, we show only local pieces
of these infinite arrangements, and the pictures must be thought
of as being repeated in order to fill the plane (resp. the line).

Proof. The proof of [1, Proposition 7.5 and 7.7] adapts straightforwardly. �

Definition 1.16. A loop of a locally ranked triple S = (S, C, rk) is any s 2 S with
rk(s) = 0. An isthmus of S is any s 2 S such that, for every X 2 C, X [ s 2 C and
rk(X [ s) = rk(X) + 1.

To every locally ranked triple (S, C, rk) with a finite ground set S we can associate
the following polynomial.

TS(x, y) :=
�

X�C
(x � 1)rk(S)�rk(X)(y � 1)|X|�rk(X)

Remark 1.17. If S is a finite semimatroid, this is exactly the Tutte polynomial of
S introduced and studied by Ardila [1]. In particular, if S is a matroid, this is the
associated Tutte polynomial.

One of the first and most famous results about Tutte polynomials of matroids is
the following “activities decomposition theorem” first proved by Crapo.

Proposition 1.18 ([7, Theorem 1]). Let S be a matroid with set of bases B and
fix a total ordering < on S. Then,

TS(x, y) =
�

B�B
x|I(B)|y|E(B)|,

where

I(B) is the set of internally active elements of B, i.e., the set of all b 2 B which
are <-minimal in some dependent subset of S \ (B \ b).

E(B) is the set of externally active elements of B, i.e., the set of all e 2 S \ B
that are <-minimal in some dependent subset of B [ e.

Remark 1.19. One of the major results about arithmetic Tutte polynomials is an
analogon to Crapo’s theorem for realizable arithmetic matroids (see Remark 1.24).
One of our results is the generalization of this theorem to all centered translative
G-semimatroids (Theorem H).

S := {ai, bj, ck, dl}i,j,k,l2Z, L := poset of intersections



EXAMPLE (G = Z2)
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DELETION / CONTRACTION
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C ={;} [ {ai}i [ {bi}i [ {ci}i [ {di}i [ {ei}i [ {ai, bj}i,j [ {ai, cj}i,j

[ {ai, dj}i,j [ {ai, ej}i,j [ {bi, cj}i,j [ {bi, dj}i,j [ {bi, ej}i,j [ {ci, dj}i,j

[ {di, ej}i,j [ {a2i+k, b2i�k, ck}i,k [ {a2i+k, b2i�k, dk}i,k [ {ak, bk�2i�1, ei}i,k

[ {a2i+k, ck, di}i,k [ {b2i�k, ck, di}i,k [ {a2i+k, b2i�k, ck, di}i,k,

rk(X) = codim(\X) for all X 2 C

and one easily checks that this defines a finitary semimatroid.
For readability’s sake, here and in all following examples we omit to specify that

all indices run over Z and that the union is taken over sets of sets, thus using the
shorthand notation {ai, bj}i,j for {{ai, bj} | i, j 2 Z}.

Notice that this triple cannot be obtained from an arrangement of straight lines:
such an arrangement is called non-stretchable. �
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Figure 1. A non-stretchable pseudoline arrangement (it should
be thought of as repeating and tiling the plane).

We now state some basic facts and definitions about semimatroids for later ref-
erence. Except where otherwise specified, the proofs are parallel to those given in
[2, Section 2].

Definition 1.8. Let S = (S, C, rk) be a finitary semimatroid and X 2 C. The
closure of X in C is

cl(X) := {x 2 S | X [ x 2 C, rk(X [ x) = rk(X)}.

A flat of a finitary semimatroid S is a set X 2 C such that cl(X) = X. The set
of flats of S ordered by containment forms the poset of flats of S, which we denote
by L(S).

Remark 1.9. For all X 2 C we have cl(X) = max{Y ◆ X | X 2 C, rk(X) = rk(Y )},
i.e., the closure of X is the maximal central set containing X and having same rank
as X. In particular, we have a monotone function cl : C ! C.

Remark 1.10. A poset is the poset of flats of a matroid if and only if it is a geometric
lattice (see Definition 5.1). In Section 5 we will prove a similar correspondence
between finitary semimatroids and geometric semilattices (Theorem E).

a:

e := Ge0; stab(e) := stab(ei)
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Figure 2. Arrangements of pseudolines corresponding to the dele-
tion S \ {ei}i (l.h.s.), and the contraction S/{e0} (r.h.s.), where
S is the semimatroid of Example 1.7. Again, we show only lo-
cal pieces of these infinite arrangements, and the pictures must be
thought of as being repeated in order to fill the plane (resp. the
line).

Proposition 1.17 ([8, Theorem 1]). Let S be a matroid with set of bases B and
fix a total ordering < on S. Then,

TS(x, y) =
�

B�B
x|I(B)|y|E(B)|,

where, for every B 2 B,

I(B) is the set of internally active elements of B, i.e., the set of all b 2 B which
are <-minimal in some codependent subset of S \ (B \ b).

E(B) is the set of externally active elements of B, i.e., the set of all e 2 S \ B
that are <-minimal in some dependent subset of B [ e.

Remark 1.18. Arithmetic Tutte polynomials satisfy an analogue to Crapo’s theorem
for realizable arithmetic matroids (see Remark 1.25). One of our results is the
generalization of this theorem to all centered translative G-semimatroids (Theorem
H).

1.2. Arithmetic (semi)matroids and their Tutte polynomials. We extend
the definition of arithmetic matroids given in [5] and [9] to include the case where
the underlying structure is a finite semimatroid.

Definition 1.19 (Compare Section 2 of [5]). Let S = (S, C, rk) be a locally ranked
triple. A molecule of S is any triple (R, F, T ) of disjoint sets with R [ F [ T 2 C
and such that, for every A with R ✓ A ✓ R [ F [ T ,

rk(A) = rk(R) + |A \ F |.

Remark 1.20. Once a total ordering of the ground set S is fixed, the notion of
basis activities for matroids briefly recapped in Proposition 1.17 above allows us to
associate to every basis B a molecule (B \ I(B), I(B), E(B)).

Definition 1.21 (Extending Moci and Brändén [5]). Let S = (S, C, rk) be a finite
locally ranked triple and m : C ! R any function. If (R, F, T ) is a molecule, define

�(R, R [ F [ T ) := (�1)|T |
�

R�A�R�F�T

(�1)|R�F�T |�|A|m(A).
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cal pieces of these infinite arrangements, and the pictures must be
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Proposition 1.17 ([8, Theorem 1]). Let S be a matroid with set of bases B and
fix a total ordering < on S. Then,

TS(x, y) =
�

B�B
x|I(B)|y|E(B)|,

where, for every B 2 B,

I(B) is the set of internally active elements of B, i.e., the set of all b 2 B which
are <-minimal in some codependent subset of S \ (B \ b).

E(B) is the set of externally active elements of B, i.e., the set of all e 2 S \ B
that are <-minimal in some dependent subset of B [ e.

Remark 1.18. Arithmetic Tutte polynomials satisfy an analogue to Crapo’s theorem
for realizable arithmetic matroids (see Remark 1.25). One of our results is the
generalization of this theorem to all centered translative G-semimatroids (Theorem
H).

1.2. Arithmetic (semi)matroids and their Tutte polynomials. We extend
the definition of arithmetic matroids given in [5] and [9] to include the case where
the underlying structure is a finite semimatroid.

Definition 1.19 (Compare Section 2 of [5]). Let S = (S, C, rk) be a locally ranked
triple. A molecule of S is any triple (R, F, T ) of disjoint sets with R [ F [ T 2 C
and such that, for every A with R ✓ A ✓ R [ F [ T ,

rk(A) = rk(R) + |A \ F |.

Remark 1.20. Once a total ordering of the ground set S is fixed, the notion of
basis activities for matroids briefly recapped in Proposition 1.17 above allows us to
associate to every basis B a molecule (B \ I(B), I(B), E(B)).

Definition 1.21 (Extending Moci and Brändén [5]). Let S = (S, C, rk) be a finite
locally ranked triple and m : C ! R any function. If (R, F, T ) is a molecule, define

�(R, R [ F [ T ) := (�1)|T |
�

R�A�R�F�T

(�1)|R�F�T |�|A|m(A).

a/e: stab(e) �
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TRANSLATIVE ACTIONS
[D.-Riedel ‘18]

Recall: if a is translative, then (K, rka) is a semimatroid on Ea.

A loop is any e 2 Ea such that rka(e) = 0;

A coloop is any e 2 Ea such that rka(I \ {e}) < rka(I) for all I 3 e.

Theorem. If a is translative, for all e 2 Ea we have the recursion

Ta(x, y) = (x � 1)Ta\e(x, y) + (y � 1)Ta/e(x, y),

according to whether e is a coloop or a loop, where

a \ e := G � (K, rk) \ e, a/e := stab(e) � (K, rk)/e.



SIMPLICIAL COMPLEXES AND THEIR FACE RINGS

A simplicial complex D on a finite vertex set V has a poset of faces

SIMPLICIAL COMPLEXES
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If |V| < •, the face ring (”Stanley-Reisner Ring”) of D (over a field K) is

R(D) := K[xv | v 2 V]

�
0

B@ ’
v2t

xv

����� t 62 D

1

CA



ARRANGEMENTS AND MATROIDS

Let A be a linear arrangement; IA complex of ”independent sets”
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( This is really about the associated MATROID and its polynomials )

Algebraic interpretation of some number sequences / polynomials. E.g.,

Hilb(R(IA ), t) =
t
d
T(1/t, 1)

(1 � t)d

(This really is a ”matroid” statement)



GROUP ACTIONS ON SIMPLICIAL POSETS
[D.-d’Alı̀ ‘21]

Call a chain-finite poset P simplicial if (1) P is bounded below

(2) Px is Boolean for all x.

Examples. The face poset PD of a simplicial complex D.

The independence poset I(L) of a geometric semilattice.

Theorem. Let G act by automorphisms on a simplicial poset P. Then

P/G is a simplicial poset , the action is translative.

Corollary. If a : G � L translative, then Ia is a simplicial poset.

For toric arrangements see also [Martino/Lenz]



STANLEY-REISNER RINGS
[...à la Yuzvinsky]

Let P be a simplicial poset. For ∆ 6= M ✓ max P set M
\ :=

T
m2M Pm.

M
\ is the poset of faces of a simplicial complex DM

X(P) := {DM | ∆ 6= M ✓ P}, DM1  DM2 if M1 ◆ M2

Y(P): sheaf on X(P). Y(P)(DM) := R(DM), natural projections.

Definition. The Stanley-Reisner ring of P is the ring of global sections

R(P) := GY(P)

Theorem If |P| < •, then R(P) is Stanley’s ”face ring” of P.

(In particular, R(PD) ' R(D) for every finite simplicial complex D.)

[D.-D’Alı̀ ‘21, See also: Lü-Panov ‘11, Brun-Römer ‘08]



RINGS OF INVARIANTS

Let P be a simplicial poset.

Every action G � P induces an action G � R(P).

Theorem. If the action G � P is translative, then

R(P)G ' R(P/G)

[Garsia-Stanton ‘86: finite Coxeter complexes]
[Reiner ‘92: finite balanced complexes]

viny of -

invariants
S

-

& Sinite s . c .

G &A simplicial action induces GPo

· GRPp istranslative <G preserves proper coloring ofA

E> "Bredon's condition (A) "

· Go A(PG) ways translative



THE COHEN-MACAULAY PROPERTY

A f.d. simplicial complex D is Cohen-Macaulay if, for every s 2 D,

the link of s in D, lk(s), is connected through codimension 1.

A f.l. (simplicial) poset P is Cohen-Macaulay if the simplicial complex D(P)

of all chains in P is Cohen-Macaulay.

Note When saying ”Cohen-Macaulay in characteristic k” replace by:

eHi(lkD(s), K) = 0 for all i < dim(lkD(s)) and char(L) = k.

Fi((
,x)

F↑2

k



BACK TO GEOMETRIC SEMILATTICES

Let L be a geometric semilattice, a : G � L a translative action.

Observation. Hilb(R(Ia)
G, t) =

t
d
Ta( 1

t
, 1)

(1 � t)d�1 .

Definition an action a : G � L is refined if it is translative, G is free abelian,

and there is k 2 N such that, for every x 2 L:

stab(x) is a direct summand of G, free of rank k · (r(L) � r(x))

Theorem. If a is refined, then Pa and Ia are Cohen-Macaulay in character-

istic 0 and in every characteristic not dividing an explicitly computable da.

Note. Top Betti numbers: Ta(0, 0) and �Ta(0, 1).



”EXPLICITLY COMPUTABLE”...

Let a : G � L be a refined action on a geometric semilattice with associated

underlying matroid (Ea, rka).

For every I ✓ Ea let

G
(I) := G/ stabG(I).

Then:

da := lcm{da(B) | B basis of (Ea, rka)},

where, for every basis B,

da(B) :=

"
G

(B) :
M

b2B

stab
G(I) (B \ b)

#


