TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY Lecture 2: Polynomials and Stanley-Reisner rings

Emanuele Delucchi IDSIA USI/SUPSI Lugano, Switzerland.

ASGARD24 University of Oslo, may 28, 2024.

GROUP ACTIONS ON SEMIMATROIDS

EXAMPLE ($G = \mathbb{Z}^2$)

DELETION / CONTRACTION

TRANSLATIVE ACTIONS

[D.-Riedel '18]

Recall: if α is translative, then $(\underline{\mathcal{K}}, \mathbf{rk}_{\alpha})$ is a semimatroid on E_{α} .

A loop is any $e \in E_{\alpha}$ such that $\operatorname{rk}_{\alpha}(e) = 0$; A coloop is any $e \in E_{\alpha}$ such that $\operatorname{rk}_{\alpha}(I \setminus \{e\}) < \operatorname{rk}_{\alpha}(I)$ for all $I \ni e$.

Theorem. If α is translative, for all $e \in E_{\alpha}$ we have the recursion $T_{\alpha}(x,y) = (x-1)T_{\alpha \setminus e}(x,y) + (y-1)T_{\alpha / e}(x,y),$

according to whether *e* is a coloop or a loop, where

$$\alpha \setminus e := G \circlearrowright (\mathcal{K}, \mathrm{rk}) \setminus e, \quad \alpha/e := \mathrm{stab}(e) \circlearrowright (\mathcal{K}, \mathrm{rk})/e.$$

SIMPLICIAL COMPLEXES AND THEIR FACE RINGS

A simplicial complex Δ on a finite vertex set *V* has a poset of faces

If $|V| < \infty$, the face ring ("Stanley-Reisner Ring") of Δ (over a field \mathbb{K}) is

$$\mathcal{R}(\Delta) := \mathbb{K}[x_v \mid v \in V] \middle/ \left(\prod_{v \in \tau} x_v \middle| \tau \notin \Delta \right)$$

ARRANGEMENTS AND MATROIDS

Let \mathscr{A} be a linear arrangement; $\mathcal{I}_{\mathscr{A}}$ complex of "independent sets"

Algebraic interpretation of some number sequences / polynomials. E.g.,

$$\operatorname{Hilb}(\mathcal{R}(\mathcal{I}_{\mathscr{A}}),t) = \frac{t^{d}T(1/t,1)}{(1-t)^{d}}$$

(This really is a "matroid" statement)

GROUP ACTIONS ON SIMPLICIAL POSETS

[D.-d'Alì '21]

Call a chain-finite poset *P* simplicial if (1) *P* is bounded below (2) $P_{\leq x}$ is Boolean for all *x*.

Examples. The face poset P_{Δ} of a simplicial complex Δ . The independence poset $\mathcal{I}(\mathcal{L})$ of a geometric semilattice.

Theorem. Let *G* act by automorphisms on a simplicial poset *P*. Then

P/G is a simplicial poset \Leftrightarrow the action is translative.

Corollary. If α : $G \circlearrowright \mathcal{L}$ translative, then \mathcal{I}_{α} is a simplicial poset. For toric arrangements see also [Martino/Lenz]

STANLEY-REISNER RINGS

[...à la Yuzvinsky]

Let *P* be a simplicial poset. For $\emptyset \neq M \subseteq \max P$ set $M^{\cap} := \bigcap_{m \in M} P_{\leq m}$.

 M^{\cap} is the poset of faces of a simplicial complex Δ_M

 $X(P) := \{\Delta_M \mid \emptyset \neq M \subseteq P\}, \quad \Delta_{M_1} \leq \Delta_{M_2} \text{ if } M_1 \supseteq M_2$

Y(P): sheaf on X(P). $Y(P)(\Delta_M) := \mathcal{R}(\Delta_M)$, natural projections.

Definition. The Stanley-Reisner ring of *P* is the ring of global sections

 $\mathcal{R}(P) := \Gamma Y(P)$

Theorem If $|P| < \infty$, then $\mathcal{R}(P)$ is Stanley's "face ring" of *P*.

(In particular, $\mathcal{R}(P_{\Delta}) \simeq \mathcal{R}(\Delta)$ for every finite simplicial complex Δ .)

[D.-D'Alì '21, See also: Lü-Panov '11, Brun-Römer '08]

RINGS OF INVARIANTS

Let *P* be a simplicial poset.

Every action $G \circlearrowright P$ induces an action $G \circlearrowright \mathcal{R}(P)$.

Theorem. If the action $G \oslash P$ is translative, then $V(W) \overset{G}{\longrightarrow} \mathcal{R}(P)^{G} \simeq \mathcal{R}(P/G)$ [Garsia-Stanton '86: finite Coxeter complexes] [Reiner '92: finite balanced complexes] Δ Simile s.c. $G \overset{G}{\longrightarrow} \Delta$ simplicial action induces $G \overset{G}{\longrightarrow} \mathcal{P}_{\Delta}$ $\bullet G \overset{G}{\longrightarrow} \mathcal{P}_{\Delta}$ is translative $\langle = \rangle$ G preserves proper coloning of Δ $\langle \Longrightarrow \rangle$ 'Bredow's condition (A)'

· G + A(Ps) Always translation

THE COHEN-MACAULAY PROPERTY

A f.d. simplicial complex Δ is Cohen-Macaulay if, for every $\sigma \in \Delta$, the link of σ in Δ , lk(σ), is connected through codimension 1. \leftarrow H($lu \otimes Z$)

A f.l. (simplicial) poset *P* is Cohen-Macaulay if the simplicial complex $\Delta(P)$ of all chains in *P* is Cohen-Macaulay.

Note When saying "Cohen-Macaulay in characteristic κ " replace \longrightarrow by: $\widetilde{H}_i(\mathrm{lk}_\Delta(\sigma), \mathbb{K}) = 0$ for all $i < \dim(\mathrm{lk}_\Delta(\sigma))$ and $\operatorname{char}(\mathbb{K}) = \kappa$.

BACK TO GEOMETRIC SEMILATTICES

Let \mathcal{L} be a geometric semilattice, $\alpha : G \circlearrowright \mathcal{L}$ a translative action.

Observation. Hilb
$$(\mathcal{R}(\mathcal{I}_{\alpha})^{G}, t) = \frac{t^{d}T_{\alpha}(\frac{1}{t}, 1)}{(1-t)^{d-1}}.$$

Definition an action α : $G \circlearrowright \mathcal{L}$ is refined if it is translative, G is free abelian, and there is $k \in \mathbb{N}$ such that, for every $x \in \mathcal{L}$:

 $\operatorname{stab}(x)$ is a direct summand of *G*, free of rank $k \cdot (\rho(\mathcal{L}) - \rho(x))$

Theorem. If *α* is refined, then \mathcal{P}_{α} and \mathcal{I}_{α} are Cohen-Macaulay in characteristic 0 and in every characteristic not dividing an explicitly computable δ_{α} .

Note. Top Betti numbers: $T_{\alpha}(0,0)$ and $-T_{\alpha}(0,1)$.

"EXPLICITLY COMPUTABLE"...

Let α : $G \circlearrowright \mathcal{L}$ be a refined action on a geometric semilattice with associated underlying matroid (E_{α} , \mathbf{rk}_{α}).

For every $I \subseteq E_{\alpha}$ let

 $G^{(I)} := G/\operatorname{stab}_G(I).$

Then:

$$\delta_{\alpha} := \operatorname{lcm} \{ \delta_{\alpha}(B) \mid B \text{ basis of } (E_{\alpha}, \operatorname{rk}_{\alpha}) \},\$$

where, for every basis *B*,

$$\delta_{lpha}(B):=\left[G^{(B)}:igoplus_{b\in B}\mathrm{stab}_{G^{(I)}}(B\setminus b)
ight]$$