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FIBRATIONS OF HYPERPLANE ARRANGEMENTS

[Falk-Randell ‘85; Terao ‘86]
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THE K(p, 1)-PROBLEM

An arrangement A is called K(p, 1) if pi(M(A )) is trivial for i > 1.

K(p, 1) problem: does P(A ) know whether A is K(p, 1)?

For hyperplane arrangements this is a classical and storied problem.

E.g., finite real [Deligne ‘72] and complex [Bessis ‘12] reflection arrangements,

as well as fiber-tipe arrangements [Falk-Randell ‘85] are K(p, 1).

The following classes of non-linear arrangements are K(p, 1).

Toric Coxeter arrangements (via [Paolini-Salvetti ‘21] )

Large type toric arrangements (via [Hendriks ‘85])

Fiber-type toric and elliptic arrangements [Bibby-D. ‘20]



FIBER-TYPE ABELIAN ARRANGEMENTS

Let A be an abelian arrangement in Hom(G, G) ' Gd.

FIBER-TYPE ABELIAN ARRANGEMENTS (Bibby-D.2022]

Let Abe an abelian arrangementin Hom(5,G) =G"

A is fiber-type if d=1, or there exists a

rank-one, split-directsummand r'er and an

abelian
arrangementB

in Hour (Pi, G) =G4,
such that:

·
B is fiber-type

·
The natural projection G-44 restricts to

⑧

a fibration M(A) -> MIB) with fiber

homeomorphic to ⑰ I points]
⑧

A is fiber-type if d = 1, or if there exists a rank-

one, split-direct summand N ✓ Zd and an ar-

rangement B in Hom(G/N, G) ' Gd�1, such

that:

• B is fiber-type

• The natural projection Gd ! Gd�1

restricts to a fibration M(A ) ! M(B) with

fiber homeomorphic to G \ {points}.

Note. Fiber-type linear, toric, elliptic arrangements are K(p, 1).





SUPERSOLVABLE POSETS

Let P be a locally geometric poset.

An M-ideal of P is a pure,

join-closed order ideal Q ✓ P s.t.

• For z 2 Q any atom a 62 Q: z _ a 6= ∆.

• For every x 2 max P there is y 2 max Q s.t. y is modular in Px

Definition. P is supersolvable if there is a sequence of M-ideals

{0̂} = Q0 ✓ Q1 ✓ . . . ✓ Qk = P with Qi of height h(Qi) = i.
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SUPERSOLVABLE POSETS

Let P be a locally geometric poset.

An M-ideal of P is a pure,

join-closed order ideal Q ✓ P s.t.

• For z 2 Q any atom a 62 Q: z _ a 6= ∆.

• For every x 2 max P there is y 2 max Q s.t. y is modular in Px

Definition. P is supersolvable if there is a sequence of M-ideals

{0̂} = Q0 ✓ Q1 ✓ . . . ✓ Qk = P with Qi of height h(Qi) = i.
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FACTORIZATIONS [Bibby-D. ‘21]

Let P be a finite locally geometric poset.

Lemma. If Q is a TM-ideal of P with h(Q) = h(P) � 1, then

cP (t) =
�
t � |A(P) \ A(Q)|

�
cQ(t).

Theorem. If P is strictly supersolvable via Q0 ✓ . . . ✓ Qk, then
cP (t) = (t � a1) · · · (t � ak)

where ai := |A(Qi) \ A(Qi�1|

Note. This is not a necessary condition, see [Pagaria-Pismataro-Tran-Vecchi]
�� of �� PAGARIA �� ��.

F I G U R E � The weighted partition poset ��3 .

Thus, the divisionality of a poset is a sufficient condition for its factorability. The following
necessary and sufficient condition for a poset to be divisional is immediate from Definition �.�.
Note that the sum of all exponents of a divisional poset equals the number of atoms.

Theorem �.��. A locally geometric poset � of rank � is divisional if and only if there exists a chain,
called a divisional chain

�0 = �0 < �1 < � < ��,
such that rk(��) = � and ��� (�) divides ����1 (�) where �� �= ���� for each 1 � � � �. In this case,exp(�) = {�1, … , ��} where �� �= ��(���1)� � ��(��)�.
Remark �.��. The converse of Theorem �.� is not true in general. Namely, there exists a factorable
poset that is not divisional. An example from hyperplane arrangements is already mentioned in
Remark �.��. We give here an example of a poset that is not a lattice. In [��, Example �.�], the
weighted partition poset � �= ��3 of rank � is given with the characteristic polynomial �� (�) =(� � 3)2 (see Figure �). However, � is not divisional because ���� (�) = � � 2 does not divide �� (�)
for any atom �.

By Proposition �.�, the exponents of an inductive poset are defined naturally. The following
“addition” theorem for inductive posets follows readily from Definition �.� and Theorem �.�.

Theorem �.��. Let � be a locally geometric poset with � � � and let � � �.

(a) Suppose that � is not a separator of � . If � �� � �� with exp(� ��) = {�1, … , ���1} and � � � ��
with exp(� �) = {�1, … , ���1, ��}, then � � �� with exp(�) = {�1, … , ���1, �� + 1}.

(b) Suppose that � is a separator of � . If � �� � ��, � � � �� with exp(� ��) = exp(� �) ={�1, … , ���1}, then � � �� with exp(�) = {1, �1, … , ���1}.
The process of constructing an inductive poset � from the trivial lattice (or more generally,

from an inductive subposet generated by some atoms) by adding an atom one at a time with
the aid of Theorem �.�� is called an induction table. Each row of the table records the expo-
nents of � � and � �� and the atom � added at each step. The last row displays the exponents
of � .

We will see in Section � many examples of posets that are both inductive and geometric aris-
ing from abelian arrangements. Figure � depicts an inductive poset that is not geometric. (In
particular, it is not the poset of layers of an abelian arrangement by Theorem �.�.)
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FIBRATION THEOREM

Theorem. [Bibby-D. ‘21] Let A be an abelian arrangement

A is fiber-type if and only if P(A ) is supersolvable.

In particular, if A is linear, toric or elliptic, then A is K(p, 1).

Theorem. [Bibby-Cohen-D. ‘24+]

If A is a supersolvable toric arrangement, then p1(M(A )) is an iterated

semidirect product of free groups. (Almost direct if strictly supersolvable.)

Lemma. [Bibby-D. ‘21] If P is a geometric poset, G � P is translative and

Q ✓ P is G-invariant, then Q is an M-ideal if and only if Q/G ✓ P/G is.

Application. Bloch-Kato property of p1(M(A )). [D.-Marmo ‘24+]
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