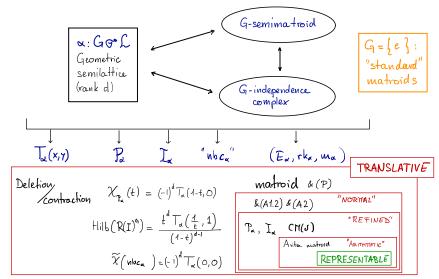
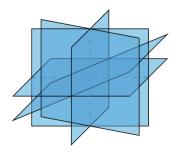
TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY Lecture 3: Supersolvability and applications

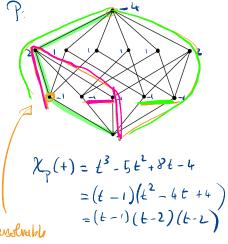
Emanuele Delucchi IDSIA USI/SUPSI Lugano, Switzerland.

ASGARD24 University of Oslo, may 29, 2024.

SUMMARY

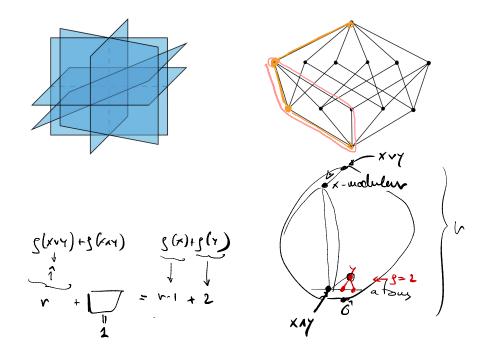


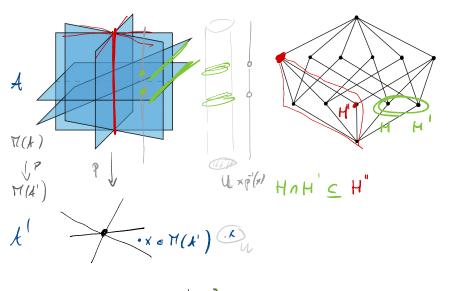




Xp(1)=0

supenstrable

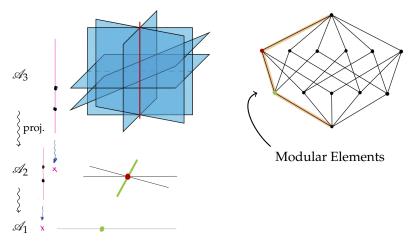




 $p^{-1}(x) = \mathbb{R} \setminus \{\cdot, \cdot\}$

FIBRATIONS OF HYPERPLANE ARRANGEMENTS

[Falk-Randell '85; Terao '86]



Fiber-type \Leftrightarrow Supersolvable

The $K(\pi, 1)$ -problem

An arrangement \mathscr{A} is called $K(\pi, 1)$ if $\pi_i(M(\mathscr{A}))$ is trivial for i > 1.

 $K(\pi, 1)$ problem: does $\mathcal{P}(\mathscr{A})$ know whether \mathscr{A} is $K(\pi, 1)$?

For hyperplane arrangements this is a classical and storied problem. E.g., finite real [Deligne '72] and complex [Bessis '12] reflection arrangements, as well as fiber-tipe arrangements [Falk-Randell '85] are $K(\pi, 1)$.

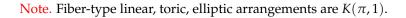
The following classes of non-linear arrangements are $K(\pi, 1)$. Toric **Coxeter** arrangements (via [Paolini-Salvetti '21]) **Large type** toric arrangements (via [Hendriks '85]) **Fiber-type** toric and elliptic arrangements [Bibby-D. '20]

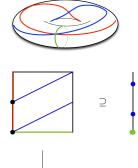
FIBER-TYPE ABELIAN ARRANGEMENTS

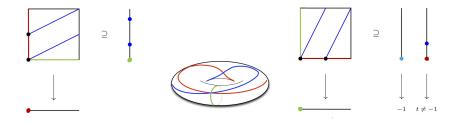
Let \mathscr{A} be an abelian arrangement in $\text{Hom}(\Gamma, \mathbb{G}) \simeq \mathbb{G}^d$.

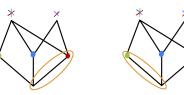
 \mathscr{A} is fiber-type if d = 1, or if there exists a rankone, split-direct summand $N \subseteq \mathbb{Z}^d$ and an arrangement \mathscr{B} in Hom $(\Gamma/N, \mathbb{G}) \simeq \mathbb{G}^{d-1}$, such that:

- *B* is fiber-type
- The natural projection G^d → G^{d-1}
 restricts to a fibration M(𝒴) → M(𝒴) with
 fiber homeomorphic to G \ {points}.



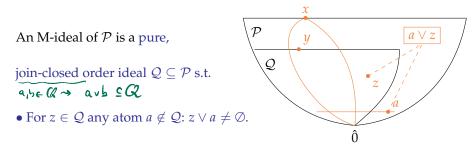






SUPERSOLVABLE POSETS

Let \mathcal{P} be a locally geometric poset.



• For every $x \in \max \mathcal{P}$ there is $y \in \max \mathcal{Q}$ s.t. y is modular in $\mathcal{P}_{\leq x}$

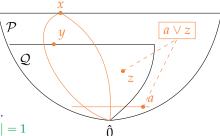
Definition. \mathcal{P} is supersolvable if there is a sequence of *M*-ideals $\{\hat{0}\} = \mathcal{Q}_0 \subseteq \mathcal{Q}_1 \subseteq \ldots \subseteq \mathcal{Q}_k = \mathcal{P}$ with \mathcal{Q}_i of height $h(\mathcal{Q}_i) = i$.

SUPERSOLVABLE POSETS

Let \mathcal{P} be a locally geometric poset.

TM-ideal An M-ideal of \mathcal{P} is a pure,

join-closed order ideal $\mathcal{Q} \subseteq \mathcal{P}$ s.t.



• For $z \in \mathcal{Q}$ any atom $a \notin \mathcal{Q}$: $z \lor a \neq \emptyset$. $|a \lor z| = 1$

• For every $x \in \max \mathcal{P}$ there is $y \in \max \mathcal{Q}$ s.t. y is modular in $\mathcal{P}_{\leq x}$

strictly

Definition. \mathcal{P} is supersolvable if there is a sequence of *M*-ideals

 $\{\hat{0}\} = \mathcal{Q}_0 \subseteq \mathcal{Q}_1 \subseteq \ldots \subseteq \mathcal{Q}_k = \mathcal{P}$ with \mathcal{Q}_i of height $h(\mathcal{Q}_i) = i$.

FACTORIZATIONS

[Bibby-D. '21]

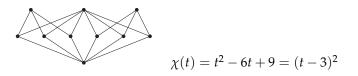
Let \mathcal{P} be a finite locally geometric poset.

Lemma. If Q is a *TM*-ideal of *P* with h(Q) = h(P) - 1, then

$$\chi_{\mathcal{P}}(t) = (t - |A(\mathcal{P}) \setminus A(\mathcal{Q})|)\chi_{\mathcal{Q}}(t).$$

Theorem. If \mathcal{P} is strictly supersolvable via $Q_0 \subseteq \ldots \subseteq \mathcal{Q}_k$, then $\chi_{\mathcal{P}}(t) = (t - a_1) \cdots (t - a_k)$ where $a_i := |A(\mathcal{Q}_i) \setminus A(\mathcal{Q}_{i-1})|$

Note. This is not a necessary condition, see [Pagaria-Pismataro-Tran-Vecchi]



FIBRATION THEOREM

Theorem. [Bibby-D. '21] Let A be an abelian arrangement

 \mathscr{A} is fiber-type if and only if $\mathcal{P}(\mathscr{A})$ is supersolvable.

In particular, if \mathscr{A} is linear, toric or elliptic, then \mathscr{A} is $K(\pi, 1)$.

Theorem. [Bibby-Cohen-D. '24+]

If \mathscr{A} is a supersolvable toric arrangement, then $\pi_1(M(\mathscr{A}))$ is an iterated semidirect product of free groups. (Almost direct if *strictly* supersolvable.)

Lemma. [Bibby-D. '21] If \mathcal{P} is a geometric poset, $G \circlearrowright \mathcal{P}$ is translative and $\mathcal{Q} \subseteq \mathcal{P}$ is *G*-invariant, then \mathcal{Q} is an *M*-ideal **if and only if** $\mathcal{Q}/G \subseteq \mathcal{P}/G$ is. **Application.** Bloch-Kato property of $\pi_1(M(\mathscr{A}))$. [D.-Marmo '24+]

THANK YOU!

"Takk skal du ha"