Toric arrangements and equivariant matroid theory Lecture Notes

Emanuele Delucchi - emanuele.delucchi@supsi.ch ASGARD Math 2024

TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY
Lecture 1: Arrangements and matroids.

$$
\begin{aligned}
& \text { Emanuele Delucchi } \\
& \text { IDIA SIISUPSI } \\
& \text { Lugano, Switzerland. }
\end{aligned}
$$

ASGARD24
ersity of Oslo, may 27, 2024.

$$
\begin{aligned}
& \text { AncARDL4 } \\
& \text { University of Oslo, may } 27,2024 .
\end{aligned}
$$

Let \mathcal{P} be a locally finite partially ordered set (poset)
The Möbius function of \mathcal{P} is $\mu: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{Z}$, defined recursively by

$$
\left\{\begin{array}{cc}
\mu(x, y)=0 & \text { if } x \not 又 y \\
\sum_{x \leq z \leq y} \mu(x, z)=\delta_{x, y} & \text { if } x \leq y
\end{array} \Rightarrow \mu(k, x)=1,\right.
$$

MÖbius Functions and poset polynomials

$$
x_{p}(t)=t^{2}-5 t^{2}+8 t-4
$$

$\mathcal{P}(\mathscr{A})$: poset of conn. comp. of intersections.

$$
x \leq y \text { if } x \supseteq y
$$

$$
x_{p}(-1)=-18
$$

$x_{p}(t)=t^{2}-3 t+3$
$x_{p}(0)=3$

Throughout we will suppose that P be a chain-finite poset (all chains in P have finite cardinality), indeed all our posets will be of finite length (i.e., the cardinality of the chains P is bounded). Given $x \in P$ let $P_{\geq x}:=\left\{x^{\prime} \in P \mid x^{\prime} \geq x\right\}, P_{\leq x}:=\left\{x^{\prime} \in P \mid x^{\prime} \leq x\right\}$.

Define the set of joins, resp. of meets of a pair of elements $x, y \in P$ as

$$
x \vee y:=\min \left(P_{\geq x} \cap P_{\geq y}\right) ; \quad x \wedge y:=\max \left(P_{\leq x} \cap P_{\leq y}\right) .
$$

The poset P is a meet-semilattice if $|x \wedge y|=1$ for all $x, y \in P$. If additionally $|x \vee y|=1$ for all $x, y \in P$, then P is a lattice.

A poset P is bounded below if it has a unique minimal element, that is called $\hat{0}$.
I.e., there is $\hat{0} \in P$ such that $P_{\geq \hat{0}}=P$. We will say that P is a "poset with $\hat{0}$ ".

A poset rank function on a poset P with $\hat{0}$ is a function $\rho: P \rightarrow \mathbb{N}$ with $\rho(\hat{0})=0$ and such that $x \gtrdot y$ implies $\rho(x)=\rho(y)+1$. (Recall that $x \gtrdot y$ means that $x>z \geq y$ implies $z=y$ for all z.) Note that if such a rank function exists, it is unique.

If \mathcal{P} has a $\hat{0}$ and rank function ρ, its
aracteristic polynomial is

$$
x_{p}(t)=t^{2}-3 t+3
$$

Hyperplanes and geometric lattices

$$
\begin{gathered}
a_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), a_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), a_{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \\
a_{4}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), a_{5}=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{rk}(I):=\operatorname{dim}\left\langle a_{i} \mid i \in I\right\rangle \\
& =\operatorname{codim} \bigcap\left(a_{i}\right)^{\perp}=: \rho(I)
\end{aligned}
$$

CRyptomorphisms (Matroids)

$$
\begin{gathered}
\chi_{\mathrm{rk}}(t) \stackrel{\text { thm. }}{=} \chi_{\mathcal{L}}(t) \\
(S \text { finite })
\end{gathered}
$$

Finite matroids

Rank functions / intersection posets ... of central hyperplane arrangements	
	Representable m.
...of pseudosphere arrangements	Orientable m
matroids / geometric lattices (tropical linear spaces)	

Infinite example: set of all subspaces of V.

Let V be a vectorspace of (finite) dimension d over the field \mathbb{K}.
An arrangement of hyperplanes in V is any locally finite family $\mathscr{A}=\left\{H_{i}\right\}_{i \in S}$,
where $H_{i}=\left\{v \in V \mid a_{i}(v)=b_{i}\right\}$ for some choice of tuples $\left(a_{i}\right)_{i \in S} \subseteq V^{*}$ and $\left(b_{i}\right)_{i \in S} \subseteq \mathbb{K}$.
The associated rank function is $\mathrm{rk}_{\mathscr{A}}: 2^{S} \rightarrow \mathbb{N}, \operatorname{rk}_{\mathscr{A}}(X):=\operatorname{dim}\left\langle a_{i} \mid i \in X\right\rangle$.
Call \mathscr{A} central if $b_{i}=0$ for all i (this implies $\left.|S|<\infty\right)$. In this case, $\mathcal{P}(\mathscr{A})$ satisfies the following.
Definition. A geometric lattice is a chain-finite lattice P such that

$$
\text { (G1) } x \lessdot y \Leftrightarrow y \in x \vee a \text { for some } a \gtrdot \hat{0}
$$

Notice that a chain-finite meet-semilattice is always bounded below. In any bounded-below poset P, the elements of $A(P):=\{a \in P \mid a \gtrdot \hat{0}\}$ are called atoms.

Remark. Every geometric lattice admits a poset rank function ρ. If \mathscr{A} is a hyperplane arrangement, $\rho_{\mathscr{A}}(x)=\operatorname{codim}(X)$ for all $X \in \mathcal{P}(\mathscr{A})$.

In turn, the rank function $\mathrm{rk}_{\mathscr{A}}$ satisfies the following definition.

Definition. A matroid rank function on the ground set S is any monotone function rk : $2^{S} \rightarrow \mathbb{N}$ s.t.

$$
(R):\left\{\begin{array}{l}
0 \leq \operatorname{rk}(X) \leq|X| \quad \forall X \subseteq S \\
\operatorname{rk}(X \cup Y)+\operatorname{rk}(X \cap Y) \leq \operatorname{rk}(X)+\operatorname{rk}(Y) \quad \forall X, Y \subseteq S \\
\forall X \subseteq S \exists Y \subseteq X,|Y|<\infty, \operatorname{rk}(X)=\operatorname{rk}(Y)
\end{array}\right.
$$

If $|S|<\infty$, define

$$
\chi_{\mathrm{rk}}(t):=\sum_{X \subseteq S}(-1)^{|X|} t^{\mathrm{rk}(S)-\mathrm{rk}(X)}
$$

For matroids in this (finitary) setting see [1].

Affine hyperplane arrangement $(\mathbb{K}=\mathbb{R})$

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right], \quad\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=(0,0,0,1)
$$

cAA:

Affine hyperplane arrangements $(\mathbb{K}=\mathbb{R})$

$$
\begin{array}{r}
{\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right], \quad\left(\begin{array}{l}
\left.b_{1}, b_{2}, b_{3}, b_{4}\right)=(0,0,0,1) \\
\gamma
\end{array} \quad I \text { such that } \cap_{i \in I} H_{i} \neq \varnothing\right.}
\end{array}
$$

$\},\{1\},\{2\},\{3\},\{4\}$
$\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{2,4\}$
These are the central sets.
The family of central sets $\mathcal{K} \subseteq 2^{s}$ is an abstract simplicial complex.

$$
\text { (I.e.: if } I \in \mathcal{K} \text { and } J \subseteq I \text {, then } J \in \mathcal{K} \text {) }
$$

For $I \in \mathcal{K} \operatorname{set} \operatorname{rk}(I):=\operatorname{dim}\left\langle a_{i} \mid i \in I\right\rangle$. This defines a semimatroid.

$$
\text { [Kawahara ‘04, Ardila }{ }^{\circ} 07 \text {] }
$$

CRYPTOMORPHISMS (SEMIMATROIDS)

$$
\chi_{\mathrm{rk}}(t) \stackrel{\mathrm{tm}}{=}=\chi_{\mathcal{L}}(t)
$$

(S finite)

We now consider an example of an affine hyperplane arrangement. Then, the poset of intersections has the following structure.

Definition. A geometric semilattice is any poset of the form $L \backslash L_{\geq a}$ where L is a geometric lattice and $a \in A(L)$ is an atom of L.

Equivalently, a geometric semilattice is any chain-finite meet-semilattice P that satisfies (G1) thus admits a rank function ρ - and
(G2) for all $x, y \in P$ and for all $I \subseteq A(P)$ s.t. $y \in \vee I$ and $\rho(x)<\rho(y)=|I|$,
there is $a \in I$ with $x \vee a \neq \emptyset$.

For this and more on geometric semilattices see [19].

Definition. A semimatroid rank function is any monotone function rk: $\mathcal{K} \rightarrow \mathbb{N}$ from a finitedimensional simplicial complex \mathcal{K} to the natural numbers satisfying

$$
\left(R^{s}\right):\left\{\begin{array}{l}
0 \leq \operatorname{rk}(X) \leq|X| \quad \forall X \in \mathcal{K} \\
\operatorname{rk}(X \cup Y)+\operatorname{rk}(X \cap Y) \leq \operatorname{rk}(X)+\operatorname{rk}(Y) \quad \forall X, Y \subseteq S \text { s.t. } X \cup Y \in \mathcal{K} \\
\text { for all } X, Y \in \mathcal{K}, \operatorname{rk}(X)=\operatorname{rk}(X \cap Y) \text { implies } X \cup Y \in \mathcal{K} \\
\text { for all } X, Y \in \mathcal{K}, \operatorname{rk}(X)<\operatorname{rk}(Y) \text { implies } X \cup a \in \mathcal{K} \text { for some } a \in Y \backslash X
\end{array}\right.
$$

For finite semimatroids $[\mathbf{1 3}, \mathbf{2}]$. The infinite case is in $[\mathbf{1 0}]$.

$$
\begin{aligned}
& \text { ABSTRACT THEORY } \\
& \begin{array}{|l|}
\hline \begin{array}{|l|l|}
\hline \text { Semimatroid }(\mathcal{K}, \text { rk) / intersection posets } \mathcal{L} \\
\text { of affine hyperplane arrangements }
\end{array} \\
\text { of "pseudoarrangements" } \\
\text { [Baum-Zhu' '15, D.-Knauer DGC '24] }
\end{array} \\
& \hline \text { semimatroids / geometric semilattices } \\
& \hline
\end{aligned}
$$

Toric arrangements

$$
\left[a_{1}, a_{2}, a_{3}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right] ; \quad \text { for } I \subseteq[n]: m(I):=\# \operatorname{Tor}\left(\mathbb{Z}^{d} /\left\langle a_{i}\right\rangle\right) .
$$

$\mathcal{P}(\mathscr{A}):$
The pair (rk, m) satisfies the axioms of an arithmetic matroid...
[d'Adderio-Moci ${ }^{1} 13$, Brändén-Moci ${ }^{14}$] ... but it does not determine $\mathcal{P}(\mathscr{A})$: no cryptomorphism
[Pagaria ${ }^{17}$
But $\mathcal{P}(\mathscr{A})$ determines ring $H^{*}(M(\mathscr{A}), \mathrm{Q})$
Callegaro, D'Adderio, D., Migliorini, Pagaria]

TransLative actions

Understand abelian arrangements as "quotients" of linear, periodic ones.

Toric, Elliptic, etc.

If x and $g x$ have upper bound, then $x=g x$.
For all Abelian arrangements:
$\mathcal{P}(\mathscr{A}) \simeq \mathcal{P}\left(\mathscr{A}^{1}\right) / \mathbb{Z}^{d}$
Let $a_{1}, \ldots, a_{n} \in \Gamma \simeq \mathbb{Z}^{d}$ be an n-tuple of nonzero, full-rank elements.

Definition. The associated toric arrangement is the set $\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ of subtori $H_{i}=\left\{z \in\left(\mathbb{C}^{*}\right)^{d} \mid z^{a_{i}}=1\right\}$.

Fix $p, q \in \mathbb{N}$ and let $\mathbb{G}=\mathbb{R}^{p} \times\left(S^{1}\right)^{q}$.
Definition. The associated abelian arrangement in \mathbb{G}^{d} is

$$
\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}, \quad H_{i}=\operatorname{ker}\left(\operatorname{Hom}(\Gamma, \mathbb{G}) \rightarrow \mathbb{G}, \varphi \mapsto \varphi\left(a_{i}\right)\right)
$$

If $(p, q)=(2,0)$ call \mathscr{A} "linear";
if $(p, q)=(1,1)$ the arrangement \mathscr{A} is toric
if $(p, q)=(0,2)$ call \mathscr{A} "elliptic".

Example: Coxeter arrangements
Let $\Phi:\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{Z}^{d}$ roots of Coxeter system of type $A B C D$.
Let \mathscr{U}_{Φ} be the associated Abelian arrangement.
$G=\mathbb{R}$

Linear, toric, elliptic:

- Explicit description of $\mathcal{P}(\mathscr{A})$ via "enriched partitions" [Bibby '18]
- $\mathcal{P}(\mathscr{A})$ is EL-shellable [D.-Girard-Paolini $\left.{ }^{\prime} 19\right]$
by the associated affine
Weyl reflection arrangement.
Example: Coxeter arrangements Let \mathscr{U}_{Φ} be the associated Abelian arrangement.
$G=\mathbb{R}$

Let $\Phi:\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{Z}^{d}$ roots of Coxeter system of type $A B C D$.
$\mathrm{G}=S^{1}$

Given any abelian arrangement \mathscr{A} let \mathscr{A}^{\uparrow} denote the lift of \mathscr{A} to the universal cover of \mathbb{G}^{d}.
Note: in general, \mathscr{A}^{1} is an arrangement of subspaces (not necessarily of hyperplanes). Yet, for every abelian \mathscr{A} the poset $\mathcal{P}\left(\mathscr{A}^{\eta}\right)$ is a geometric semilattice (see, e.g., [7]).

References.

For the Coxeter case see $[\mathbf{3}, \mathbf{8}]$.
For arithmetic matroids see [6].
Two toric arrangements with different posets but same arithmetic matroids [14].
For the cohomology computation in the toric case see [5].
For the "oriented matroidal counterpart" of semimatroids and group actions see [9]

Group actions on geometric semilattices

From now:
$\left.\begin{array}{l}\mathcal{L}: \text { a chain-finite geometric semilattice; } \\ \text { G: a group acting on } \mathcal{L} \text { by poset automorphisms. }\end{array}\right\} \alpha: G \bigcirc \mathcal{L}$
$\mathcal{P}_{\alpha}=\mathcal{L} / G:=\{G x \mid x \in \mathcal{L}\} ; \quad G x \leq G y$ iff $x \leq g y$ for some $g \in G$.
This is a poset (eg., since \mathcal{L} has a rank function)
Definition. A c.-f. poset P with $\hat{0}$ is geometric if it satisfies (G1), (G2).

Theorem. Let $G \circlearrowright P$ be a translative action. If P is geometric, so is P / G
Corollary. If the action α is translative, then \mathcal{P}_{α} is a geometric poset. So $\mathcal{P}(\mathscr{A})$ is geometric for every abelian arrangement \mathscr{A}.

Group actions on geometric semilattices
From now:
$\left.\begin{array}{l}\mathcal{L}: \text { a chain-finite geometric semilattice; } \\ \text { G: a group acting on } \mathcal{L} \text { by poset automorphisms. }\end{array}\right\} \alpha: G \bigcirc \mathcal{L}$
$\mathcal{P}_{\alpha}=\mathcal{L} / G:=\{G x \mid x \in \mathcal{L}\} ; \quad G x \leq G y$ iff $x \leq g y$ for some $g \in G$.
This is a poset with rank function ρ_{α} and set of atoms E_{α}. For $I \subseteq E_{\alpha}$ let

$$
\mathrm{rk}_{\alpha}(I):=\max \rho_{\alpha}(\vee I), \quad m_{\alpha}(I):=\# \vee I .
$$

Theorem. $\left(E_{\alpha_{\alpha}}, \mathrm{rk}_{\alpha}\right)$ is a (semi)matroid if and only if α is translative. Definition.

$$
T_{\alpha}(x, y):=\sum_{I \subseteq E_{\alpha}} m_{\alpha}(I)(x-1)^{\mathrm{rk}_{\alpha}(E)-\mathrm{rk}_{\alpha}(I)}(y-1)^{|I|-\mathrm{rk}_{\alpha}(I)}
$$

Group actions on semimatroids
Let G be a group

If α is translative: (1) $T_{\alpha}(x, y)$ has positive coefficients (2) $\chi_{\mathcal{P}_{\alpha}}(t)=(-1)^{\mathrm{rk}\left(E_{\alpha}\right)} T_{\alpha}(1-t, 0) \quad$ [D.-Riedel 18]

We call a poset pure if all maximal chains have the same (finite) length.

Recall. A geometric poset is any bounded-below, pure poset satisfying (G1) and (G2).
An action of a group G on a chain-finite poset P is translative if, for all $g \in G, x \vee g x \neq \emptyset$ implies $x=g x$.

Main references for this lecture: For the Tutte polynomial part: [10], for the remainder [7].

We write $\alpha: G \circlearrowright \mathcal{L}$ for the data of a group action on a geometric semilattice \mathcal{L}.

We have seen that if α is translative, then
(1) $\mathcal{P}_{\alpha}:=\mathcal{L} / G$ is a geometric poset.
(2) $\left(E_{\alpha}, \mathrm{rk}_{\alpha}\right)$ is a (semi)matroid.
(3) $\chi_{\mathcal{P}_{\alpha}}(t)=(-1)^{\mathrm{rk}_{\alpha}\left(E_{\alpha}\right)} T_{\alpha}(x-1)=\chi_{\mathrm{rk}_{\alpha}}(t)$
(4) $T_{\alpha}(x, y)$ has positive coefficients.

We now explain the deletion-contraction recursion in the case α is translative.

Translative actions

[D.-Riedel '18]

Recall: if α is translative, then $\left(\underline{\mathcal{K}}, \mathrm{rk}_{\alpha}\right)$ is a semimatroid on E_{α}.
A loop is any $e \in E_{\alpha}$ such that $\mathrm{rk}_{\alpha}(e)=0$;
A coloop is any $e \in E_{\alpha}$ such that $\mathrm{rk}_{\alpha}(I \backslash\{e\})<\mathrm{rk}_{\alpha}(I)$ for all $I \ni e$.
Theorem. If α is translative, for all $e \in E_{\alpha}$ we have the recursion

$$
T_{\alpha}(x, y)=(x-1) T_{\alpha \backslash e}(x, y)+(y-1) T_{\alpha / e}(x, y),
$$

according to whether e is a coloop or a loop, where
$\alpha \backslash e:=G \cup(\mathcal{K}, \mathrm{rk}) \backslash e, \quad \alpha / e:=\operatorname{stab}(e) \bigcirc(\mathcal{K}, \mathrm{rk}) / e$.

Simplicial complexes and their face rings

A simplicial complex Δ on a finite vertex set V has a poset of faces

If $|V|<\infty$, the face ring ("Stanley-Reisner Ring") of Δ (over a field \mathbb{K}) is

$$
\mathcal{R}(\Delta):=\mathbb{K}\left[x_{v} \mid v \in V\right] /\left(\prod_{v \in \tau} x_{v} \mid \tau \notin \Delta\right)
$$

Let $(\mathcal{K}, \mathrm{rk})$ be a semimatroid. Call S the set vertices of \mathcal{K} and let $A \subseteq S$.
Set
$\mathcal{K}_{\backslash A}:=\{X \backslash A \mid X \in \mathcal{K}\}, \operatorname{rk}_{\backslash A}:=\operatorname{rk}_{\mid \mathcal{K}}^{\backslash A} 1 ;$
$\mathcal{K}_{/ A}:=\left\{X \in \mathcal{K}_{\backslash A} \mid X \cup A \in \mathcal{K}\right\} ; \operatorname{rk}_{/ A}: \mathcal{K}_{/ A} \rightarrow \mathbb{N}, \operatorname{rk}_{/ A}(X):=\operatorname{rk}(X \cup A)-\operatorname{rk}(A)$

Definition.

The deletion of A from \mathcal{K} is the semimatroid $(\mathcal{K}, \mathrm{rk}) \backslash A:=\left(\mathcal{K}_{\backslash A}, \mathrm{rk}_{\backslash A}\right)$.
If $A \in \mathcal{K}$, the contraction of A in $(\mathcal{K}, \mathrm{rk})$ is $(\mathcal{K}, \mathrm{rk}) / A:=\left(\mathcal{K}_{/ A}, \mathrm{rk} / A\right)$.
Note. The geometric semilattices of deletion and contraction of the semimatroids are as follows:

$$
\mathcal{L}((\mathcal{K}, \mathrm{rk}) / A)=\bigcup_{a \in A} \mathcal{L}(\mathcal{K}, \mathrm{rk})_{\geq a} ; \quad \mathcal{L}((\mathcal{K}, \mathrm{rk}) \backslash A)=\{\vee X \mid X \subseteq A(\mathcal{L}) \backslash A\} \subseteq \mathcal{L}
$$

Now let $\alpha: G \circlearrowright(\mathcal{K}$, rk $)$ denote a simplicial, rk-preserving action of a group G on \mathcal{K}, and let $e \in E_{\alpha}$. Recall that then $e=G s$ is the orbit of some $s \in S$.

Definition.

The deletion of e from α is the semimatroid $\alpha \backslash e: G \circlearrowright(\mathcal{K}, \mathrm{rk}) \backslash e$.
The contraction of e in α is $\alpha / e: \operatorname{stab}(s) \circlearrowright(\mathcal{K}, \mathrm{rk}) / s$.

Note. If α is translative, then so are α / e and $\alpha \backslash e$.
Note. We have $\mathcal{P}_{\alpha / e}=\mathcal{P}_{\alpha \geq e}$. Moreover, $\mathcal{P}_{\alpha \backslash e}$ is the poset obtained as all elements of \mathcal{P}_{α} that can be obtained as joins of atoms different than e; more precisely: $\mathcal{P}_{\alpha \backslash e}=\bigcup_{A \subseteq A\left(\mathcal{P}_{\alpha}\right) \backslash\{e\}} \vee A$.

Warning. In the deletion-contraction formula given in the slide, the factor $(x-1)$ appears only if e is a coloop; the factore $(y-1)$ only if e is a loop.

Let $(\mathcal{K}$, rk) be a semimatroid. The associated independence complex is the simplicial complex

$$
\mathcal{I}(\mathcal{K}, \mathrm{rk}):=\{I \in \mathcal{K}|\operatorname{rk}(I)=|I|\}
$$

Note. The poset of faces of this simplicial complex, $P_{\mathcal{I}(\mathcal{K}, \mathrm{rk})}$ is a geometric semilattice, and all its lower intervals are boolean.
Note. If the semimatroid has no loops and has geometric semilattice \mathcal{L}, this is isomorphic to the abstract simplicial complex of independent sets of atoms $\mathcal{I}(\mathcal{L})=\{I \subseteq A(\mathcal{L})| | I \mid=\rho(\vee I)\}$.

Definition. Let $\alpha: G \circlearrowright(\mathcal{K}, r k)$ be a group action on a semimatroid. Define the independence poset

$$
\mathcal{I}_{\alpha}:=P_{\mathcal{I}(\mathcal{K}, \mathrm{rk})} / G
$$

Note. If the action on \mathcal{K} is translative (equivalently: the action on the associated semilattice is translative), then so is the induced action on $P_{\mathcal{I}(\mathcal{K}, \mathrm{rk})}$.

ARRANGEMENTS AND MATROIDS
Let \mathscr{A} be a linear arrangement; $\mathcal{I}_{\mathscr{A}}$ complex of "independent sets"

τ_{A} "independent" sets $\overbrace{1}^{\{, 1,2\}} \overbrace{1,1,3]}^{\{2,33}$
$\underbrace{\{2\}}_{11\}} \underbrace{\{3\}}_{1}$

Algebraic interpretation of some number sequences / polynomials. E.g.,

$$
\operatorname{Hilb}\left(\mathcal{R}\left(\mathcal{I}_{\mathscr{A}}\right), t\right)=\frac{t^{d} T(1 / t, 1)}{(1-t)^{d}}
$$

(This really is a "matroid" statement

Stanley-Reisner rings
[..à la Yuzvinsky]

Let be a simplicial poset. For $\varnothing \neq M \subseteq \max P$ set $M^{n}:=\bigcap_{m \in M} P_{\leq m}$
M^{\curvearrowleft} is the poset of faces of a simplicial complex Δ_{M}
$X(P):=\left\{\Delta_{M} \mid \varnothing \neq M \subseteq P\right\}, \quad \Delta_{M_{1}} \leq \Delta_{M_{2}}$ if $M_{1} \supseteq M_{2}$
$Y(P)$: sheaf on $X(P) . \quad Y(P)\left(\Delta_{M}\right):=\mathcal{R}\left(\Delta_{M}\right)$, natural projections.
Definition. The Stanley-Reisner ring of P is the ring of global sections

$$
\mathcal{R}(P):=\Gamma Y(P)
$$

Theorem If $|P|<\infty$, then $\mathcal{R}(P)$ is Stanley's "face ring" of P.
(In particular, $\mathcal{R}\left(P_{\Delta}\right) \simeq \mathcal{R}(\Delta)$ for every finite simplicial complex Δ.)
[D.-D'Ali '21, See also: Lü-Panov '11, Brun-Römer '08]

Rings of invariants

Let P be a simplicial poset.
Every action $G \bigcirc P$ induces an action $G \bigcirc \mathcal{R}(P)$.
Theorem. If the action $G O P$ is translative, then

$$
\begin{aligned}
& \text { riur of } \\
& \text { invasinit. } \\
& \frac{1}{\mathcal{R}(P)^{G}} \simeq \mathcal{R}(P / G)
\end{aligned}
$$

[Garsia-Stanton '86: finite Coxeter complexe [Reiner '92: finite balanced complexe
\triangle Sinite s.c. $G o \Delta$ simplicial action induces $G O P_{\Delta}$ - Gor P_{Δ} is trauslative $\Leftrightarrow G$ preserves propar colonicy of \triangle \Leftrightarrow "Bredon's condition (A)"

- $G \mapsto \Delta\left(P_{\Delta}\right)$ Always translatix

Group actions on simplicial posets

Call a chain-finite poset P simplicial if (1) P is bounded below
(2) $P_{\leq x}$ is Boolean for all x

Examples. The face poset P_{\triangle} of a simplicial complex \triangle
The independence poset $\mathcal{I}(\mathcal{L})$ of a geometric semilattice.
Theorem. Let G act by automorphisms on a simplicial poset P. Then
P / G is a simplicial poset \Leftrightarrow the action is translative.
Corollary. If $\alpha: G \bigcirc \mathcal{L}$ translative, then \mathcal{I}_{α} is a simplicial poset.
For toric arrangements see also [Martino/Lenz]

c

Example. A simplicial poset P and its associated $X(P)$.
Below is the sheaf $Y(P)$ and one of its global sections.

THE COHEN-MACAULAY PROPERTY

A f.d. simplicial complex Δ is Cohen-Macaulay if, for every $\sigma \in \Delta$, the link of σ in $\Delta, \operatorname{lk}(\sigma)$, is connected through codimension $1 . \widetilde{H}(\mu(\sigma), k)$
2.5

A f.l. (simplicial) poset P is Cohen-Macaulay if the simplicial complex $\Delta(P)$ of all chains in P is Cohen-Macaulay.

Note When saying "Cohen-Macaulay in characteristic κ " replace by: $\widetilde{H}_{i}\left(\mathbf{l k}_{\Delta}(\sigma), \mathbb{K}\right)=0$ for all $i<\operatorname{dim}\left(1 \mathbf{k}_{\Delta}(\sigma)\right)$ and ${ }^{2}$ char $(\mathbb{K})=\kappa$.

BACK TO GEOMETRIC SEMILATtices
Let \mathcal{L} be a geometric semilattice, $\alpha: G \bigcirc \mathcal{L}$ a translative action.
Observation. $\operatorname{Hilb}\left(\mathcal{R}\left(\mathcal{I}_{\alpha}\right)^{G}, t\right)=\frac{t^{d} T_{\alpha}\left(\frac{1}{t}, 1\right)}{(1-t)^{d-1}}$.

Definition an action $\alpha: G \circlearrowright \mathcal{L}$ is refined if it is translative, G is free abelian, and there is $k \in \mathbb{N}$ such that, for every $x \in \mathcal{L}$
$\operatorname{stab}(x)$ is a direct summand of G , free of $\operatorname{rank} k \cdot(\rho(\mathcal{L})-\rho(x))$
Theorem. If α is refined, then \mathcal{P}_{α} and \mathcal{I}_{α} are Cohen-Macaulay in character istic 0 and in every characteristic not dividing an explicitly computable δ_{α} Note. Top Betti numbers: $T_{\alpha}(0,0)$ and $-T_{\alpha}(0,1)$

"EXPLICITLY COMPUTABLE"..

Let $\alpha: G O \mathcal{L}$ be a refined action on a geometric semilattice with associated underlying matroid $\left(E_{\alpha}, \mathrm{rk}_{\alpha}\right)$.

For every $I \subseteq E_{\alpha}$ let

$$
G^{(I)}:=G / \operatorname{stab}_{G}(I) .
$$

Then

$$
\delta_{\alpha}:=\operatorname{lcm}\left\{\delta_{\alpha}(B) \mid B \text { basis of }\left(E_{\alpha}, \mathrm{rk}_{\alpha}\right)\right\},
$$

where, for every basis B,

$$
\delta_{\alpha}(B):=\left[G^{(B)}: \bigoplus_{b \in B} \operatorname{stab}_{G^{(l)}}(B \backslash b)\right]
$$

TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY

Let P be a geometric lattice with rank function ρ. An element $x \in P$ is modular in P if

$$
\rho(x \vee x)+\rho(x \wedge y)=\rho(x)+\rho(y) \text { for all } y \in P
$$

Theorem. [17] Suppose that P is finite. If x is modular in P, then $\chi_{P_{\leq x}}(t)$ divides $\chi_{P}(t)$. Moreover, if $x \lessdot \hat{1}$, then

$$
\chi_{P}(t)=\chi_{P_{\leq x}}(t)(t-a), \text { where } a=\left|A(P) \backslash A\left(P_{\leq x}\right)\right| .
$$

Definition. A geometric lattice P is supersolvable if it possesses a maximal chain consisting of modular elements.

Corollary. If P is a finite geometric lattice that is supersolvable via a chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \ldots \lessdot x_{d}=\hat{1}$, then

$$
\chi_{P}(t)=\prod_{i=1}^{d}\left(t-\left|A\left(P_{\leq x_{i}}\right) \backslash A\left(P_{\leq x_{i-1}}\right)\right|\right)
$$

Fibrations of hyperplane arrangements
[Falk-Randell '85; Terao '86]

Fiber-type \Leftrightarrow Supersolvable

Let P be a geometric lattice and x a modular element with $x \lessdot \hat{1}$.
Consider $a, a^{\prime} \in A(P) \backslash A\left(P_{\leq x}\right)$ and let $y:=a \vee a^{\prime}$. Then $\rho(y)=2$ and $x \vee y=\hat{1}$. Modularity of x implies

$$
\rho(\hat{1})+\rho(x \wedge y)=\rho(x \vee y)+\rho(x \wedge y)=\rho(x)+\rho(y)=(\rho(\hat{1})-1)+2
$$

whence $\rho(x \wedge y)=1$. This means that there is $b \in A\left(P_{\leq x}\right)$ with $y>b$.
This fact has a geometric meaning: if P is the lattice of intersections of a central hyperplane arrangement \mathscr{A} and if ℓ is a modular intersection of dimension 1 , then the intersection of any two hyperplanes not containing ℓ will be contained in some hyperplane that does contain ℓ. This means that the projection along ℓ defines a fibration of the complement of \mathscr{A}.

Definition. Let E, B be topological spaces. A continuous surjection $p: E \rightarrow B$ is a bundle map (or "has the bundle property" as in [12, III.4, p. 65]) if there exist a topological space F (called the "fiber space") such that for every $b \in B$ there is an open neighborhood U and a homeomorphism $\phi_{U}: U \times F \rightarrow p^{-1}(U)$ such that $p \phi_{U}$ is the canonical projection $U \times F \rightarrow U$.

Theorem 4.1 of [12] proves that every bundle map satisfies the homotopy lifting property (called "CHP" for "Covering Homotopy Property" in [12]) for every CW-complex, and thus is a fibration in the sense of Serre. In particular, if $p: E \rightarrow B$ is a bundle map with fiber $F, e_{0} \in E$ is any basepoint, $b_{0}:=p\left(e_{0}\right)$ and $x_{0} \in F$ is such that $\phi\left(b_{0}, x_{0}\right)=e_{0}$, there is a long exact sequence of homotopy groups

$$
\ldots \rightarrow \pi_{n}\left(F, x_{0}\right) \rightarrow \pi_{n}\left(E, e_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n-1}\left(F, x_{0}\right) \rightarrow \ldots \quad \ldots \rightarrow \pi_{0}\left(B, b_{0}\right) \rightarrow 0
$$

In particular, if $\pi_{i}\left(F, x_{0}\right)=0$ for $i>1$, we can conclude $\pi_{i}\left(B, b_{0}\right) \simeq \pi_{i}\left(E, e_{0}\right)$ for all $i>1$.

Falk and Randell [11] studied fiber-type arrangements of hyperplanes. These are central hyperplane arrangements \mathscr{A} in \mathbb{C}^{d} that possess an intersection ℓ of dimension 1 such that the projection p of \mathbb{C}^{d} along ℓ restricts to a bundle map $M(\mathscr{A}) \rightarrow M\left(\mathscr{A}^{\prime}\right)$, where $\mathscr{A}^{\prime}:=\{p(H) \mid H \in \mathscr{A}$ s.t. $\ell \subseteq H\}$ consists of the projections of all $H \in \mathscr{A}$ that contain ℓ is recursively required to be fiber-type, and the fiber then is homeomorphic to \mathbb{C} minus a finite set of points.

Repeated application of the Long Exact Sequence argument above shows that a fiber-type arrangement \mathscr{A} has $\pi(M(\mathscr{A}))=0$ for all $i>1$.

Terao's theorem [18] shows that a hyperplane arrangement \mathscr{A} is fiber-type if and only if $\mathcal{P}(\mathscr{A})$ is a supersolvable geometric lattice. In fact, $\ell \lessdot \hat{1}$ is a suitable intersection of dimension 1 if and only if it is a modular element in $\mathcal{P}(\mathscr{A})$.

THE $K(\pi, 1)$-PROBLEM

An arrangement \mathscr{A} is called $K(\pi, 1)$ if $\pi_{i}(M(\mathscr{A}))$ is trivial for $i>1$.
$K(\pi, 1)$ problem: does $\mathcal{P}(\mathscr{A})$ know whether \mathscr{A} is $K(\pi, 1)$?
For hyperplane arrangements this is a classical and storied problem.
E.g., finite real [Deligne ' 72] and complex [Bessis ${ }^{\prime} 12$] reflection arrangements, as well as fiber-tipe arrangements [Falk-Randell '85] are $K(\pi, 1)$.

The following classes of non-linear arrangements are $K(\pi, 1)$
Toric Coxeter arrangements (via [Paolini-Salvetti 21])
Large type toric arrangements (via [Hendriks '85])
Fiber-type toric and elliptic arrangements [Bibby-D. '20]

Supersolvable posets
Let \mathcal{P} be a locally geometric poset.
An M-ideal of \mathcal{P} is a pure,
join-closed order ideal $\mathcal{Q} \subset \mathcal{P}$ s.t. $\overrightarrow{a, b \in \mathbb{Q} \rightarrow \text { aub } \subseteq Q}$

- For $z \in \mathcal{Q}$ any atom $a \notin \mathcal{Q}: z \vee a \neq \varnothing$.

- For every $x \in \max \mathcal{P}$ there is $y \in \max \mathcal{Q}$ s.t. y is modular in $\mathcal{P}_{\leq x}$

Definition. \mathcal{P} is supersolvable if there is a sequence of M-ideals $\{\hat{0}\}=\mathcal{Q}_{0} \subseteq \mathcal{Q}_{1} \subseteq \ldots \subseteq \mathcal{Q}_{k}=\mathcal{P} \quad$ with \mathcal{Q}_{i} of height $h\left(\mathcal{Q}_{i}\right)=i$.

Fiber-type abelian arrangements

Let \mathscr{A} be an abelian arrangement in $\operatorname{Hom}(\Gamma, \mathrm{G}) \simeq \mathrm{G}^{d}$
\mathscr{A} is fiber-type if $d=1$, or if there exists a rankone, split-direct summand $N \subseteq \mathbb{Z}^{d}$ and an ar-
 rangement \mathscr{B} in $\operatorname{Hom}(\Gamma / N, \mathrm{G}) \simeq \mathrm{G}^{d-1}$, such that:

- \mathscr{B} is fiber-type

- The natural projection $\mathrm{G}^{d} \rightarrow \mathrm{G}^{d-1}$
restricts to a fibration $M(\mathscr{A}) \rightarrow M(\mathscr{B})$ with
fiber homeomorphic to $G \backslash\{$ points $\}$.

Note. Fiber-type linear, toric, elliptic arrangements are $K(\pi, 1)$.

Main reference for what follows: [4]
For linear, resp. toric or elliptic arrangements the fiber is a punctured \mathbb{R}^{2}, resp. punctured \mathbb{C}^{*} or $\left(\mathbb{S}^{1}\right)^{2}$.

In any case the fiber is homotopy equivalent to a wedge of circles, and so the above LES shows that the complement of a fiber-type linear, toric or elliptic arrangement is $K(\pi, 1)$.

The projection illustrated in the left-hand side restricts to a fibration on the complement. The one on the right-hand side does not. Our goal is to characterize the subposets (circled orange in the pitcure) that do correspond to fibrations.

Supersolvable posets

Let \mathcal{P} be a locally geometric poset
TM-ideal
An M-ideal of \mathcal{P} is a pure
join-closed order ideal $\mathcal{Q} \subseteq \mathcal{P}$ s.t.

- For $z \in \mathcal{Q}$ any atom $a \notin \mathcal{Q}: z \vee a \neq \mathbb{Q}$

- For every $x \in \max \mathcal{P}$ there is $y \in \max \mathcal{Q}$ s.t. y is modular in $\mathcal{P}_{\leq x}$

Definition. \mathcal{P} is supersolvable if there is a sequence of M-ideals $\{\hat{0}\}=\mathcal{Q}_{0} \subseteq \mathcal{Q}_{1} \subseteq \ldots \subseteq \mathcal{Q}_{k}=\mathcal{P} \quad$ with \mathcal{Q}_{i} of height $h\left(\mathcal{Q}_{i}\right)=i$.

FActorizations

[Bibby-D. '21]
Let \mathcal{P} be a finite locally geometric poset.
Lemma. If \mathcal{Q} is a $T M$-ideal of P with $h(\mathcal{Q})=h(\mathcal{P})-1$, then

$$
\chi_{\mathcal{P}}(t)=(t-|A(\mathcal{P}) \backslash A(\mathcal{Q})|) \chi_{\mathcal{Q}}(t) .
$$

Theorem. If \mathcal{P} is strictly supersolvable via $Q_{0} \subseteq \ldots \subseteq \mathcal{Q}_{k}$, then

$$
\chi_{\mathcal{P}}(t)=\left(t-a_{1}\right) \cdots\left(t-a_{k}\right)
$$

$$
\text { where } a_{i}:=\mid A\left(\mathcal{Q}_{i}\right) \backslash A\left(\mathcal{Q}_{i-1} \mid\right.
$$

Note. This is not a necessary condition, see [Pagaria-Pismataro-Tran-Vecchi]

$$
\chi(t)=t^{2}-6 t+9=(t-3)^{2}
$$

Fibration theorem

Theorem. [Bibby-D. '21] Let \mathscr{A} be an abelian arrangement

$$
\mathscr{A} \text { is fiber-type if and only if } \mathcal{P}(\mathscr{A}) \text { is supersolvable. }
$$

In particular, if \mathscr{A} is linear, toric or elliptic, then \mathscr{A} is $K(\pi, 1)$.
Theorem. [Bibby-Cohen-D. '24+]
If \mathscr{A} is a supersolvable toric arrangement, then $\pi_{1}(M(\mathscr{A}))$ is an iterated semidirect product of free groups. (Almost direct if strictly supersolvable.)

Lemma. [Bibby-D. '21] If \mathcal{P} is a geometric poset, $G \circlearrowright \mathcal{P}$ is translative and $\mathcal{Q} \subseteq \mathcal{P}$ is G-invariant, then \mathcal{Q} is an M-ideal if and only if $\mathcal{Q} / G \subseteq \mathcal{P} / G$ is Application. Bloch-Kato property of $\pi_{1}(M(\mathscr{A}))$. [D.-Marmo ${ }^{2} 24+$
Tr-ivene

\qquad

References

[1] Martin Aigner. Combinatorial theory. Class. Math. Berlin: Springer, repr. of the 1979 ed. edition, 1997
[2] Federico Ardila. Semimatroids and their Tutte polynomials. Rev. Colomb. Mat., 41(1):39-66, 2007.
(3] Christin Bibby. Representation stability for the cohomology of arrangements associated to root systems. J. Algebr. Comb., 48(1):51-75, 2018.
[4] Christin Bibby and Emanuele Delucchi. Supersolvable posets and fiber-type abelian arrangements, 2024.
[5] Filippo Callegaro, Michele D'Adderio, Emanuele Delucchi, Luca Migliorini, and Roberto Pagaria. Orlik-Solomon type presentations for the cohomology algebra of toric arrangements. Trans. Am. Math. Soc., 373(3):1909-1940, 2020.
[6] Michele D'Adderio and Luca Moci. Arithmetic matroids, the Tutte polynomial and toric arrangements. Adv. Math., 232(1):335-367, 2013
[7] Alessio D'Alì and Emanuele Delucchi. Stanley-Reisner rings for symmetric simplicial complexes, G-semimatroids and abelian arrangements. J. Comb. Algebra, 5(3):185-236, 2021.
[8] Emanuele Delucchi, Noriane Girard, and Giovanni Paolini. Shellability of posets of labeled partitions and arrangements defined by root systems. Electron. J. Comb., 26(4):p4.14,23, 2019.
[9] Emanuele Delucchi and Kolja Knauer. Finitary affine oriented matroids. Discrete \& Computational Geometry, 2024.
[10] Emanuele Delucchi and Sonja Riedel. Group actions on semimatroids. Adv. Appl. Math., 95:199-270, 2018.
[11] Michael Falk and Richard Randell. The lower central series of a fiber-type arrangement. Invent. Math., 82:77-88, 1985.

The characteristic polynomial of the poset in the example is $\chi(t)=t^{2}-4 t+4=(t-2)^{2}$. This polynomial is divisible by $(t-2)$ (i.e., the characteristic polynomial of the TM-ideal depicted in red) but not by $(t-1)$ (i.e., the characteristic polynomial of the M-ideal depicted in blue, which is not a TM-ideal).

Further reference for factorizations of characteristic polynomials of geometric posets: $[15]$. See also [16].
[12] Sze-Tsen Hu. Homotopy theory, volume 8 of Pure Appl. Math., Academic Press. Academic Press, New York, NY, 1959.
[13] Yukihito Kawahara. On matroids and Orlik-Solomon algebras. Ann. Comb., 8(1):63-80, 2004.
[14] Roberto Pagaria. Two examples of toric arrangements. J. Comb. Theory, Ser. A, 167:389-402, 2019.
[15] Roberto Pagaria, Maddalena Pismataro, Tan Nhat Tran, and Lorenzo Vecchi. Inductive and divisional posets. J. Lond. Math. Soc., II. Ser., 109(1):32, 2024. Id/No e12829.
[16] Bruce E. Sagan. Why the characteristic polynomial factors. Bull. Am. Math. Soc., New Ser., 36(2):113-133, 1999.
[17] Richard P. Stanley. Modular elements of geometric lattices. Algebra Univers., 1:214-217, 1971
[18] Hiroaki Terao. Modular elements of lattices and topological fibration. Adv. Math., 62:135-154, 1986.
[19] Michelle L. Wachs and James W. Walker. On geometric semilattices. Order, 2:367-385, 1986.

