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Throughout we will suppose that P be a chain-finite poset (all chains in P have finite cardinality),
indeed all our posets will be of finite length (i.e., the cardinality of the chains P is bounded).
Given x € Plet P>, :={2' € P |2’ >z}, P<,:={2’ € P| 2/ <z}

TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY Define the set of joins, resp. of meets of a pair of elements z,y € P as
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Emanuele Deluechi The poset P is a meet-semilattice if |z A y| = 1 for all x,y € P. If additionally |z V y| = 1 for all
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x,y € P, then P is a lattice.

Lugano, Switzerland.

A poset P is bounded below if it has a unique minimal element, that is called 0.
Le., there is 0 € P such that P, = P. We will say that P is a "poset with 0”.

ASGARD24
ey o may 27,202 A poset rank function on a poset P with 0 is a function p : P — N with p(0) = 0 and such that

x >y implies p(x) = p(y) + 1. (Recall that 2 > y means that = > z > y implies z = y for all z.)

Note that if such a rank function exists, it is unique.

X,z) = 0y ifx <
{ xz%u Y =y Geometry
"~ Combinatorics
* x
P(</): poset of
conn. comp. of
intersections.
x<yifx2Dy

= u (¢, )=
If P has a 0 and rank function p, its
(3
RO Kol > £33 Xah= 8- Teag e 4 Xo(l)» €7 -3¢ 43
Yol-0) = - @ Xplo) = S

Geometry
Combinatorics
P(</): poset of characteristic polynomial is
conn. comp. of

intersections. !

xp(t) = X pup 8,200
xeP

o/ - set of subsets MOBIUS FUNCTIONS AND POSET POLYNOMIALS of - set of subsets
of ambient space X Let P be a locally finite partially ordered set (poset). m of ambient space X
@ The Mobius function of P is p : P x P — Z, defined recursively by @
M(o/):= X\ Ue/ =X\ U«
nxy) =0 ifx £y

x<yifx2Dy A




HYPERPLANES AND GEOMETRIC LATTICES

rk(I) :=dim(a; | i € I)

= codim m(u,-)L =:p(I)

i€l

CRYPTOMORPHISMS (MATROIDS)

S = {atoms of L}, rk(I) = p(VI)

Functions rk : 25 — N Chain-finite lattices

satisfying (R) L satisfying (G1)

L={ACS|rk(AUs) >rk(A)foralls ¢ A}

(D) "2 xe ()

(S finite)

FINITE MATROIDS

Rank functions / intersection posets
... of central hyperplane arrangements

Representable m.

™
| >\ Orientable m

...of pseudosphere arrangements

Number of “regions”: = xx(—1)

(tropical linear spaces)

matroids / geometric lattices

Infinite example: set of all subspaces of V.

Let V be a vectorspace of (finite) dimension d over the field K.
An arrangement of hyperplanes in V is any locally finite family </ = {H,};cs,
where H; = {v € V | a;(v) = b;} for some choice of tuples (a;);es € V* and (b;);es C K.
The associated rank function is tk. : 25 — N, rk(X) := dim{a; | i € X).
Call o central if b; = 0 for all ¢ (this implies |S| < 00). In this case, P(&) satisfies the following.
Definition. A geometric lattice is a chain-finite lattice P such that
(Gl) z <y < y € zVa for some a > 0.

Notice that a chain-finite meet-semilattice is always bounded below. In any bounded-below poset
P, the elements of A(P) :={a € P | a > 0} are called atoms.

Remark. Every geometric lattice admits a poset rank function p. If &7 is a hyperplane arrangement,
per () = codim(X) for all X € P(«).

In turn, the rank function rk., satisfies the following definition.

Definition. A matroid rank function on the ground set S is any monotone function rk : 29 — N
s.t.
0<rk(X)<I|X|] VXCS

(R): k(X UY) +rk(X NY) <rk(X)+rk(Y) VX, Y CS
VX CSIY CX, Y| <oo, rk(X) =rk(Y).
If |S| < o0, define

xrk(t) == Z (—1) X1 k() =rk(X)
XCS

For matroids in this (finitary) setting see [1].



AFFINE HYPERPLANE ARRANGEMENT (K = R)
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AFFINE HYPERPLANE ARRANGEMENTS (K = RR)

T 111

, (b1, by, b3, by) = (0,0,0,1
1 -1 0 0:| (1234) ( )

[o1, a0, 03, 4] = {

I such that N;e/H; # @
{1 {2}, (31 {4}
{1,2},{1,3},{2,3}, {1,4},{2,4}
{1,2,3}

o These are the central sets.

The family of central sets K C 2° is an abstract simplicial complex.

(Le:ifI€e Kand ] C I, then ] € K)

For I € K setrk(I) := dim(a; | i € I). This defines a semimatroid.

[Kawahara ‘04, Ardila ‘07]

We now consider an example of an affine hyperplane arrangement. Then, the poset of intersections
has the following structure.

Definition. A geometric semilattice is any poset of the form L \ L>, where L is a geometric
lattice and a € A(L) is an atom of L.

Equivalently, a geometric semilattice is any chain-finite meet-semilattice P that satisfies (G1) —
thus admits a rank function p — and

(G2) for all z,y € P and for all I C A(P) s.t. y € VI and p(z) < p(y) = ||,
there is @ € I with 2V a # 0.

For this and more on geometric semilattices see [19].

Definition. A semimatroid rank function is any monotone function rk :  — N from a finite-
dimensional simplicial complex K to the natural numbers satisfying

0<rk(X)<|X| VX ek

tk(XUY)+1k(X NY) <rk(X) +1k(Y) VX, Y CSst.XUY e

for all X,V € K,rk(X) =rk(X NY) implies X UY € K

for all X, Y € K,rk(X) < rk(Y) implies X Ua € K for some a € Y \ X

(R°):

For finite semimatroids [13, 2]. The infinite case is in [10].

CRYPTOMORPHISMS (SEMIMATROIDS)

Ki={ICA®L)|VI£®}, rk(I)=p(VI)

Functions rk : K — IN Chain-finite semilattices

satisfying (R+) L satisfying (G1) & (G2)

L={A€K|1k(A") >1k(A)forall A’ € K, A’ D A}

() ™ xe(r)
(S finite)

ABSTRACT THEORY

Semimatroid (I, rk) / intersection posets £

of affine hyperplane arrangements

N\

NN
of “pseudoarrangements” - :

[Baum-Zhu ‘15, D.-Knauer DGC "24]

semimatroids / geometric semilattices




TORIC ARRANGEMENTS

[a1, a2, 03] = ! r
1 -1 0

Let aq,...,a, € I' ~ Z% be an n-tuple of nonzero, full-rank elements.

Definition. The associated toric arrangement is the set &/ = {Hj,...
H; ={z € (C")?¥]| 2% =1}.

,H,} of subtori

Fix p,q € N and let G = R? x (S%)¢

Definition. The associated abelian arrangement in G¢ is

o ={Hy,...,H,}, H;=ker Hom(T,G) = G, p — p(a;))
If (p,q) = (2,0) call & ”linear”
if (p,q) = (1,1) the arrangement & is toric;
if (p,q) = (0,2) call o/ "elliptic”

TORIC ARRANGEMENTS

1
1

&

o P(A):

[ay,a2,a3) = { 1 B (1) }; for I C [n]: m(I) = #Tor(2%/(a;)).

x x

The pair (rk, m) satisfies the axioms of an arithmetic matroid...
[d’Adderio-Moci ‘13, Brandén-Moci ‘14 ]
... but it does not determine P(«/): no cryptomorphism.
[Pagaria “17]
But P(«/) determines ring H*(M(</), Q)

[Callegaro, D’Adderio, D., Migliorini, Pagaria]

EXAMPLE: COXETER ARRANGEMENTS EXAMPLE: COXETER ARRANGEMENTS

Let®: {ay,...,a,} C Z roots of Coxeter system of type ABCD. Let®: {a,...,a,} C Z roots of Coxeter system of type ABCD.

Let </p be the associated Abelian arrangement. Let </p be the associated Abelian arrangement.

/| /|

Linear, toric, elliptic:

|-

Toric case: g is “covered”
- Explicit description of P (/) via “enriched partitions” [Bibby ‘18]
- P(«) is EL-shellable [D.-Girard-Paolini ‘19]

by the associated affine

Weyl reflection arrangement.

TRANSLATIVE ACTIONS

Understand abelian arrangements as “quotients” of linear, periodic ones.

M@

—) periodic (translations) Toric, Elliptic, etc.

Xnyx +9 \\ If x and gx have upper bound, then x = gx.

For all Abelian arrangements:

Plet) ~P() /27

Given any abelian arrangement .7 let 7! denote the lift of .7 to the universal cover of G<.

Note: in general, </ is an arrangement of subspaces (not necessarily of hyperplanes).
Yet, for every abelian <7 the poset P(&/!) is a geometric semilattice (see, e.g., [7]).

References.

For the Coxeter case see [3, 8].

For arithmetic matroids see [6].

Two toric arrangements with different posets but same arithmetic matroids [14].
For the cohomology computation in the toric case see [5].

For the ”oriented matroidal counterpart” of semimatroids and group actions see [9].



GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:
L: a chain-finite geometric semilattice; }

G: a group acting on £ by poset automorphisms.
Pu=L/G:={GCGx|xeL}; Gx < Gy iff x<gy forsomeg € G.
This is a poset (eg., since £ has a rank function)

Definition. A c.-f. poset P with Ois geometric if it satisfies (G1), (G2).

Theorem. Let G O P be a translative action. If P is geometric, so is P/G.

Corollary. If the action « is translative, then P, is a geometric poset.

So P(«/) is geometric for every abelian arrangement .«

GROUP ACTIONS ON GEOMETRIC SEMILATTICES

From now:
L: a chain-finite geometric semilattice; }

G: a group acting on £ by poset automorphisms.
Pu=L/G:={GCGx|xeL}; Gx < Gy iff x<gy forsomeg € G.
This is a poset with rank function p, and set of atoms E,. For I C E, let
rkq (I) := max pa(VI), me(l) :==#V I
Theorem. (Eq, rk,) is a (semi)matroid if and only if « is translative.
Definition.

Tuly) = X ma(1)(x = P E-ms)(y — 1)1k
ICE,

GROUP ACTIONS ON SEMIMATROIDS

Let G be a group

T

A G-semimatroid A G-geometric semilattice

a:GO (K rk) a:GOL

is an action of G is an action of G

on a semimatroid (K, rk) on a geometric semilattice £

by automorphisms of K. by poset-automorphisms.

CRYPTOMORPHISM! v/

If o is translative: (1) Ty (x, y) has positive coefficients

@) xp, (1) = (=1 EIT, (1 - 1,0) [D.-Riedel 18]

TORIC ARRANGEMENTS AND EQUIVARIANT MATROID THEORY

LECTURE 2: POLYNOMIALS AND STANLEY-REISNER RINGS
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We call a poset pure if all maximal chains have the same (finite) length.

Recall. A geometric poset is any bounded-below, pure poset satisfying (G1) and (G2).

An action of a group G on a chain-finite poset P is translative if, for all g € G, x V gz # () implies

T = gz.

Main references for this lecture: For the Tutte polynomial part: [10], for the remainder [7].

GROUP ACTIONS ON SEMIMATROIDS

7* 0

dy| dy dy

S:={ay,bj,cx,di}ijricz, L = posetof intersections

EXAMPLE (G = Z?2)

2 -1
3N 4VLV()/2(7>')_1
Eoi=5/G = {a,b,c,d} PR S ST S PO i () |

s
K:i={ICE|VI#®} = {funfug® Goo fao Fan Fagot H WM{

2-1 =1
e o | a- (1) B=
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ma(A) = |V Al 2 E—— Z
— _ )Aa(E -t (4) () _ 1yl -t (a) V'O a6 p
Ta(x,y) = A;Eama(f‘)(x 1) -1 Mok — 4 2641

— _(K(ﬂv):\{zw‘xz—(b,)y 1—5‘

We write a : G O L for the data of a group action
on a geometric semilattice L.

We have seen that if « is translative, then
(1) Py := L/G is a geometric poset.
(2) (Ea,rke) is a (semi)matroid.

(3) xp, (t) = (1) BTy (z — 1) =y, (¢)
(4) T.(x,y) has positive coefficients.

We now explain the deletion-contraction recursion
in the case « is translative.



DELETION / CONTRACTION

e = Geg;  stab(e) := stab(e;)

a/e: stab(e) O 4 4 o
(T " )

TRANSLATIVE ACTIONS

[D.-Riedel ‘18]

Recall: if a is translative, then (K, rky) is a semimatroid on E,.

Aloop is any e € E, such that rky(e) = 0;
A coloop is any e € E such that rke (I'\ {e}) < rkq(I) forall I > e.

Theorem. If a is translative, for all e € E, we have the recursion
Ta(x,y) = (x = 1) Tpe (%) + (v = D Ta/e(x,y),
according to whether e is a coloop or a loop, where

a\e:=GO (K, tk)\e, a/e:=stab(e) O (K,rk)/e.

SIMPLICIAL COMPLEXES AND THEIR FACE RINGS

A simplicial complex A on a finite vertex set V has a poset of faces

A, 2 a ‘ peland
L TR T B O W £ )

1 1 13 1%

If |V| < oo, the face ring (“Stanley-Reisner Ring”) of A (over a field K) is

T%A)

[Tx
vET

R(A) =Ko | v € v]/(

Let (K, k) be a semimatroid. Call S the set vertices of K and let A C S.

Set

Kya={X\A|X €K}, tkya =1k ,;
Kia={Xeka|XUAcK};1k/y: K4 = N, 1k, 4(X) :=1k(X UA) —rk(A)

Definition.
The deletion of A from K is the semimatroid (K,rk) \ A := (KC\ 4, rky 4).
If A € K, the contraction of A in (IC,rk) is (K,1k)/A := (K 4,1k, 4).

Note. The geometric semilattices of deletion and contraction of the semimatroids are as follows:

L((K,rk)/A) = | LI, 1K) 5a;

a€A

LUK, tk)\ A) = {VX | X CA(L)\ A} C £

Now let « : G O (K, rk) denote a simplicial, rk-preserving action of a group G on K, and let e € F,,.
Recall that then e = Gs is the orbit of some s € S.

Definition.
The deletion of e from « is the semimatroid a \ e : G O (K, rk)\e.
The contraction of e in « is /e : stab(s) O (K, rk)/s.

Note. If « is translative, then so are a/e and « \ e.

Note. We have P,/ = Pa>c. Moreover, P\, is the poset obtained as all elements of P, that can
be obtained as joins of atoms different than e; more precisely: P\ = UAQA(PQ)\{e} VA.

Warning. In the deletion-contraction formula given in the slide, the factor (x — 1) appears only if
e is a coloop; the factore (y — 1) only if e is a loop.

Let (K, 1k) be a semimatroid. The associated independence complex is the simplicial complex
Z(K,rk) :={I € K| rk(I) = |I]}.

Note. The poset of faces of this simplicial complex, Pr(k k) is a geometric semilattice, and all its
lower intervals are boolean.

Note. If the semimatroid has no loops and has geometric semilattice £, this is isomorphic to the
abstract simplicial complex of independent sets of atoms Z(L) = {I C A(L) | |I| = p(VI)}.

Definition. Let a : G O (K,rk) be a group action on a semimatroid. Define the independence
poset

To := Prk0/G
Note. If the action on K is translative (equivalently: the action on the associated semilattice is
translative), then so is the induced action on Pr(j k).



ARRANGEMENTS AND MATROIDS

Let o7 be a linear arrangement; Z,, complex of “independent sets”

A, L independent” s
[2) 3 [a3]

t ¢

Algebraic interpretation of some number sequences / polynomials. E.g.,

HT(1/t,1)

Hilb(R(Zo) ) = =7 =7~

(This really is a “matroid” statement)

GROUP ACTIONS ON SIMPLICIAL POSETS . . .
Note. For every group action on a semimatroid «,

the poset Z, is simplicial.

[D-d’Ali 21]
Call a chain-finite poset P simplicial if = (1) P is bounded below

(2) P<y is Boolean for all x.

Examples. The face poset Py of a simplicial complex A. Note. General for this and the remainder of this

lecture [7].

The independence poset Z(L) of a geometric semilattice.
Theorem. Let G act by automorphisms on a simplicial poset P. Then
P/G is a simplicial poset < the action is translative.

Corollary. If a : G O L translative, then Z, is a simplicial poset.

For toric arrangements see also [Martino/Lenz]

STANLEY-REISNER RINGS
[..ala Yuzvinsky]

Let P be a simplicial poset. For @ # M C max P set M" := (,,cp1 P<y.
M" is the poset of faces of a simplicial complex Ay
X(P):={Am|@#MCP}, Ay, <Ay, if My 2 M,

Y(P): sheafon X(P).  Y(P)(Apm) := R(Am), natural projections.

Definition. The Stanley-Reisner ring of P is the ring of global sections

R(P) :=TY(P)
Theorem If |P| < co, then R(P) is Stanley’s “face ring” of P.
(In particular, R(Pa) ~ R(A) for every finite simplicial complex A.)

[D.-D’Ali ‘21, See also: Lii-Panov ‘11, Brun-Rémer “08]

RINGS OF INVARIANTS

Let P be a simplicial poset.

Every action G O P induces an action G O R(P).

Theorem. If the action G O P is translative, then

T S
ok R(P)C ~ R(P/G)

[Garsia-Stanton ‘86: finite Coxeter complexes]

[Reiner ‘92: finite balanced complexes]

A Swile soe- ﬁc\»A it‘u«fo(‘u\ni ”Lb‘“ induas C“(/\”(?A
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Example. A simplicial poset P and its associated X (P).

Below is the sheaf Y (P) and one of its global sections.

kb, cl 1
(bc)
kla,b,c] 1 b
(abc) ta
,b,cl kla,b,c] kb, c] 1+ab+abc 1+4ab 1+b%c



THE COHEN-MACAULAY PROPERTY

A f.d. simplicial complex A is Cohen-Macaulay if, for every ¢ € A,

the link of ¢ in A, 1k(), is connected through codimension 1. ~,
— <—Hluw»,z)

\ ]
1
A 1. (simplicial) poset P is Cohen-Macaulay if the simplicial complex A(P)

of all chains in P is Cohen-Macaulay.

Note When saying ”“Cohen-Macaulay in characteristic x” replace by:
13

H;(lka(0),K) = 0 for all i < dim(lka(c)) and'char(KK) = .

BACK TO GEOMETRIC SEMILATTICES

Let £ be a geometric semilattice, « : G O £ a translative action.
T, (1,1
Observation. Hilb(R(Z,)®, t) = %.

Definition an action & : G O L is refined if it is translative, G is free abelian,

and there is k € IN such that, for every x € L:

stab(x) is a direct summand of G, free of rank k - (p(£) — p(x))

Theorem. If « is refined, then P, and Z, are Cohen-Macaulay in character-

istic 0 and in every characteristic not dividing an explicitly computable 5.

Note. Top Betti numbers: T, (0,0) and —T,(0,1).

"EXPLICITLY COMPUTABLE" ...

Leta : G O L be a refined action on a geometric semilattice with associated

underlying matroid (Eq, rky).

For every I C E, let
G := G/ stabg(I).

Then:
8y = lem{dy(B) | B basis of (Eq, rkq)},

where, for every basis B,

6x(B) := | G® : @ stabgy (B \ b)
beB
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Let P be a geometric lattice with rank function p. An element z € P is modular in P if
plaVve)+plzAy) =plx)+ p(y) for all y € P.

Theorem. [17] Suppose that P is finite. If x is modular in P, then xp_, (¢) divides xp(t). Moreover,

if z <1, then

Xp(t) = xpe, (H)(t — a), where a = [A(P) \ A(P<.)

Definition. A geometric lattice P is supersolvable if it possesses a maximal chain consisting of

modular elements.

Corollary. If P is a finite geometric lattice that is supersolvable via a chain 0 = zo<z1 <. .. <zq = 1,

then

d
XP(t) = H (t - |A(PSII) \A(Pﬁwi—lﬂ)

2
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FIBRATIONS OF HYPERPLANE ARRANGEMENTS

oA

.
épmj,

AR

{
A

[Falk-Randell ‘85; Terao ‘86]

-

Modular Elements

Fiber-type < Supersolvable

Let P be a geometric lattice and x a modular element with z < 1.

Consider a,a’ € A(P)\ A(P<,) and let y := a V a’. Then p(y) =2 and z Vy = 1. Modularity of =
implies R

p(1) +plx Ny) = p(z Vy) +ple Ay) = p(z) + ply) = (p(1) —1) +2
whence p(z A y) = 1. This means that there is b € A(P<y) with y > b.

This fact has a geometric meaning: if P is the lattice of intersections of a central hyperplane
arrangement .2/ and if ¢ is a modular intersection of dimension 1, then the intersection of any two
hyperplanes not containing ¢ will be contained in some hyperplane that does contain ¢. This means
that the projection along ¢ defines a fibration of the complement of <.

Definition. Let E, B be topological spaces. A continuous surjection p : E — B is a bundle map
(or "has the bundle property” as in [12, II1.4, p. 65]) if there exist a topological space F (called the
"fiber space”) such that for every b € B there is an open neighborhood U and a homeomorphism
¢v : U x F — p~1(U) such that pgy is the canonical projection U x F — U.

Theorem 4.1 of [12] proves that every bundle map satisfies the homotopy lifting property (called
”CHP” for ” Covering Homotopy Property” in [12]) for every CW-complex, and thus is a fibration in
the sense of Serre. In particular, if p : E — B is a bundle map with fiber F', ¢y € F is any basepoint,
by := p(ep) and xg € F is such that ¢(bg, xg) = ep, there is a long exact sequence of homotopy groups

o= ’/Tn(F,.’Eo) — Wn(E,eo) — Wn(B,bo) — anl(F,l'o) o ’/To(B,bo) — 0.

In particular, if 7;(F, z¢) = 0 for ¢ > 1, we can conclude 7;(B, by) ~ m;(F, eq) for all i > 1.

Falk and Randell [11] studied fiber-type arrangements of hyperplanes. These are central hyper-
plane arrangements .7 in C¢ that possess an intersection ¢ of dimension 1 such that the projection p
of C? along ¢ restricts to a bundle map M (/) — M ('), where /' := {p(H) | H € o/ s.t. £ C H}
consists of the projections of all H € & that contain £ is recursively required to be fiber-type, and
the fiber then is homeomorphic to C minus a finite set of points.

Repeated application of the Long Exact Sequence argument above shows that a fiber-type arrange-
ment &/ has (M («/)) =0 for all 4 > 1.

Terao’s theorem [18] shows that a hyperplane arrangement 7 is fiber-type if and only if P(«7) is
a supersolvable geometric lattice. In fact, ¢ < 1 is a suitable intersection of dimension 1 if and only
if it is a modular element in P(&).



THE K(71,1)-PROBLEM

An arrangement ¢/ is called K(7,1) if 71;( M()) is trivial fori > 1.

K(7,1) problem: does P (/) know whether « is K(7,1)?

For hyperplane arrangements this is a classical and storied problem.
E.g., finite real [Deligne ‘72] and complex [Bessis ‘12] reflection arrangements,

as well as fiber-tipe arrangements [Falk-Randell ‘85] are K(7,1).

The following classes of non-linear arrangements are K(77,1).
Toric Coxeter arrangements (via [Paolini-Salvetti ‘21] )
Large type toric arrangements (via [Hendriks ‘85])

Fiber-type toric and elliptic arrangements [Bibby-D. ‘20]

FIBER-TYPE ABELIAN ARRANGEMENTS

Let < be an abelian arrangement in Hom(I',G) ~ G*.

< is fiber-type if d = 1, or if there exists a rank-

@

one, split-direct summand N C 7% and an ar-
rangement % in Hom(I'/N,G) ~ G9!, such
that:

* A is fiber-type

e The natural projection GY — Gi-!

restricts to a fibration M(«/) — M(%) with

.

fiber homeomorphic to G \ {points}.

Note. Fiber-type linear, toric, elliptic arrangements are K(7,1).
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Main reference for what follows: [4]

For linear, resp. toric or elliptic arrangements the
fiber is a punctured R?, resp. punctured C* or (S*)2.

In any case the fiber is homotopy equivalent to a
wedge of circles, and so the above LES shows that
the complement of a fiber-type linear, toric or ellip-
tic arrangement is K (m, 1).

The projection illustrated in the left-hand side restricts to a fibration on the complement. The one
on the right-hand side does not. Our goal is to characterize the subposets (circled orange in the

pitcure) that do correspond to fibrations.

SUPERSOLVABLE POSETS

Let P be a locally geometric poset.

An M-ideal of P is a pure,

join-closed order ideal Q C P s.t.
abe @~ avh CR

eForz e Qanyatoma ¢ Q:zVa # @.

e For every x € max P thereis y € max @ s.t. y is modular in Py

Definition. P is supersolvable if there is a sequence of M-ideals

{0}=00C Q1 C...C Q=P with Q; of height h(Q;) = i.

SUPERSOLVABLE POSETS

Let P be a locally geometric poset.

TM-ideal
An M-ideal of P is a pure,

join-closed order ideal Q C P s.t.

eForz e Qanyatoma ¢ Q:zVa # @.
lavzl =1 0

e For every x € max P thereis y € max @ s.t. y is modular in Py
strictly
Definition. P is supersolvable if there is a sequence of M-ideals

{0}=00C Q1 C...C Q=P with Q; of height h(Q;) = i.
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FACTORIZATIONS

[Bibby-D. 21] The characteristic polynomial of the poset in the

Let P be a finite locally geometric poset. example is X(t) = t2 —4t+4 = (t - 2)2 This pOly-

e 1f Qs ThL-ideal of P it (@) — h(P) — 1, then S D D nomial is divisible by (¢t — 2) (i.e., the characteristic

A polynomial of the TM-ideal depicted in red) but not

xp(t) = (£~ [A(P)\ A(Q)) xo(D)- by (t — 1) (i-e., the characteristic polynomial of the

Theorem. 1f P is strictly supersolvable via Qp C ... C Qg, then M-ideal depicted in blue, which is not a TM-ideal).
Xp(t) = (t—ar)---(t—ap) W ‘

where a; := |A(Q;) \ A(Q;1] > Further reference for factorizations of characteristic

Note. This is not a necessary condition, see [Pagaria-Pismataro-Tran-Vecchil ‘ polynomials of geometric posets: [15]. See also [16].

v
@ x(t) =12 —6t+9 = (t—3)?

FIBRATION THEOREM

Theorem. [Bibby-D. ‘21] Let </ be an abelian arrangement

< is fiber-type if and only if P (/) is supersolvable.
THANK YOU!
In particular, if <7 is linear, toric or elliptic, then « is K(7,1).

“Takk skal du ha”
Theorem. [Bibby-Cohen-D. ‘24+]

If < is a supersolvable toric arrangement, then 71 (M(</)) is an iterated

semidirect product of free groups. (Almost direct if strictly supersolvable.)

Lemma. [Bibby-D. 21] If P is a geometric poset, G O P is translative and
Q C P is G-invariant, then Q is an M-ideal if and only if Q/G C P/G s.

Application. Bloch-Kato property of 711 (M(#/)). [D.-Marmo 24+]
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