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Abstract. We present a combinatorial analysis of fiber bundles of gener-

alized configuration spaces on connected abelian Lie groups. These bundles
are akin to those of Fadell–Neuwirth for configuration spaces, and their exis-

tence is detected by a combinatorial property of an associated finite partially

ordered set. This is consistent with Terao’s fibration theorem connecting bun-
dles of hyperplane arrangements to Stanley’s lattice supersolvability. We ob-

tain a combinatorially determined class of K(π, 1) toric and elliptic arrange-

ments. Under a stronger combinatorial condition, we prove a factorization of
the Poincaré polynomial when the Lie group is noncompact. In the case of

toric arrangements, this provides an analogue of Falk–Randell’s formula re-

lating the Poincaré polynomial to the lower central series of the fundamental
group.

1. Introduction

The fiber bundles studied by Fadell and Neuwirth [FN62] provide a fun-
damental tool in the study of configuration spaces on manifolds. In the case of
configurations of points in the plane C, these bundles can be generalized to com-
plements of certain arrangements of hyperplanes in a complex vector space known
as “fiber-type” [FR85]. Such arrangement complements are K(π, 1)s and exhibit
a noteworthy relationship between the Poincaré polynomial and the lower central
series of the fundamental group, first observed in the case of configuration spaces
by Kohno [Koh85] and proved in general by Falk and Randell [FR85]. Terao [Ter86]
showed that a linear hyperplane arrangement is fiber-type if and only if the poset
of intersections satisfies a purely combinatorial condition, which was defined by
Stanley [Sta72] and motivated by the structure of the lattice of subgroups in a
supersolvable group.

Much less is known for generalized configuration spaces on manifolds other
than Euclidean space. An abelian arrangement is a finite set of subgroup cosets in
a connected abelian Lie group (Definition 3.1.1). The complement of the union of
all elements of the arrangement inside the ambient Lie group is the manifold of
interest here. An arrangement is called fiber-type if either it consists of single points,
or if its complement fibers over the complement of a lower-dimensional fiber-type
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arrangement. The resulting tower of fibrations generalizes the one associated to
configuration spaces.

The combinatorial data of an arrangement is the poset of layers, i.e., the set
of all connected components of intersections of elements of the arrangement, par-
tially ordered by inclusion. The significance of this poset was first recognized by
Zaslavsky [Zas77]. In this context we are able to define a notion of supersolvabil-
ity (Definition 2.5.1) based on a suitable extension of the concept of modularity
in lattices (Definition 2.4.1). A key difference here is that, for some topological
consequences, we need a stronger condition which we call strict supersolvability
(Definition 5.1.4).

Theorem A (Fibration Theorem, Theorem 3.4.3 and Theorem 5.3.1). An essen-
tial abelian arrangement is fiber-type if and only if its poset of layers is supersolv-
able. If the poset of layers is strictly supersolvable then the arrangement bundles
can be pulled back from Fadell–Neuwirth’s bundles of configuration spaces.

The latter part of Theorem A was first observed by Cohen [Coh01] in the
case of hyperplane arrangements. This allows one to pull back properties of the
bundle, such as a description of monodromy or a section of the configuration space
bundle (the latter exists for all connected abelian Lie groups, see Corollary 5.3.3).
We leave open these questions when an arrangement is not strictly supersolvable
(Question 5.3.8).

As a motivating example for Theorem A we consider Dowling posets as de-
fined by the first author and Gadish in [BG21]. These arise in the study of orbit con-
figuration spaces – an equivariant analogue to ordinary configuration spaces – and
generalize the lattices of Dowling [Dow73]. Xicoténcatl [XM97] established an equi-
variant analogue of Fadell–Neuwirth’s bundles for orbit configuration spaces, cor-
responding to the fact that Dowling posets are supersolvable (Proposition 2.6.1).

Since the work of Brieskorn and Deligne [Bri73, Del72], a long standing prob-
lem in arrangement theory is to classify which arrangement complements are
K(π, 1). As a corollary to Theorem A, we obtain a combinatorially determined
class of K(π, 1) toric and elliptic arrangements (i.e., when the Lie group is C×

or (S1)2). Using the aforementioned bundle section for strictly supersolvable ar-
rangements, this also yields a description of the fundamental group.

Corollary B (Corollary 3.4.4 and Corollary 5.3.4). If the poset of layers of a lin-
ear, toric, or elliptic arrangement is supersolvable, then the arrangement comple-
ment is a K(π, 1) space. If the poset is strictly supersolvable, then the fundamental
group is an iterated semidirect product of free groups.

On the purely combinatorial side, we give an abstract definition of a geometric
poset (Definition 4.1.1) that seems to provide the right level of generality for a
study of posets of layers of arrangements, and that reduces to the well-known
notion in the case of (semi)lattices, see [WW86]. Geometric posets support an
equivalent definition of supersolvability (Theorem 4.1.4) which, for posets of layers
of affine hyperplane arrangements, agrees with the definition given by Falk and
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Terao [FT97]. We prove that a geometric semilattice is supersolvable if and only if
its canonical extension to a geometric lattice is supersolvable (Theorem 4.2.4). The
topological consequence of this is an affine analogue of Terao’s fibration theorem
(Theorem 4.3.3).

Stanley [Sta72] proved that the characteristic polynomial of a supersolvable
lattice has positive integer roots, and we observe the same phenomenon for strictly
supersolvable posets. Through a formula of Orlik and Solomon [OS80] for complex
hyperplane arrangements and Liu, Tran, and Yoshinaga [LTY21] for noncompact
abelian Lie group arrangements, this yields a factorization of the Poincaré polyno-
mial for arrangement complements when the poset of layers is strictly supersolv-
able.

Theorem C (Polynomial Factorization, Theorem 5.2.1 and Corollary 5.2.6). Let
P be a strictly supersolvable poset. Then there is a partition A1 ⊔ · · · ⊔ An of the
atoms of P such that the characteristic polynomial of P factors as

χP(t) =

n∏
i=1

(t− |Ai|).

If P is the poset of layers for an essential arrangement in Gn where G = (S1)d×Rv

with v > 0, then the Poincaré polynomial of the arrangement complement is

Poin(t) =

n∏
i=1

(
(1 + t)d + |Ai|td+v−1

)
.

The poset of layers of every abelian Lie group arrangement A is the quo-
tient of a geometric semilattice by the action of a free abelian group (see Ex-
ample 4.4.4 for a precise statement). We prove that a geometric semilattice is
supersolvable if and only if its quotient by a suitable group action is supersolv-
able (Theorem 4.4.12). Topologically, this relates the fiber-type property of an
abelian arrangement complement with that of a covering space (Corollary 4.4.13
and Corollary 4.4.14). Combinatorially, this shows that our notion of supersolv-
ability is a natural extension of the classical one for matroids to the context of
group actions on semimatroids, see [DD21].

Now consider a noncompact abelian Lie group and an arrangement bundle for
which the algebraic monodromy is trivial. This includes all strictly supersolvable
toric arrangements (Remark 5.3.7). In fact, strict supersolvability is necessary
for the monodromy to be trivial, and we obtain a tensor decomposition of the
cohomology algebra for such arrangements (Theorem 5.3.6) which can in principle
be expressed combinatorially. Finally, for toric arrangements, a combination of our
results about Poincaré polynomial factorization, existence of a section, and trivial
monodromy yields a formula akin to Falk and Randell’s [FR85] lower central series
formula.

Theorem D (Lower Central Series Formula for Toric Arrangements, Thm. 5.3.10).
Let A be a strictly supersolvable toric arrangement and let A1 ⊔ · · · ⊔ An be the
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induced partition of the atoms in its poset of layers. For j ≥ 1, let φj be the rank
of the jth successive quotient in the lower central series of the fundamental group
of the complement of A. Then

∞∏
j=1

(1− tj)φj =

n∏
i=1

(1− (|Ai|+ 1)t).
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2. Supersolvable locally geometric posets

We recall basic ideas about posets and supersolvable geometric lattices. We
then introduce the definitions of M-ideal (Definition 2.4.1) and supersolvability
(Definition 2.5.1), extending the notions of modular elements in and supersolv-
ability of geometric lattices to our setting of locally geometric posets. We conclude
this section with a motivating example: Dowling posets (Proposition 2.6.1).

2.1. Generalities about posets. Let P be a partially ordered set (or “poset”)
with partial order relation <. For x, y ∈ P write x ≤ y when either x < y or
x = y(in this case we say that x and y are comparable), and x ⋖ y when x < y
and, for all z, x ≤ z < y implies x = z. Given any x ∈ P let P<x := {y ∈
P : y < x}, partially ordered by the restriction of <. The posets P≤x, P>x and
P≥x are defined analogously. The interval between two elements x, y ∈ P is the
set [x, y] := P≥x ∩ P≤y.

Let P,Q be posets. A poset morphism f : P → Q is an order-preserving map
(i.e., we require that x ≤ y implies f(x) ≤ f(y) for all x, y ∈ P). We call f a poset
isomorphism if f is bijective and its inverse is a poset morphism. An automorphism
of a poset P is any isomorphism P → P.

A chain in P is any C ⊆ P such that any two elements in C are comparable
The length of a chain C is |C| − 1. The poset P is chain-finite if all chains in P
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have finite length. An antichain in P is any subset whose elements are pairwise
incomparable.

Call P bounded below if it contains a unique minimum element, which we
denote by 0̂. In this case, the rank rk(x) of an element x ∈ P is the maximum
length of any chain in P≤x. The set of atoms of a bounded-below poset P is

A(P) := {x ∈ P : rk(x) = 1}.

If any two maximal chains in the same interval of P have equal length, P is said to
be graded. Equivalently, the assignment x 7→ rk(x) defines a function rk : P 7→ Z≥0

such that rk(0̂) = 0 and rk(y) = rk(x)+1 whenever x⋖y. If such a function exists,
it is unique, and it is called the rank function of P. If any two maximal elements
in P have the same rank, then P is called pure.

For any two elements x, y ∈ P, we define x∨y to be the set of minimal upper
bounds and x ∧ y to be the set of maximal lower bounds. That is:

x ∨ y := min{z ∈ P : z ≥ x and z ≥ y},

x ∧ y := max{z ∈ P : z ≤ x and z ≤ y}.
More generally, denote by

∧
T and

∨
T the sets of minimal upper bounds and

maximal lower bounds of a set T ⊆ P.
A complement of an element x in a chain-finite poset P is any z ∈ P such that

x ∨ z ⊆ maxP and x ∧ z ⊆ minP. Given a subset X ⊆ P we say that z ∈ P is a
complement to X if z is a complement of every x ∈ X. (Notice that this definition
generalizes the usual one for lattices.)

2.2. Locally geometric posets. Recall that a lattice is a poset L in which any
pair of elements x, y ∈ L has a unique minimum upper bound (|x ∨ y| = 1) and
a unique maximum lower bound (|x ∧ y| = 1). In this case we abuse notation and
write, e.g., a = x ∨ y for a ∈ x ∨ y. A meet-semilattice is a poset in which any
pair of elements has a unique maximum lower bound. Note that any chain-finite
meet-semilattice (hence also any chain-finite lattice) is bounded below.

Definition 2.2.1. A chain-finite lattice L is called geometric if and only if, for
all x, y ∈ L:

x⋖ y if and only if there is an atom a ∈ A(L) with a ̸≤ x, y = x ∨ a.

A geometric lattice L is necessarily ranked and furthermore it is upper semi-
modular, meaning that for any x, y ∈ L:

rk(x) + rk(y) ≥ rk(x ∨ y) + rk(x ∧ y).

Definition 2.2.2. A graded, bounded below poset P is locally geometric if, for
every x ∈ P, the subposet P≤x is a geometric lattice.

Remark 2.2.3. We do not require P itself to even be a (semi)lattice. If P is a
lattice, then it is locally geometric if and only if it is geometric.
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Example 2.2.4. A classical example of a geometric lattice is a Boolean lattice
Bn, the set of all subsets of [n] = {1, 2, . . . , n} ordered by inclusion. A simplicial
poset, in which every closed interval is isomorphic to a Boolean lattice, is then
a locally geometric poset. The Hasse diagram of one such example is depicted in
Figure 1; observe that this is a locally geometric poset that is not a lattice nor a
semilattice.

Figure 1. Hasse diagram of a locally geometric poset.

Remark 2.2.5. Let P be a locally geometric poset, and suppose that x, y ∈ P are
such that x ∨ y is nonempty. Then

(1) x and y have a (unique) greatest lower bound x ∧ y, and
(2) for any z ∈ x ∨ y, rk(x) + rk(y) ≥ rk(z) + rk(x ∧ y).

The reason is that both properties must hold in the subposet P≤z whenever z ∈
x ∨ y.

Remark 2.2.6. If P is locally geometric, then so are P≤x and P≥x for any x ∈ P.

2.3. Supersolvable geometric lattices. There are several equivalent definitions
for a modular element in a geometric lattice (see eg. [Bry75, Theorem 3.3]), and
the following, due to Stanley [Sta72], is most useful for us. For this we need some
more terminology. Let L be a chain-finite lattice. Then L has a unique minimal
element 0̂ as well as a unique maximal element, which we denote by 1̂. Let x ∈ L.
The complements of x in L are the elements y ∈ L such that x ∧ y = 0̂ and
x ∨ y = 1̂.

Definition 2.3.1. An element x in a geometric lattice L is modular if the com-
plements of x form an antichain.

Remark 2.3.2. The following are equivalent for an element x of a geometric
lattice L:

(1) x is modular in L;
(2) rk(x) + rk(y) = rk(x ∨ y) + rk(x ∧ y) for all y ∈ L;
(3) (u ∨ y) ∧ x = u ∨ (y ∧ x) for all u ≤ x and all y ∈ L.

All equivalences are well-known in the finite case. The proof of (1)⇔(2) given
in [Sta72, Theorem 1] for the finite case carries over to the chain-finite setting
using [Aig97, Theorem 2.29 and 6.4.(iii)]. The equivalence (1)⇔(3) is proved in
the chain-finite setting in [CR70, Proposition 2.8].
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Example 2.3.3. Let L = Π4 be the set of partitions of {1, 2, 3, 4} partially ordered
by refinement, whose Hasse diagram is depicted in Figure 2. The partition 123|4
is modular because its set of complements {14|2|3, 24|1|3, 34|1|2} is an antichain.

The partition 12|34 is not modular because both 13|24 and 13|2|4 are com-
plements of 12|34 while 13|2|4 < 13|24. One can alternatively see that 12|34 is not
modular from the inequality rk(12|34)+rk(13|24) = 4 > 3 = rk(1234)+rk(1|2|3|4).

1|2|3|4

12|3|4 13|2|4 14|2|3 23|1|4 24|1|3 34|1|2

123|4 124|3 12|34 14|23 13|24 134|2 234|1

1234

Figure 2. The lattice Π4 of partitions of {1, 2, 3, 4}.

The following definition extends to the chain-finite case Stanley’s criterion
for when a finite geometric lattice is supersolvable [Sta72, Corollary 2.3]. We will
later further extend it to locally geometric posets.

Definition 2.3.4. A geometric lattice L is supersolvable if there is a chain
0̂ = y0 < y1 < · · · < yn = 1̂ where each yi is a modular element with rk(yi) = i.

Example 2.3.5. In a Boolean lattice, the least upper bound of two subsets is
their union while the greatest lower bound is their intersection. It is easy to see
that every element is a modular element, which implies that a Boolean lattice is
supersolvable.

Example 2.3.6. The partition lattice Πn is the collection of set partitions of
[n] = {1, 2, . . . , n} ordered by refinement. The modular elements of Πn correspond
to partitions with at most one nonsingleton block, and one can build a chain of
these elements to see that Πn is supersolvable.

2.4. M-ideals. Let P be a locally geometric poset. An order ideal in P is a
downward-closed subset. An order ideal is pure if all maximal elements have the
same rank. An order ideal Q is join-closed if T ⊆ Q implies

∨
T ⊆ Q.

Here we introduce M-ideals to generalize the notion of modular elements
beyond lattices. Our perspective is to rather generalize the order ideal generated
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by a modular element and how this ideal interacts with the entire poset. In the
lattice case this ideal is principal and is therefore determined by its unique maximal
element; in general this will not be the case. The motivation for our definition is
geometric (see Theorem 3.3.1).

Definition 2.4.1. AnM-ideal of a locally geometric poset P is a pure, join-closed
order ideal Q ⊆ P such that:

(1) if y ∈ Q and a ∈ A(P) such that a ∨ y = ∅ then a ∈ Q, and
(2) for every x ∈ max(P), there is some y ∈ max(Q) such that y is a modular

element in the geometric lattice P≤x.

Remark 2.4.2. Let Q ⊆ P be an M-ideal, and let x ∈ max(P). Since Q is
join-closed, the y ∈ max(Q) which is modular in P≤x, guaranteed by Defini-
tion 2.4.1.(2), is necessarily unique.

Example 2.4.3. In every locally geometric poset P, both P and {0̂} are M-ideals.

Example 2.4.4. Consider the poset P in Figure 3. Both P≤1 and P≤3 are M-
ideals in P. On the other hand, P≤2 is not an M-ideal, since max(P≤2) = {2},
max(P) = {a, b}, and 2 /∈ P≤b.

0̂

1 2 3

a b

Figure 3. In the poset P depicted here, the ideals P≤1 and P≤3

are M-ideals, while P≤2 is not (see Example 2.4.4).

The following lemma shows that our definition of an M-ideal extends the
definition of a modular element in a geometric lattice.

Lemma 2.4.5. An order ideal Q in a geometric lattice L is an M-ideal if and only
if Q = L≤y for some modular element y.

Proof. Let L be a geometric lattice. Since joins are always nonempty in a lattice,
an order ideal Q is join-closed if and only if Q = L≤y for some y. Any such ideal
is pure and satisfies Definition 2.4.1.(1). Since there is a unique maximum in the
lattice L, Definition 2.4.1.(2) is equivalent to requiring that y be modular in L. □

We conclude this subsection with several properties of M-ideals to be used
later in this paper.
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Lemma 2.4.6. Let Q be an M-ideal in a locally geometric poset P with rk(Q) =

rk(P) − 1, and let a ∈ P. Then a ∈ A(P) \ A(Q) if and only if a ∧ y = 0̂ for all
y ∈ max(Q).

Proof. First, suppose that a ∈ A(P) \A(Q), and let y ∈ max(Q). If a∧ y ̸= 0̂, then
a ∧ y = a since a ∈ A(P). However, this implies a ≤ y, and thus a ∈ Q because Q

is an order ideal. This is a contradiction; therefore a ∧ y = 0̂.
Now suppose that a∧y = 0̂ for all y ∈ max(Q). This means, in particular, that

a ̸≤ y for any y ∈ max(Q). Thus a /∈ Q, and we need to show that a ∈ A(P). Now let
x ∈ max(P) be such that a ≤ x. By Definition 2.4.1.(2), there is some y ∈ max(Q)
such that y ≤ x and y is modular in P≤x. Since a ̸≤ y and rk(y) = rk(x) − 1, we

must have a∧ y = 0̂ and a∨ y = x in P≤x. By modularity of y in P≤x, this implies

rk(a) = rk(x) + rk(0̂)− rk(y) = 1. Thus, a ∈ A(P). □

Proposition 2.4.7. If Q is an M-ideal of a locally geometric poset P with rk(Q) =
rk(P)− 1, then for any x ∈ P \ Q, there is some y ∈ Q such that x covers y and y
is modular in P≤x.

Proof. Let x̂ ∈ max(P) be such that x̂ ≥ x. Let ŷ ∈ max(Q) be such that x̂ covers
ŷ, guaranteed by Definition 2.4.1.(2). We have x̂ ∈ ŷ ∨ x, because x /∈ Q implies
x ̸≤ ŷ. Let y := ŷ ∧ x. Via Remark 2.3.2.(2), modularity of ŷ in P≤x̂ implies
rk(ŷ)+rk(x) = rk(y)+rk(x̂) and since rk(x̂)− rk(ŷ) = 1, this shows that x⋗y. In
order to show that y is modular in P≤x, we check the condition in Remark 2.3.2.(3).
Let u ≤ y and let z ∈ P≤x. Then in the lattice P≤x we have

u ∨ (z ∧ y) = u ∨ (z ∧ (x ∧ ŷ)) = u ∨ (z ∧ ŷ)

= (u ∨ z) ∧ ŷ

= (u ∨ z) ∧ (x ∧ ŷ) = (u ∨ z) ∧ y,

where the middle equality holds by modularity of ŷ in P≤x̂ (note that u ≤ ŷ), the
second and fourth equalities hold because z ≤ x and u∨ z ≤ x, while the first and
last equalities are by definition of y. □

Corollary 2.4.8. Let Q be an M-ideal of a locally geometric poset P with rk(Q) =
rk(P)− 1. Then

(†) for any two distinct a1, a2 ∈ A(P) \ A(Q) and every x ∈ a1 ∨ a2 there is
a3 ∈ A(Q) with x > a3.

Proof. Note that x ∈ P \ Q (otherwise the fact that Q is downward-closed would
imply a1, a2 ∈ Q) and rk(x) = 2 by Remark 2.2.5.(2). An application of Proposi-
tion 2.4.7 to x gives some y ⋖ x, y ∈ Q. Since rk(x) = 2 and rk is a rank function,
rk(y) = 1 and so a3 := y satisfies the claim. □

Corollary 2.4.9. Let L be a geometric lattice, let y ∈ L with y ̸= 1̂ and let
Q := L≤y. Then y is a modular element of L of rank rk(y) = rk(L)−1 if and only
if (†) above holds for Q.
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Proof. By Lemma 2.4.5, y being modular of rank rk(L)−1 is equivalent to Q being
an M-ideal of rank rk(L) − 1 and then Corollary 2.4.8 implies that (†) holds. On
the other hand, assume (†). We prove that the complements of y in L all have
rank one, implying both that y is modular and that rk(y) = rk(L) − 1. Let z be

a complement to y in L. Then z > 0̂. If rk(z) > 1, there is some z′ ≤ z with

rk(z′) = 2, and every atom below z′ is in L\Q (otherwise z∧y > 0̂), contradicting
(†). Thus rk(z) = 1 as was to be shown. □

2.5. Supersolvability. We are now prepared to present our definition of a super-
solvable locally geometric poset, which extends the definition of a supersolvable
geometric lattice (cf. Definition 2.3.4).

Definition 2.5.1. A locally geometric poset P is supersolvable if there is a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P

where each Qi is an M-ideal of Qi+1 with rk(Qi) = i.

Example 2.5.2. Recall the poset P from Example 2.4.4 (see also Figure 3). It is

supersolvable via the chain 0̂ ⊂ P≤1 ⊂ P.

Proposition 2.5.3. If L is a geometric lattice, then L satisfies Definition 2.5.1
if and only if it satisfies Definition 2.3.4.

Proof. Via Lemma 2.4.5, a geometric lattice L satisfies Definition 2.5.1 if and only
if there is a chain

0̂ ⊂ Q≤y1 ⊂ · · · ⊂ Q≤yn = L

with each yi a modular element of rank i. In particular, this is equivalent to the
existence of a maximal chain of modular elements 0̂ < y1 < · · · < yn = 1̂ as
required by Definition 2.3.4. □

Remark 2.5.4. If a locally geometric poset is supersolvable, then every closed
interval P≤x is a supersolvable geometric lattice. However, this “local” super-
solvability is not enough for P itself to be supersolvable, as demonstrated in the
following example.

Example 2.5.5. Consider the poset P whose Hasse diagram is depicted in Fig-
ure 4, which is the Boolean algebra on three generators with the maximum element
removed. Every closed interval in P is supersolvable (since every Boolean lattice
is), however it is not itself supersolvable. Indeed, the only proper order ideals which
are pure and join-closed are principal, that is, P≤x for some rank-one element x.
However, such an order ideal cannot satisfy Definition 2.4.1.(2) since no single
element is covered by all maximal elements.

This particular poset describes the intersection data of an affine hyperplane
arrangement, explicitly the de-cone of an arrangement A of four generic hyper-
planes in C3. The arrangement A is not supersolvable either; this is not a coinci-
dence and will be made explicit in Theorem 4.2.4.
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0̂

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

Figure 4. This locally geometric poset is “locally” supersolvable
but not supersolvable (see Example 2.5.5).

2.6. Dowling posets. Dowling posets [BG21] form a class of locally geometric
posets which motivates the general definition of supersolvability. These generalize
partition lattices and Dowling lattices, which are known to be supersolvable geo-
metric lattices [Sta72, Dow73]. To define these posets, let us fix a positive integer
n, a finite group G, and a finite G-set S. Denote [n] = {1, 2, . . . , n}.

Given a subset B ⊆ [n], a G-coloring is a function b : B → G. Define an
equivalence relation on G-colorings of B where (b : B → G) ∼ (b′ : B → G)
whenever b′ = bg for some g ∈ G. Note that if B = {k} is a singleton then
all G-colorings are equivalent. A partial G-partition of [n] is a collection β =
{(B1, b1), . . . , (Bℓ, bℓ)} where {B1, . . . , Bℓ} is a partition of some subset T ⊆ [n]
and each bi is a chosen equivalence class of G-colorings on Bi. Given such a partial
G-partition, denote Zβ = [n] \ ∪iBi.

Let Dn(G,S) be the set of pairs (β, z) where β is a partial G-partition of [n]
and z : Zβ → S. This set is partially ordered via the covering relations:

• (β ∪ {(A, a), (B, b)}, z) ≺ (β ∪ {(A ∪B, a ∪ bg)}, z) whenever g ∈ G, and
• (β ∪{(B, b)}, z) ≺ (β, z′) whenever z′ : B ∪Zβ → S satisfies z′|Zβ

= z and
z′|B = f ◦ b for some G-equivariant function f : G → S.

As shown in [BG21, Theorem A], this is a locally geometric poset whose maximal
intervals are products of partition and Dowling lattices.

Proposition 2.6.1. For any positive integer n, finite group G, and finite G-set
S, the Dowling poset Dn(G,S) is supersolvable.

Proof. We proceed by induction on n. The case n = 1 is immediate, so let n > 1.
There is an injective map of posets Dn−1(G,S) → Dn(G,S) defined by ι(β, z) =
(β ∪ {n}, z). The image Q := im(ι) is a pure, join-closed order ideal of Dn(G,S),
isomorphic to Dn−1(G,S), and so by induction it suffices to prove that Q satisfies
the conditions of Definitions 2.4.1.(1) and 2.4.1.(2).

Using the description of atoms in Dn(G,S) from [BG21, Lemma 2.5.1], we
see that the atoms which are not in Q are of the following form:
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• a G-partition of [n] whose only nonzero singleton block is {i, n}, for some
i < n, or

• the partition of [n−1] into singletons along with any function z : {n} → S.

In each case, it is straightforward to check that such an atom has a unique minimal
upper bound with an element of the form (β ∪ {n}, z).

Finally, to see Definition 2.4.1.(2), we consider two cases: either S is empty
or nonempty. If S is nonempty, then the maximal elements of Dn(G,S) are of the
form (∅, z), and the intervalDn(G,S)≤(∅,z) is isomorphic to the product of Dowling
lattices Dz−1(Gs)(Gs) where Gs ∈ S/G. In particular, the element ({n}, z|Z−{n}) is
a modular element of this interval and also a maximal element of Q. If S is empty,
then every maximal interval is isomorphic to a partition lattice Πn, of which a
corank-one element with singleton {n} is modular. □

These Dowling posets were defined to describe the intersection data of a
collection of submanifolds whose complement is an orbit configuration space – an
equivariant analogue of configuration spaces first studied by Xicoténcatl [XM97].
The supersolvability of these posets, and Xicoténcatl’s study of fiber bundles on
orbit configurations, hints at a much larger phenomenon that we study in the next
section.

3. Topological fibrations of arrangements

In this section, we establish a topological interpretation of an M-ideal, gener-
alizing Terao’s Fibration Theorem [Ter86] on hyperplane arrangements. First, we
fix notation and terminology to be used throughout.

3.1. Arrangements. Fix a finite-dimensional connected abelian Lie group G, so
that G ∼= (S1)d × Rv for some nonnegative integers d, v. Also fix a finite-rank
free abelian group Γ and T = Hom(Γ,G). Note that the group operation on G
induces a group operation on T , which we denote by +. For sets U, V ⊆ T , let
U + V := {t + s : t ∈ U, s ∈ V } ⊆ T . If U = {t}, we abbreviate t + V = U + V ,
which is a translation of V by t.

Definition 3.1.1. An abelian Lie group arrangement, or an abelian arrange-
ment for short, is a collection {Hα : α ∈ A} for some finite set A ⊆ Γ, where

Hα := {t ∈ T : t(α) = 0}.

The complement of A is denoted by

M(A) := T \
⋃
α∈A

Hα.

Linear, toric, and elliptic arrangements are abelian Lie group arrangements
with G = C, C× or a complex elliptic curve, respectively (here G ∼= (S1)d×Rv for
(d, v) = (0, 2), (1, 1), and (2, 0)).

We will often refer to an arrangement {Hα : α ∈ A} simply by A when there
is no confusion.
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Definition 3.1.2. A layer of an arrangement A is a nonempty connected com-
ponent of an intersection

⋂
α∈S Hα where S ⊆ A. The set P(A) of layers, partially

ordered by reverse inclusion, is called the poset of layers.

Example 3.1.3 (Graphic arrangements and configuration spaces). Every finite
simple graph determines an abelian Lie group arrangement in the following way.
LetG be a finite simple graph with vertex set [n] = {1, 2, . . . , n} and edge set E. Let
Γ be a free abelian group with basis β1, . . . , βn. Given two elements 1 ≤ i < j ≤ n,
define αi,j = βi − βj ∈ Γ and abbreviate Hi,j := Hαi,j

⊆ Hom(Γ,G). Now let
AG := {Hi,j : {i, j} ∈ E}, the arrangement associated to the graph G. In the case
that G = Kn is the complete graph on n vertices, the complement M(AKn) is the
configuration space of n-tuples of distinct points inG, denoted by Confn(G). For an
arbitrary simple graph, the complement is sometimes called a partial configuration
space, allowing points to collide.

The poset of layers of AKn
is isomorphic to the partition lattice Πn, which

we saw in Example 2.3.6 was supersolvable. More generally, the poset of layers for
a graphic arrangement AG is supersolvable if and only if the graph G is chordal
[Sta72].

By convention, T is the unique minimum element of P(A), thought of as
the empty intersection. The poset of layers for an abelian arrangement can be
realized as the quotient of a geometric semilattice by a translative group action
(see [DD21, Lemma 9.8] and Definition 4.4.1 below) and hence P(A) is a locally
geometric poset. The atoms of P(A) are precisely the connected components of the
Hα, where α ∈ A. Note that if K is the connected component of an intersection
X = ∩α∈SHα passing through the identity of T , then every connected component
of X is of the form t+K for some t ∈ T .

Definition-Assumption 3.1.4. We call an arrangement essential if A generates
a full subgroup of Γ. The arrangement is irredundant if, for distinct α and β,
Hα and Hβ do not share a connected component. All arrangements that we will
consider will be essential and irredundant.

Example 3.1.5. Let Γ = Z2 and A = {α1 = (1, 0), α2 = (0, 1), α3 = (1, 2)}. Let
G = S1×Rv and consider an arrangement in T . If v = 0 or v = 1, we may identify
T with (S1)2 or (C×)2, respectively. Figure 5 depicts the arrangement in (S1)2

and the Hasse diagram for its poset of layers in either case.

Definition 3.1.6. A subgroup Y of T will be called admissible if there is a direct
sum decomposition Γ = Γ′ ⊕ Γ′′ such that Γ′ has rank 1 and Y is the image of
the injection ε∗ : Hom(Γ′,G) → Hom(Γ,G) induced by the projection ε : Γ → Γ′.
Choose a generator Γ′ = ⟨β0⟩, and define for α ∈ Γ a nonnegative integer c(α)
such that ε(α) = ±c(α)β0.

If Y is admissible, the corresponding projection

p : T → T/Y ∼= Hom(Γ/Γ′,G)
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T

H1 H2 H3

(1, 1) (1,−1)

Figure 5. The arrangement A from Example 3.1.5 is depicted
on the left, with H1 in green, H2 in red, and H3 in blue. Its poset
of layers P(A) is depicted on the right.

is a section of the map induced by the quotient

q : Γ → Γ/Γ′.

This allows us to define the sub-arrangement

AY := {α ∈ A : Hα ⊇ Y } = {α ∈ A : c(α) = 0}

Remark 3.1.7. The set of atoms A(AY ) consists of all connected components
of the Hα with α ∈ AY . These are the atoms of A that either contain Y or are
disjoint from it. For any α ̸∈ AY , every connected component ofHα will intersect Y
nontrivially. In particular, the poset of layers P(AY ) may be viewed as a subposet
of P(A). Moreover, if Y ∈ P(A), then the maximal elements of P(AY ) are cosets
of Y .

The set

A/Y := q(AY ) ⊆ Γ/Γ′

defines an arrangement in T/Y . The map p : T → T/Y restricts to a map on
arrangement complements p̄ : M(A) → M(A/Y ) and induces an isomorphism of
posets

P(AY ) ∼= P(A/Y ).

Following the terminology of Terao [Ter86], associated to the arrangement A
and the projection p we define the horizontal set by

Hor := {X ∈ P>T : p(X) = T/Y },

the bad set by

Bad :=
⋃

X∈P>T

X/∈Hor

p(X) ∩M(A/Y ),

and for t ∈ T ,

Pt := {X ∈ P>T : (t+ Y ) ∩X ̸= ∅}.
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Example 3.1.8. Consider the arrangement from Example 3.1.5 (see also Figure 5)
with Γ = Z2, A = {α1 = (1, 0), α2 = (0, 1), α3 = (1, 2)}, and G = S1 × Rv.
Abbreviate Hi = Hαi for i = 1, 2, 3, and let Y = H1. Then AY = {α1} and the
projection M(A) → M(A/Y ) is depicted in Figure 6.

As the picture suggests, this map is a fibration with fiber homeomorphic to
T with three points removed. In this case, the bad set is empty (Bad = ∅) while
the horizontal set and Pt (for t ∈ M(A)) are both equal to {H2, H3}.

⊇
H1

H3

H2

Figure 6. The restriction of the projection S1 × S1 → S1 to
the complement of the arrangement A from Example 3.1.8 is a
fibration whose fibers are homeomorphic to the circle S1 with
three punctures.

Example 3.1.9. Consider again the arrangement A from Example 3.1.8, but take
Y = H2. The projectionM(A) → M(A/Y ) is depicted in Figure 7, from which it is
evident that this map is not a fibration. Indeed, the fiber over a point t ∈ M(A/Y )
is homeomorphic to T with two punctures, except the one case that t = −1 and
the fiber is homeomorphic to T with a single puncture.

In this example, the bad set is nonempty: Bad = {−1}, the horizontal set is
Hor = {H1, H3}, and the set Pt is equal to {H1, H3} for all t ∈ M(A/Y ) except
t = −1, for which we have P−1 = {H1, H3, (1,−1)}.
3.2. Characterization of fibrations. In this section, we describe conditions on
an admissible subgroup Y which will imply that the map p̄ : M(A) → M(A/Y )
is a fiber bundle (see Proposition 3.2.5).

Lemma 3.2.1. If α ∈ A \AY , then for any t ∈ T the intersection (t+Y )∩Hα is
a set of c(α)d points. If α ∈ AY , then for any t /∈ Hα the intersection (t+Y )∩Hα

is empty.

Proof. Since Γ′ is a direct summand of Γ we have a direct sum decomposition
Γ = Γ′⊕Γ′′, with Γ′′ = Γ/Γ′. Recall from Definition 3.1.6 our choice of β0 such that
Γ′ = ⟨β0⟩. Without loss of generality suppose that for our α ∈ Γ the nonnegative
integer c(α) satisfies

α = (c(α)β0) + α′′
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⊇

−1 t ̸= −1

Figure 7. The restriction of the projection S1×S1 → S1 (left) is
not a fibration, as indicated by the two non-homeomorphic fibers
presented (right). See Example 3.1.9.

with α′′ ∈ Γ′′.
The layer Y ⊆ T consists of all homomorphisms x ∈ T = Hom(Γ,G) with

x(Γ′′) = 0. Thus,

Y ∩Hα = {x ∈ T : x(Γ′′) = 0 and c(α)x(β0) = 0}

(the second condition is equivalent to x(α) = 0). This intersection thus equals Y
when α ∈ AY (i.e, when c(α) = 0). Otherwise, it is in bijection with the possible
choices for x(β0), namely of the set of all g ∈ G with c(α)g = 0. This set has c(α)d

elements (as finite-order elements of G must lay in the factor (S1)d).
Now let t ∈ T and consider

(t+ Y ) ∩Hα = {t+ x ∈ T : x(Γ′′) = 0 and (t+ x)(α) = 0}

The last condition is equivalent to c(α)(t(β0) +G x(β0)) +G t(α′′) = 0 (here +G
denotes the group operation in G). If α ∈ AY then c(α) = 0 and the latter equation
can only be satisfied if t(α′′) = 0, i.e., if t ∈ Hα. The second part of the claim
follows.

If α ∈ A \ AY , then c(α) ̸= 0 and so there is g ∈ G = (S1)d × Rv such that
c(α)(t(β0) +G g) = −t(α′′). Let x ∈ T be defined by setting x(Γ′′) = {0} and
x(β0) = g. Then the assignment Y ∩ Hα → (t + Y ) ∩ Hα, x 7→ (t + x + x) is a
bijection and shows that (t+ Y )∩Hα and Y ∩Hα have the same cardinality. □

Lemma 3.2.2. The horizontal set with respect to the projection p : T → T/Y is

Hor = A(A \AY ).
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Proof. Let X ∈ P>T , and let X0 = t+X be a translate of X which is a (proper)
subgroup of T . Since every Hα contains the identity, X0 ∈ P. Then

X ∈ Hor ⇐⇒ p(X) = T/Y ⇐⇒ p(X0) = T/Y ⇐⇒ X0 + Y = T

⇐⇒ X0 ̸⊇ Y and rk(X0) = 1

⇐⇒ X0 ∈ A(A \AY ) ⇐⇒ X ∈ A(A \AY ),

where the last claim holds becauseX andX0 are necessarily connected components
of the same Hα (for some α ∈ A \AY ). □

Lemma 3.2.3. For any t ∈ M(A),

Hor ⊆ Pt(1)

⊆ {X ∈ P : p(X) ∩M(A/Y ) ̸= ∅}(2)

= {X ∈ P : X ∧ Y ′ = T for all Y ′ ∈ maxP(AY )}(3)

Proof. Combining Lemmas 3.2.1 and 3.2.2, we have Hor = A(A \ AY ) ⊆ Pt,
establishing (1).

For (2), consider X ∈ Pt and let u ∈ (t+Y )∩X. Then u ∈ X implies p(u) ∈
p(X), and u ∈ t+Y implies p(u) = p(t) ∈ M(A/Y ). Thus, p(u) ∈ p(X)∩M(A/Y ).

For (3), first assume that X ∈ P and X ∧ Y ′ ̸= T for some Y ′ ∈ maxP(AY ).
Then there is some H ∈ A(P) such that X ⊆ H and Y ′ ⊆ H. Now, X ⊆ H
implies p(X)∩M(A/Y ) ⊆ p(H)∩M(A/Y ). Since Y ′ ⊆ H, we must have p(H)∩
M(A/Y ) = ∅. Therefore, p(X) ∩M(A/Y ) = ∅.

Conversely, suppose that p(X)∩M(A/Y ) = ∅. Then there exists H ∈ A(AY )
such that p(X) ⊆ p(H). But then X ⊆ H and Y ′ ⊆ H for some Y ′ ∈ maxP(AY ),
implying that X ∧ Y ′ ̸= T . □

The reason the set Bad is named such is that points not in this set have
“good” fibers, as we will see in the following lemma.

Lemma 3.2.4. For any t ∈ M(A), the following statements are equivalent.

(1) p(t) /∈ Bad
(2) Pt = Hor
(3) For any distinct α, β ∈ A\AY , the intersection (t+Y )∩Hα∩Hβ is empty.
(4) The fiber p̄−1(p(t)) is homeomorphic to G with

∑
α∈A\AY

c(α)d points

removed.

Proof.

(1) =⇒ (2): By Lemma 3.2.3, we need only show that Pt ⊆ Hor. Let X ∈ Pt, so
that (t+Y )∩X ̸= ∅, and fix u ∈ (t+Y )∩X. Then since u ∈ t+Y , we have
p(u) = p(t). However, u ∈ X implies p(t) = p(u) ∈ p(X), and t ∈ M(A)
implies p(t) ∈ M(A/Y ), so p(t) ∈ p(X)∩M(A/Y ). Since p(t) /∈ Bad, this
implies X ∈ Hor.

(2) =⇒ (1): Suppose that p(t) ∈ Bad, and let X ∈ P>T \ Hor such that p(t) ∈
p(X)∩M(A/Y ). Since p(t) ∈ p(X), we have u ∈ X such that p(t) = p(u),
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hence u = t + y for some y ∈ Y . Thus, (t + Y ) ∩X ̸= ∅ and so X ∈ Pt,
contradicting Pt = Hor.

(2) =⇒ (3): If (t+Y )∩(Hα∩Hβ) is nonempty, then there is a connected component
X of Hα∩Hβ such that X ∈ Pt. But if Pt = Hor then Lemma 3.2.2 implies
that X ∈ A(A \ AY ). In particular, X is a connected component of both
Hα and Hβ , contradicting the assumption that A is irredundant.

(3) =⇒ (2): By Lemma 3.2.3, we need only show that Pt ⊆ Hor. Suppose not, and
let X ∈ Pt \ Hor. By Lemma 3.2.2, we have rk(X) > 1, so pick distinct
α, β ∈ A such that Hα ∩Hβ ⊇ X. Then (t+Y )∩X ̸= ∅ implies that each
of (t+ Y )∩Hα, (t+ Y )∩Hβ , and (t+ Y )∩ (Hα ∩Hα) is nonempty. The
first two of these being nonempty implies α, β ∈ A \AY via Lemma 3.2.1,
which contradicts assumption (3).

(3) ⇐⇒ (4): We have:

p̄−1(p(t)) = (t+ Y ) ∩M(A)

= (t+ Y ) \
⋃

X∈Pt

((t+ Y ) ∩X)

= (t+ Y ) \
⋃

α∈A\AY

((t+ Y ) ∩Hα)

∼= G \ {k points}, with k =

∣∣∣∣∣∣
⋃

α∈A\AY

((t+ Y ) ∩Hα)

∣∣∣∣∣∣
where the third equality holds by Lemma 3.2.2 and Lemma 3.2.3(1). Then
Lemma 3.2.1 implies that k =

∑
α∈A\AY

c(α)d if and only if the sets

(t+ Y ) ∩Hα are pairwise disjoint, which is precisely condition (3).

□

When the statements in Lemma 3.2.4 hold for all t ∈ M(A), we obtain a
useful description of the horizontal set Hor and relate it back to M-ideals.

Proposition 3.2.5. The following statements are equivalent.

(1) P(AY ) is an M-ideal of P(A) with rk(P(AY )) = rk(P(A))− 1.
(2) Hor = {X ∈ P : X ∧ Y ′ = T for all Y ′ ∈ maxP(AY )}.
(3) Pt = Hor for any t ∈ M(A).
(4) Pt does not depend on t ∈ M(A).
(5) Bad = ∅.

Proof.

(1) =⇒ (2): This follows by Lemmas 2.4.6 and 3.2.2.
(2) =⇒ (1): It is clear that P(AY ) is a pure, join-closed, order ideal of P := P(A).

Definition 2.4.1.(1) follows from Lemma 3.2.1.
To show that Definition 2.4.1.(2) holds, let X ∈ max(P). Since P(AY )

is join-closed, the set P(AY ) ∩ P≤X is a sublattice of P≤X and thus has a
unique maximum elementW . Let Z ∈ P≤X be a complement ofW , so that
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W ∧ Z = T and W ∨ Z = X in P≤X . Let Y ′ ∈ maxP(AY ) = maxP(AY )
and U ∈ Y ′ ∧ Z. Then U ∈ P(AY ) ∩ P≤X and hence U ≤ W . But W ∧
Z = T , so the fact that U ≤ W and U ≤ Z implies U = T . Therefore,
Y ′ ∧ Z = T for any Y ′ ∈ maxP(AY ), which by (2) and Lemma 3.2.2
implies that rk(Z) = 1. Since any complement Z of W in P≤X has rank
one, the complements of W form an antichain. This means that W is
a modular element of P≤X . Moreover, modularity of W in P≤X implies
rk(W ) = rk(X)+rk(T )−rk(Z) = rk(P)−1. In particular,W ∈ maxP(AY )
and the rank of P(AY ) is equal to rk(P)− 1.

(2) =⇒ (3): This follows immediately from Lemma 3.2.3.
(3) =⇒ (4): Immediate.
(4) =⇒ (5): Note that Bad ̸= M(A/Y ), and so there is some t1 ∈ M(A) such that

p(t1) /∈ Bad and hence Pt1 = Hor (by Lemma 3.2.4). Then for any t2 ∈
M(A), we have Pt2 = Pt1 = Hor and hence p(t2) /∈ Bad (by Lemma 3.2.4).
Thus, Bad = ∅.

(5) =⇒ (2): If Bad = ∅, then {X ∈ P>T : p(X)∩M(A/Y ) ̸= ∅} ⊆ Hor. The result
follows by Lemma 3.2.3.

□

Example 3.2.6. Recall the arrangement A from Examples 3.1.8 and 3.1.9. As
observed there, the subgroup Y = H1 satisfies the conditions (3) and (5) in Propo-
sition 3.2.5, while the subgroup H2 does not. This agrees with our observation in
Example 2.4.4 that in the poset of layers P = P(A), the order ideal P≤H1

is an
M-ideal while P≤H2 is not.

3.3. Fiber bundles. We now are in the position to extend Terao’s Fibration
Theorem [Ter86] from hyperplane arrangements to abelian arrangements.

Theorem 3.3.1 (Fibration Theorem). The following statements are equivalent.

(1) P(AY ) is an M-ideal of P(A) with rk(P(AY )) = rk(P(A))− 1.
(2) There exists an integer ℓ such that for any u ∈ M(A/Y ), the fiber p̄−1(u)

is homeomorphic to G with ℓ points removed.
(3) p̄ : M(A) → M(A/Y ) is a fiber bundle.

Proof.

(1) ⇐⇒ (2): Follows from Lemma 3.2.4 and Proposition 3.2.5.
(2) =⇒ (3): We need to show that the projection p̄ : M(A) → M(A/Y ) is locally

trivial, so let u ∈ M(A/Y ). Since Γ′ is a direct summand of Γ, we have a
homeomorphism T ∼= (T/Y ) × Y giving a trivialization of the projection
p : T → T/Y . Through the identification p−1(u) ∼= {u} × Y , we write
p̄−1(u) ∼= ({u} × Y ) \ {(u, v1), . . . , (u, vℓ)} for some v1, . . . , vℓ ∈ Y .

By Lemma 3.2.4.(3), for each 1 ≤ i ≤ ℓ, there is a unique Hi ∈ A(A)
such that (u, vi) ∈ ({u}×Y )∩Hi. Then for each i, there are neighborhoods
Ui around u in T/Y , Vi around vi in Y , and W around 0 in the tangent
space τ(u,vi)T such that (Ui ×Vi)∩M(A) ∼= W ∩ (τ(u,vi)T \ τ(u,vi)Hi). Let
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us pick a neighborhood U around u in M(A/Y ) small enough so that U
may play the role of Ui above for each i. By construction, the sets Vi are
pairwise disjoint.

Now, for each i, we may define a map θi : U × Vi → Vi such that
θi(Hi ∩ (U × Vi)) = vi and such that, for any w ∈ U , the restriction
θi|w×Vi

: w × Vi → Vi is a homeomorphism fixing the boundary of Vi.

Extend this to a homeomorphism θ : U × Y → U × Y by θ(w, y) =
(w, θi(w, y)) when y ∈ Vi and θ(w, y) = (w, y) if y /∈ ∪iVi.

Finally, consider p̄ : M(A) → M(A/Y ). The above map θ restricts to a
homeomorphism p̄−1(U) ∼= U × p̄−1(u).

(3) =⇒ (2): Immediate.

□

(u, v1)

(u, v2)

(u, v3)

(u, v4)

U

u

V1

V2

V3

V4

U

θ
∼=

⊃

p̄

Figure 8. A picture guide to the proof of local triviality in The-
orem 3.3.1, (2) =⇒ (3).

Corollary 3.3.2. For any α ∈ A \AY , the projection p : T → T/Y restricts to a
covering map p|Hα

: Hα → T/Y.

Proof. Pick u ∈ T/Y , and choose a neighborhood U of u as in the proof of The-
orem 3.3.1.(2) =⇒ (3), and consider the map θ defined there (see also Figure 8).
Suppose we numbered the preimages of u so that (u, v1), . . . , (u, vm) denote the
elements of p−1(u) ∩ Hα. Then for each i = 1, . . . ,m the homeomorphism θ−1

i

maps U × {vi} homeomorphically to the component of p−1(U) ∩ Hα containing
(u, vi). This proves the claim. □

Corollary 3.3.3. If Y is an admissible subgroup of T for which P(AY ) is an
M-ideal of P(A) and dim(Y ) = dim(G), then Y is a layer of A.
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Proof. Because each Hα contains the identity of T , there is some Y0 ∈ maxP(AY )
which contains Y . As a consequence of Theorem 3.3.1.(1), rk(Y0) = rk(P(A))− 1.
Now

dim(Y0) = dim(G)(rk(P(A))− rk(Y0)) = dim(G) = dim(Y ),

so we must have Y = Y0 ∈ P(A). □

Remark 3.3.4. In our fibration theorem, like Terao’s [Ter86], we require P(AY )
to be a corank-one subposet of P(A). We conjecture that an M-ideal of any rank in
P(A) will give rise to a fiber bundle, with fiber homeomorphic to the complement of
an affine abelian arrangement, as is the case for hyperplane arrangements [Par00].

3.4. Fiber-type arrangements.

Definition 3.4.1. We inductively define an arrangement A ⊆ Γ to be fiber-type
if rk Γ = 1 or there exists a rank-one split direct summand Γ′ ⊆ Γ and B ⊆ Γ/Γ′

such that B is fiber-type and the projection p : Hom(Γ,G) → Hom(Γ/Γ′,G)
restricts to a fibration p̄ : M(A) → M(B) whose fibers are homeomorphic to G
with finitely many points removed.

Remark 3.4.2. Following Corollary 3.3.3, if M(A) → M(B) is a fiber bundle,
then B = A/Y for some layer Y ∈ P(A).

Theorem 3.4.3. An essential arrangement A is fiber-type if and only if its poset
of layers P(A) is supersolvable.

Proof. In both directions, we proceed by induction. It is clear that when rkΓ = 1,
every choice of A is both fiber-type and supersolvable.

Now, suppose that A is fiber-type. Let Γ′ and B be as in Definition 3.4.1, then
let T = Hom(Γ,G) and Y = ker(p̄). By induction, B is supersolvable via a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = P(B) where each Qi is an M-ideal of rank i in Qi+1.
Through the isomorphism P(B) = P(A/Y ) ∼= P(AY ) ⊆ P(A), we may view each
Qi as a subposet in P(A). Since P(AY ) is an M-ideal of rank rk(P(A))− 1 in P(A)
by Theorem 3.3.1, the chain of Qi’s satisfies the conditions of Definition 2.5.1.

Conversely, suppose that A is supersolvable via a chain 0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂
Qn = P(A) of M-ideals. Since A is essential, the identity of T is a maximal element
of P(A), Definition 2.4.1.(2) implies that there is a unique Y ∈ max(Qn−1) that
contains the identity of T . We will prove that P(AY ) = Qn−1; then Theorem 3.3.1
and induction will imply the fiber-type property. Since both P(AY ) and Qn−1

are join-closed order ideals, it suffices to prove that A(AY ) = A(Qn−1). This
follows from the observation that both of these sets are equal to {H ∈ A(P) : H ≤
Y or H ∨ Y = ∅} (cf. Remark 3.1.7). □

Corollary 3.4.4. The complement of a supersolvable linear, toric, or elliptic ar-
rangement is a K(π, 1) space.

Proof. If rk Γ = 1, thenM(A) ∼= G\{finitely many points} isK(π, 1) when G = C,
C× or (S1)2. Now suppose thatM(A) → M(B) is a fiber bundle with fiber F ∼= G\
{finitely many points}, a K(π, 1) as above, and B is supersolvable. By induction,
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M(B) is K(π, 1). Using the homotopy long exact sequence for the fibration, one
has for i > 1 an exact sequence

0 = πi(F ) → πi(M(A)) → πi(M(B)) = 0

Thus, πi(M(A)) = 0 for i > 1. □

Example 3.4.5. The arrangement A from Example 3.1.8 is fiber-type, since in
Example 2.5.2 it was determined that its poset of layers is supersolvable.

4. Geometric posets

Up to this point, we have worked with locally geometric posets. Now we
introduce a “global” notion of geometricity (Definition 4.1.1). This leads to sev-
eral interesting results. First, we establish an equivalent definition of an M-ideal
(Theorem 4.1.4) for geometric posets. We then turn our attention to geometric
semilattices. We show that a geometric semilattice is supersolvable if and only
if its canonical extension to a geometric lattice is supersolvable (Theorem 4.2.4),
and this has applications to affine hyperplane arrangements (Theorem 4.3.3). We
then prove that supersolvability is preserved under the quotient by a group action
(Theorem 4.4.12), which has applications to covers of abelian arrangements.

4.1. Geometric posets and their supersolvability. The following definition
extends the notion of geometric beyond semilattices. Indeed, a geometric semi-
lattice in the sense of [WW86] is precisely a semilattice satisfying condition (‡‡),
as can be seen easily from comparing (‡‡) with [WW86, (G4)].

Definition 4.1.1. A locally geometric poset P is geometric if for all x, y ∈ P:

(‡‡) if rk(x) < rk(y) and I ⊆ A(P) is such that
∨
I ∋ y and |I| = rk(y), then

there is a ∈ I such that a ̸≤ x and a ∨ x ̸= ∅.

Example 4.1.2. As an illustration of condition (‡‡) in Definition 4.1.1 consider
the case of an arrangement of lines in the plane, e.g., as in Figure 9. If two lines
meet at a point y and a third line, that we call x, misses the point y, the first
two lines cannot both be parallel to the third. In the intersection poset of the
given line arrangement we will have a rank-two element y that is the join of the
(independent) set I given by the first two lines. The line x has rank one less than
y and must intersect one of the two lines in I (which we’d call a in the statement
of (‡‡)). In Figure 9 this situation is illustrated with I = {a, b}.

Example 4.1.3. Other posets encountered already, for instance in Figures 1 and
3, are geometric posets. We shall see in Corollary 4.4.7 that the poset of layers for
any abelian Lie group arrangement is geometric.

For geometric posets, supersolvability can be characterized using partitions
of atoms, in a way reminiscent of [FT97, Remark 2.6].
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e1

e2

y a
b

x

x ∨ a

Figure 9. An arrangement of lines (it should be thought of as
repeating periodically in vertical and horizontal direction, gener-
ating an infinite line arrangement).

Theorem 4.1.4. Let P be a geometric poset, and let Q be a pure, join-closed,
proper order ideal of P. Then Q is an M-ideal with rk(Q) = rk(P)− 1 if and only
if

(†) for any two distinct a1, a2 ∈ A(P) \ A(Q) and every x ∈ a1 ∨ a2 there is
a3 ∈ A(Q) with x > a3.

Proof. By Corollary 2.4.8, we need only show (†) implies that Q is an M-ideal.
For Definition 2.4.1.(1), let y ∈ max(Q) and a ∈ A(P) \ A(Q). Take x ∈ max(P)
such that a < x. Take I ⊆ A(Q) such that a ∨

∨
I ∋ x, and |I| = rk(x) − 1. By

condition (‡‡), there exists b ∈ I ∪ {a} such that b ̸≤ y and b ∨ y ̸= ∅. Since Q

is join-closed and y is maximal in Q, we cannot have b ∈ Q and hence b = a. In
particular, a ∨ y ̸= ∅.

For Definition 2.4.1.(2), take x ∈ maxP and note that Q′ := P≤x ∩ Q is a
join-closed order ideal in P≤x, hence it is of the form P≤y for some y < x. Now
(†) holds for Q′ in the geometric lattice P≤x, hence Corollary 2.4.9 shows that y
is modular of rank rk(P)− 1 in P≤x. This also shows that rk(Q) = rk(P)− 1. □

As an immediate consequence we obtain the desired characterization of su-
persolvability in geometric posets.

Corollary 4.1.5. Let P be a geometric poset. Then P is supersolvable if and only
if there is a chain {0̂} = Q0 ⊂ Q1 ⊂ . . . ⊂ Qn = P of pure, join-closed order ideals
of P with rk(Qi) = i and so that (†) holds for Qi−1 in Qi, for all i = 1, . . . , n.

4.2. Supersolvable geometric semilattices. A main source of intuition on geo-
metric semilattices comes from finite-dimensional vector spaces. The poset of in-
tersections of any arrangement of hyperplanes in a vector space is a geometric
semilattice, as is the poset of all affine subspaces of a finite-dimensional vector
space. This suggests that geometric semilattices should be an “affine” counterpart
to geometric lattices (among whose main examples we find posets of intersections
of arrangements of linear hyperplanes). The following structure theorem is an ab-
stract counterpart to this linear-affine relationship.
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Theorem 4.2.1 (Wachs-Walker [WW86]). A poset P is a geometric semilattice
if and only if P = L \ L≥a where L is a geometric lattice and a is an atom of L.
The poset L and the element a are uniquely determined by P, up to isomorphism.

We will use this theorem to relate M-ideals in geometric semilattices to the
classical notion of modular elements in geometric lattices.

For the remainder of this section let P be a chain-finite geometric semilattice
and let L be a geometric lattice with an atom a0 ∈ A(L) such that P = L \L≥a0

.
The meet operation coincides in L and P. When needed, we will distinguish the
join operations as ∨P and ∨L.

Lemma 4.2.2. A subposet Q of a geometric semilattice P = L \ L≥a0 is a pure,
join-closed order ideal satisfying Definition 2.4.1.(1) in P if and only if Q = P≤x :=
{p ∈ P : p ≤L x} for some x ∈ L≥a0

.

Proof. First, assume x ∈ L≥a0
and let Q = P≤x. Clearly Q is a pure, join-closed

order ideal. To verify Definition 2.4.1.(1), let a ∈ A(P) and y ∈ Q such that a∨Py =
∅. This means that a ∨L y ≥ a0, and hence a ∨L y = a0 ∨L a ∨L y ≥ a0 ∨L y > y.
Since a∨Ly covers y, we must have a∨Ly = a0∨Ly. Thus, a ≤ a∨Ly = a0∨Ly ≤ x
and hence a ∈ Q.

Conversely, assume that Q is a pure, join-closed order ideal of P satisfying
Definition 2.4.1.(1), and let u =:

∨
L Q and x := u∨L a0. It is clear that Q ⊆ P≤x,

but to obtain equality we consider two cases: either u < x or u = x.
If u < x, then u ∈ P and hence Q = P≤u. We thus need to show that

P≤x ⊆ P≤u. Let y ∈ P≤x, so y ∈ P and y ≤ x = u∨La0. To argue by contradiction,
suppose that y ̸≤ u. Then there exists a ∈ A(P) such that a ≤ y and a ̸≤ u.
This implies u ⋖ u ∨L a ≤ u ∨L a0, where the latter inequality holds because
a ≤ y ≤ u ∨L a0. Since u ⋖ u ∨L a0, this implies that u ∨L a = u ∨L a0 ≥ a0.
However, u ∨L a ≥ a0 implies u ∨P a = ∅, contradicting the assumption that
Q = P≤u satisfies Definition 2.4.1.(1).

For the second case, suppose u = x ≥ a0. Then, e.g., by [Aig97, Theorem
2.29 and 6.4.(iii)], there exists a set I ⊆ A(Q) such that x = a0 ∨L

∨
L I and

rk(x) = |I| + 1. But then
∨

L I ̸≥ a0, and hence
∨

P I ̸= ∅. Since Q is join-
closed, this means y :=

∨
P I ∈ Q. Moreover, since y ∨L a0 = x, we have y ⋖ x.

Now suppose that a ∈ A(P≤x) \ A(Q). Since Q satisfies Definition 2.4.1.(1), we
must have a ∨L y ̸≥ a0, so the second inequality in the following chain is strict
x ≥ a0 ∨L a∨L y > a∨L y > y, contradicting the fact that y⋖ x. This means that
no such a can exist, i.e. A(P≤x) ⊆ A(Q). Since Q is join-closed and every element
of P≤x is a join of atoms, we must then have P≤x ⊆ Q. □

Lemma 4.2.3. Let P = L \ L≥a0
be a geometric semilattice, x ∈ L≥a0

, and
Q = P≤x. If z is a complement to x in L, then z ∈ P and z is a complement to
maxQ in P. Moreover, every complement to maxQ in P is a complement to x in
L.

Proof. Let z be a complement to x in L. From x ∧L z = 0̂ we have z ∈ P. Now
consider anym ∈ maxQ. In particular,m∨La0 = x. Thenm∨Lz⋖(a0∨Lm∨Lz) =
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x ∨L z = 1̂, where the first inequality holds because L is a geometric lattice (see
Definition 2.2.1). In particular m ∨P z ⊆ maxP. On the other hand, we have

x ∧L z ≥ m ∧L z = m ∧P z, thus x ∧L z = 0̂ implies m ∧P z = 0̂.
Let z ∈ P be a complement to maxQ in P. For every q ∈ maxQ we have

q ∨L a0 = x, and q ∨L z ≥ p for some p ∈ maxP. Thus, x∨L z = (a0 ∨L q ∨L z) ≥
a0∨Lp = 1̂. On the other hand, surely x∧z ⊆ P≤x = Q and thus there is q ∈ maxQ

such that x ∧ z ≤ q. But then, x ∧ z = x ∧ z ∧ z ≤ q ∧ z = 0̂. This proves that z is
a complement to x in L. □

Theorem 4.2.4. Let P = L \ L≥a0
be a geometric semilattice. A subposet Q of

P is an M-ideal if and only if Q = P≤x for some modular element x in L with
x ≥ a0. Consequently, P is supersolvable if and only if L is supersolvable via a
chain of modular elements passing through a0.

Proof. By Lemma 4.2.2, it suffices to prove that for x ∈ L≥a0
, the order ideal

Q = P≤x satisfies Definition 2.4.1.(2) if and only if x is modular in L.
First, suppose that Q is an M-ideal, and we show that x is modular in L.

If x is not modular in L there are two complements z′, z′′ of x in L such that
z′ ≤ z′′. By Lemma 4.2.3, z′, z′′ ∈ P and both are complements in P to every
y ∈ maxQ. Since Q is an M-ideal we can choose m ∈ maxP≥z′′ and y ∈ maxQ≤m.
Then y is modular in P≤m and z′, z′′ are comparable complements of y in P≤m –
a contradiction. Thus, x is a modular element in L.

Now assume that x is modular in L. Take m ∈ maxP and consider y :=
x ∧L m. Since m⋖ 1̂, modularity of x implies rk(x)− rk(y) = 1 and hence y ⋖ x.
Thus y ∈ maxQ, and x ∧ z = y ∧ z for all z ∈ P≤m (indeed: by modularity
(x ∧ z) ∨ y = x ∧ (z ∨ y) ≥ y, and since z ∨ y ̸≥ x since z ∨ y ∈ Pm, y ⋖ x
implies (x∧ z)∨ y = y, hence (x∧ z) ≤ y and the claim follows). In particular, for

z ∈ P≤m we have that z ∧ y = 0̂ implies z ∧x = 0. Since trivially z ∨ y = 1̂ implies

z ∨ x = 1̂, we have that every complement of y in P≤m is a complement of x in L,
thus modularity of x implies modularity of y.

The claim about supersolvability follows because the chain 0̂ ⊂ P≤x1 ⊂ · · · ⊂
P≤xn

= P will satisfy Definition 2.5.1 in P if and only if the chain 0̂ ⊂ L≤a0
⊂

L≤x1
⊂ · · · ⊂ L≤xn

= L does in L. □

4.3. Affine hyperplane arrangements. Let V ∼= Cn be a complex vector space,
and let A be an arrangement of affine hyperplanes in V . Associated to A is a
polynomial fA ∈ C[x1, . . . , xn] whose solution set is the union of the hyperplanes
in A. Denote by fcA ∈ C[x0, x1, . . . , xn] the homogenization of fA. The cone of A,
denoted by cA, is the linear hyperplane arrangement in Cn+1 whose hyperplanes
are the (linear) components of the solution set of fcA. The cone cA has one more
hyperplane than A does, namely H0 = ker(x0). This coning construction can
be reversed to define the de-cone dA of any linear hyperplane arrangement, see
[OT92].
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Remark 4.3.1. The poset of layers of the affine arrangement A has the struc-
ture of a geometric semilattice since P(A) ∼= P(cA) \ P(cA)≥H0 . Note that Corol-
lary 4.1.5 shows that P(A) is supersolvable according to Definition 2.5.1 exactly
when A is supersolvable in the sense of the definition given by Falk and Terao
[FT97, Remark 2.6].

The following extends Definition 3.4.1 to affine arrangements:

Definition 4.3.2. We inductively define an affine hyperplane arrangement A in a
complex vector space V to be fiber-type if either dim(V ) = 1 or there is a choice
of coordinates V ∼= Cn and an arrangement B in Cn−1 such that the projection
p : Cn → Cn−1 onto the first (n − 1) coordinates restricts to a fiber bundle
M(A) → M(B) whose fibers are homeomorphic to C with finitely many points
removed.

This definition allows us to be obtain an affine analogue to Terao’s Fibration
Theorem [Ter86].

Theorem 4.3.3. Let A be an essential arrangement of affine hyperplanes in a
complex vector space. Then P(A) is supersolvable if and only if A is fiber-type.

Proof. We proceed by induction on the rank of A. Notice that every rank-one
locally geometric poset is supersolvable, and every rank-one affine arrangement is
fiber-type. Let H0 be the additional hyperplane in cA so that P(A) = P(cA) \
P(cA)≥H0

, which under our choice of coordinates on Cn+1 will be the first coor-
dinate hyperplane.

Assume that P(A) is supersolvable, which implies by Theorem 4.2.4 that

there is a modular chain 0̂ < H0 = Y1 < Y2 < · · · < Yn−1 < Yn = 1̂ in P(cA).
Abbreviate Y := Yn−1.

Then we may pick coordinates on the ambient vector space of cA so that the
projection p : Cn+1 → Cn is the quotient by Y , and so that this restricts to a fiber
bundle M(cA) → M(cA/Y ). The following composition is then a fiber bundle

M(A)× C× M(cA) M(cA/Y ) M(d(cA/Y ))× C×
∼= p ∼=

((x1, . . . , xn), x0) (x0, x0x1, . . . , x0xn) (x0, x0x1, . . . , x0xn−1) ((x1, . . . , xn−1), x0)

where the first and last maps are the standard cone/de-cone homeomorphisms
(see eg. [OT92, Proposition 5.1]). The subbundle obtained by setting x0 = 1
is then a fiber bundle M(A) → M(d(cA/Y )). Now P(cA/Y ) is isomorphic to
the subposet P(cA)≤Y , therefore cA/Y is supersolvable via the chain of modular

elements 0̂ < H0/Y < Y2/Y < · · · < Yn−1/Y , and its de-cone d(cA/Y ) with
respect to H0/Y is supersolvable by Theorem 4.2.4. By induction, d(cA/Y ) is
fiber-type. Therefore, A will also be fiber-type.

Conversely, assume that A is fiber-type, and choose coordinates so that the
projection Cn → Cn−1 restricts to a fiber bundle p : M(A) → M(B) for some
fiber-type arrangement B in Cn−1. The composition
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M(cA) M(A)× C× M(B)× C× M(cB)
∼= p× id ∼=

(x0, x1, . . . , xn)
((

x1

x0
, . . . , xn

x0

)
, x0

) ((
x1

x0
, . . . , xn−1

x0

)
, x0

)
(x0, x1, . . . , xn−1)

is then a fiber bundle, which we denote by p̂. This fiber bundle is the quotient by
some dimension-one modular element Y ∈ P(cA), which is necessarily contained
in the additional hyperplane H0. Since B is fiber-type, P(B) is supersolvable by
induction. Then by Theorem 4.2.4, P(cB) is supersolvable via a chain of modular
elements passing through the additional hyperplane p̂(H0) of cB. Via the poset
isomorphism P(cA)≤Y

∼= P(cB) induced by p̂, and using modularity of Y in P(cA),
[Zie91, Proposition 2.2.(1a)] yields a chain of modular elements in P(cA) passing
through H0.

Again by Theorem 4.2.4, we conclude that P(A) is supersolvable. □

4.4. Group quotients and topological covers. In the following we study the
behaviour of supersolvability of posets with respect to certain types of group ac-
tions.

Let G be a group. An action of G on a poset P is any group homomorphism
G → Aut(P) from G to the group of automorphisms of P. Given a group element
g ∈ G it is customary to denote the associated automorphism by g : P → P. For
x ∈ P we will then often write gx for g(x). Following [DD21], we will focus on the
following special type of action.

Definition 4.4.1. Let P be a poset with an action of a group G. We call the
action translative if x ∨ gx ̸= ∅ implies x = gx for every x ∈ P and every g ∈ G.

Translative actions were introduced in [DR18] in order to model periodic
hyperplane arrangements, as we illustrate in the next example.

Example 4.4.2. Consider the periodic arrangement of lines represented in Fig-
ure 9. The standard generators e1, e2 of the group G = Z2 act via the traslations
given by the arrow in the picture. This action is translative. Indeed, for any g ∈ G
and any line x, the lines gx and x have the same direction. Hence, if they intersect
(i.e., if x ∨ gx ̸= ∅), they must be identical (x = gx).

Write Gx = {gx : g ∈ G} for the orbit of an x ∈ P under G. If a group G acts
on a poset P we define the set of orbits P/G := {Gx : x ∈ P}. On it we consider
the relation given by Gx ≤ Gy if there is g ∈ G with x ≤ gy.

Lemma 4.4.3 ([DD21, Lemmas 2.12 and 2.13]). Let P be a poset with a translative
action of a group G. Then the relation ≤ on P/G is a partial order relation.
Moreover, for every z ∈ P the function fz : P≤z → (P/G)≤Gz, p 7→ Gp, defines
an isomorphism of posets.

Example 4.4.4 ([DD21, Section 9]). Let A be an abelian Lie group arrangement
of rank n in G = (S1)d×Rv. Then the lift of all Hα, α ∈ A to the universal cover of
T is an arrangement A↾ of affine subspaces in R(d+v)n. Its poset of layers P(A↾) is
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a geometric semilattice and the action on A↾ of the group of deck transformations
induces a translative action of Znd on P(A↾). Then, P(A) is isomorphic to the
quotient P(A↾)/Zdn. For instance, Figure 9 depicts the arrangement A↾ for the
toric arrangement A of Figure 8.

Example 4.4.5. Let Γ1 be a finitely-generated free abelian group, and let Γ2 be
a subgroup of Γ1 of finite index. Let G be a connected abelian Lie group and let
A ⊆ Γ2 be a finite subset. Call P1, P2 the posets of layers of the arrangements
defined by A in T1 := Hom(Γ1,G), resp. T2 := Hom(Γ2,G). Now since G is a
product of copies of the injective Z-modules S1 and R, G is injective itself and
so Hom(−,G) is exact. This implies that the inclusion Γ2 ↪→ Γ1 induces a map
T1 → T2 presenting T2 as the quotient of T1 by the discrete subgroup G of T1 given
by the image of the inclusion Hom(Γ1/Γ2,G) ↪→ Hom(Γ1,G). By [Pon39, §23,C)
and §16,D),E) ], a quotients of topological groups by a discrete normal subgroups
are covering map. Recall that A ⊆ Γ2, thus for every α ∈ A and g ∈ G one has
g(α) = 0. This implies GHα = Hα for every α ∈ A, and so G acts on P1. Moreover,
since every layer Y of A in T1 is a coset of a subgroup, its image under a deck
transformation is another coset of the same subgroup – hence either identical or
disjoint with Y . This shows that the induced action of the deck transformations
is translative on P1, and P2 is the quotient of P1 by this action.

Lemma 4.4.6. Let P be a locally geometric poset with a translative action of a
group G. Then, P/G is a locally geometric poset. Moreover, if P is geometric then
so is P/G.

Proof. The first claim is an immediate corollary of Lemma 4.4.3. For the second
claim, suppose P satisfies (‡‡) and let f : P → P/G denote the quotient map.
Let x, y ∈ P/G with rk(x) < rk(y) and choose I ⊆ A(P/G) with rk(y) = |I| and
y ∈

∨
I. Choose y′ ∈ f−1(y) and x′ ∈ f−1(x). Since the G-action preserves rank,

rk(x) = rk(x′) and rk(y) = rk(y′). Let I ′ be the preimage of I under the local
isomorphism P≤y′ ≃ (P/G)≤y given by Lemma 4.4.3. Then |I ′| = rk(y′) > rk(x′).
Using property (‡‡) in P we can choose a′ ∈ I ′ such that a′ ̸≤ z and a′ ∨ x′ ̸= ∅.
Choose z′ ∈ a′ ∨ x′ and let a := f(a′) ∈ I. Now f(z′) ≥ a and f(z′) ≥ f(x′) = x.
Moreover, a ∈ I and, with Lemma 4.4.3 applied to P≤z′ , a ̸≤ x. Thus P/G satisfies
(‡‡). □

Corollary 4.4.7. Let A be any abelian Lie group arrangement. Then the poset
P(A) is geometric.

Proof. The claim follows from Lemma 4.4.6 because P(A) is a quotient of a geomet-
ric semilattice (see [DD21, Lemma 9.2.(ii)]) by a translative action, and geometric
semilattices are geometric posets. □
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Lemma 4.4.8. Let P be a poset with a translative action of a group G. Then, for
all x1, x2 ∈ P,

Gx1 ∨P/G Gx2 =

 ⋃
g1,g2∈G

g1x1 ∨P g2x2

/
G.

Proof. Let z ∈ g1x1 ∨P g2x2 for some g1, g2 ∈ P. In particular, Gz ≥ Gxi for
i = 1, 2 and, for every Gp ∈ P/G with Gz ≥ Gp ≥ Gxi, i = 1, 2, it must be
z ≥P f−1

z (p) ≥P gixi, i = 1, 2 (where fz is the isomorphism of Lemma 4.4.3).
Then, by definition of z, f−1

z (p) = z. This means Gp = Gz and proves the right-
to-left inclusion in the claim.

For the left-to-right inclusion, letGz ∈ Gx∨P/GGy. Then, by definition, there
are g1, g2 ∈ G with z ≥ gixi for i = 1, 2. Now for every p ∈ P with z ≥ p ≥ gixi,
i = 1, 2, we must have Gxi ≤ fz(p) ≤ fz(z) = Gz (again fz is the isomorphism of
Lemma 4.4.3). Now Gz ∈ Gx1 ∨ Gx2 implies fz(p) = fz(z), and bijectivity of fz
shows p = z, whence z ∈ g1x1 ∨P g2x2. □

Lemma 4.4.9. Let P be a chain-finite poset with an action of a group G and let
Q be a G-invariant subposet (i.e., GQ = Q).

(i) Q is an order ideal if and only if Q/G is.
(ii) Q is pure if and only if Q/G is.
(iii) If the action is translative, Q is join-closed if and only if Q/G is.

Proof. Since G acts by order-preserving automorphisms, (i) is immediate and (ii)
follows since those automorphisms preserve chain length. Claim (iii) is a conse-
quence of Lemma 4.4.8. □

Lemma 4.4.10. Let P be a locally geometric poset with a translative action of
a group G and let Q be a G-invariant subposet of P. If Q ⊆ P satisfies Defini-
tion 2.4.1.(1), then so does Q/G ⊆ P/G. When P satisfies (‡‡), the converse also
holds.

Proof. Let Definition 2.4.1.(1) hold for Q, and consider Gy ∈ Q/G, Ga ∈ A(P/G)
such that Gy∨P/GGa = ∅. Then y ∈ Q, a ∈ A(P) and, by Lemma 4.4.8, y∨Pa = ∅.
By assumption then a ∈ Q and so Ga ∈ Q/G.

For the reverse implication, suppose that P satisfies (‡‡) and let Defini-
tion 2.4.1.(1) hold for Q/G. Pick y ∈ Q, a ∈ A(P) such that y ∨P a = ∅. Now
if Gp ∈ Gy ∨Ga then we can choose p and g ∈ G such that p ∈ y ∨ ga. Since the
action preserves rank, rk(gy) < rk(p) and rk(ga) = 1. Because P is locally geomet-
ric, then, y ⋖ p. Now translativity and (‡‡) imply that gy ∨P ga ̸= ∅ contradicting
the choice of y and a. Therefore Gy∨Ga = ∅ and by assumption Ga ∈ Q/G, which
means a ∈ Q. □

Lemma 4.4.11. Let P be a locally geometric poset with a translative action of a
group G and let Q be a G-invariant subposet of P. Then, Q ⊆ P satisfies Defini-
tion 2.4.1.(2) if and only if Q/G ⊆ P/G does.
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Proof. For everyGx ∈ maxP/G, Lemma 4.4.3 shows that the quotient map defines
a poset isomorphism between P≤x and (P/G)≤Gx. In particular, given y ∈ P≤x,
every complement of some Gy ∈ (P/G)≤Gx is the orbit of a complement of y, and
viceversa. Therefore y is modular in P≤x if and only if Gy is modular in (P/G)≤Gx.
Moreover, obviously y ∈ Q if and only if Gy ∈ Q/G. Noting that the orbit of every
x ∈ maxP is maximal in P/G proves the claim. □

Theorem 4.4.12. Let P be a locally geometric poset with a translative action of
a group G and let Q be a G-invariant subposet of P. If Q is an M-ideal in P, then
Q/G is an M-ideal in P/G. Moreover, if P satisfies (‡‡), the converse also holds.

Proof. This is a combination of Lemmas 4.4.10 and 4.4.11. □

Corollary 4.4.13. Let Γ1 be a finitely-generated free abelian group, and let Γ2 be
a subgroup of Γ1 of finite index. Let G be an abelian Lie group and let A ⊆ Γ2 be
a finite subset. Call P1, P2 the posets of layers of the arrangements defined by A

in Hom(Γ1,G), resp. Hom(Γ2,G). Then P1 is supersolvable if and only if P2 is.

Proof. Both posets are geometric by Corollary 4.4.7. From Example 4.4.5 we know
that P2 is the quotient of P1 by the translative action of the group G of deck
transformations of the covering Hom(Γ1,G) → Hom(Γ2,G), and that GHα = Hα

for every α ∈ A. The last item implies that maxP(AY ) is G-invariant for every
layer Y ∈ P1. In particular, if P1 is supersolvable, all members of the associated
chain of M-ideals are G-invariant. On the other hand, if P2 is supersolvable, the
preimage of every element of the associated chain of M-ideals is obviously G-
invariant. Now the claimed equivalence follows by Theorem 4.4.12. □

Corollary 4.4.14. Recall the setup of Example 4.4.4. For every abelian Lie group
arrangement A, the poset P(A↾) is supersolvable if and only if P(A) is.

Proof. The proof is similar to that of Corollary 4.4.13. We already know that both
posets are geometric. For every α ∈ A the group G = Zdn of deck transformations
acts on the union of all lifts of Hα to the universal cover of T . Hence maxP(AY ) is
G-invariant for all layers Y ∈ P(A↾). Thus, all M-ideals of P(A↾) are G-invariant.
On the other hand, obviously the lift of every M-ideal of P(A) is G-invariant. The
claimed equivalence follows by Theorem 4.4.12. □

Remark 4.4.15. Example 4.4.4 describes the lift of an abelian arrangement to
the universal cover of its ambient space. Corollary 4.4.14 can be generalized to
other covering spaces in the following way. Let G1, G2 be two connected abelian
Lie groups and suppose that G2 is a topological cover of G1. Then G1 is isomorphic
to the quotient G2/L, where L is a discrete subgroup of G2 [Pon39, §47, Definition
44 and ff.]. Let Γ be a finitely generated free Abelian group. Then Hom(Γ,−) is
exact, hence Hom(Γ,G1) is the quotient of the topological group Hom(Γ,G2) by its
discrete subgroup Hom(Γ, L). In particular, Hom(Γ,G2) is a topological covering
of Hom(Γ,G1).
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Let A ⊆ Γ be a finite subset. Call P1 the poset of layers of the arrangement
defined by A in Hom(Γ,G1), and let P2 be the poset of layers of the lift of that
arrangement to the cover Hom(Γ,G2) of Hom(Γ,G1). Then, P1 is supersolvable if
and only if P2 is. This follows from Corollary 4.4.14 because G1 and G2 have the
same universal cover, thus both arrangements lift to the same A↾.

5. Strict supersolvability and configuration spaces

5.1. Definitions. Several phenomena that are well-known about supersolvable
geometric lattices in fact do not hold in our general setting. The difficulty lies
in Definition 2.4.1.(1), which may be rephrased as requiring |a ∨ y| ≥ 1 for any
y ∈ Q and a ∈ A(P) \ A(Q). If instead we require such a and y to have a unique
minimal upper bound, these phenomena do indeed appear. In other words, we
need a stronger notion than an M-ideal, which we define next.

Definition 5.1.1. A TM-ideal of a locally geometric poset P is a pure, join-
closed, order ideal Q ⊆ P such that:

(1) |a ∨ y| = 1 whenever y ∈ Q and a ∈ A(P) \A(Q).
(2) for every x ∈ max(P), there is some y ∈ max(Q) such that y is a modular

element in the geometric lattice P≤x.

Example 5.1.2. {0̂} and P are always TM-ideals of P.

Remark 5.1.3. When P is the poset of layers for an abelian arrangement A

in T , Definition 5.1.1 has the following topological interpretation. Let Y be an
admissible subgroup of T for which P(AY ) is an M-ideal of P(A). The following
statements are equivalent.

(1) P(AY ) is a TM-ideal of P(A) with rk(P(AY )) = rk(P(A))− 1.
(2) For every Y ′ ∈ maxP(AY ) and H ∈ A(A \ AY ), the intersection Y ′ ∩H

is connected.

Definition 5.1.4. A locally geometric poset P is strictly supersolvable if there
is a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P

where each Qi is a TM-ideal of Qi+1 with rk(Qi) = i.

Example 5.1.5. Any rank-one locally geometric poset is strictly supersolvable.

Example 5.1.6. The poset P from Example 2.4.4 (see Figure 3) is not strictly
supersolvable. Indeed, its only proper M-ideals are P≤1 and P≤3, and the fact that
|1 ∨ 3| = 2 means neither is a TM-ideal.

Example 5.1.7. Let Γ = Z2 and A = {α1 = (1, 0), α2 = (0, 2), α3 = (1, 2)}. Let
G = S1×Rv and consider an arrangement in T . If v = 0 or v = 1, we may identify
T with (S1)2 or (C×)2, respectively. Figure 8 depicts the arrangement in (S1)2

and Figure 10 depicts the Hasse diagram for its poset of layers. This poset has a
proper TM-ideal, whose maximal elements are the connected components of H2,
which is shown in the left of Figure 10. Thus, P(A) is strictly supersolvable.
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Note, however, that the fiber bundle depicted in Figure 8 corresponds to
the M-ideal P(A)≤Hα1

in the right of Figure 10, which is not a TM-ideal since
Hα1 ∩Hα3 is disconnected.

Figure 10. The Hasse diagram for the poset of layers of the
arrangement A from Example 5.1.7. The elements of a TM-ideal
colored in red (left); the elements of an M-ideal that is not a TM-
ideal are colored in blue (right).

Example 5.1.8. Dowling posets are strictly supersolvable; see the proof of Propo-
sition 2.6.1.

Proposition 5.1.9. Let P be a geometric semilattice. Then Q is an M-ideal of P
if and only if Q is a TM-ideal of P. Consequently, P is supersolvable if and only if
it is strictly supersolvable.

Proof. In a geometric semilattice, if two elements have an upper bound then they
have a unique minimal upper bound. This means that Definition 2.4.1.(1) implies
Definition 5.1.1.(1) for geometric semilattices, hence every M-ideal is a TM-ideal.

□

5.2. Characteristic polynomial. The characteristic polynomial of any bounded-
below poset P with a rank function rk is defined as

χP(t) :=
∑
x∈P

µP(x)t
rk(P)−rk(x),

where µP is iteratively defined by µP(0̂) = 1 and for any x ∈ P \ 0̂ one has∑
y∈P≤x

µP(y) = 0. A feature of supersolvable geometric lattices is that their

characteristic polynomial decomposes into linear factors over Z. We show that
this is true also for strictly supersolvable posets.

Theorem 5.2.1. Let Q be a TM-ideal of a locally geometric poset P with rk(Q) =
rk(P)− 1, and let a = |A(P) \A(Q)|. Then

χP(t) = χQ(t) · (t− a).
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In particular, if P is strictly supersolvable via the chain of TM-ideals 0̂ = Q0 ⊂
Q1 ⊂ · · · ⊂ Qn = P, and ai = |A(Qi) \A(Qi−1)| for each i, then

χP(t) =

n∏
i=1

(t− ai).

Proof. The second claim, for strictly supersolvable posets, follows from the first by
induction. Thus, we need only consider a TM-ideal Q in a locally geometric poset
P.

Let x ∈ P \ Q. By Proposition 2.4.7 and Remark 2.4.2, there is a unique
y ∈ Q such that x covers y, and this y is a modular element of P≤x. Thus,
χP≤x

(t) = χQ≤y
(t)(t−|Ax|) by [Sta72, Theorem 2], where Ax = A(P≤x)\A(Q). Ex-

tracting the constant term of each side of this equation yields µP(x) = −µQ(y)|Ax|.
Moreover, for y ∈ Q, the sets {Ax : x ∈ P \Q, y⋖x} partition A(P) \A(Q) by Def-

inition 5.1.1.(1). This means that for each y ∈ Q,
∑

x∈P\Q
y⋖x

|Ax| = a.

Therefore,

χP(t) =
∑
x∈P

µP(x)t
rk(P)−rk(x)

=
∑
y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑
y∈Q

∑
x∈P\Q
y⋖x

µP(x)t
rk(P)−rk(x)

=
∑
y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑
y∈Q

∑
x∈P\Q
y⋖x

−µQ(y)|Ax|trk(P)−rk(x)

=
∑
y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑
y∈Q

−aµQ(y)t
rk(Q)−rk(y)

=
∑
y∈Q

µQ(y)t
rk(Q)−rk(y)(t− a) = χQ(t) · (t− a).

□

Remark 5.2.2. The complete factorization in the case of strictly supersolvable
posets could be proved directly using [Hal17, Theorem 4.4] and the partition of
A(P) whose blocks are the sets A(Qi)\A(Qi−1). This was carried out in the example
of Dowling posets in [BG21, Theorem B] and is straightforward to generalize to
our setting.

Remark 5.2.3. The assumption that Q is a TM-ideal in Theorem 5.2.1 is nec-
essary, as demonstrated in the following examples. Accordingly, a poset being
supersolvable is not enough for its characteristic polynomial to factor completely
over Z.
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Example 5.2.4. Consider the poset P depicted in Figure 10 (see also Exam-
ple 5.1.7). Its characteristic polynomial is

χP(t) = t2 − 4t+ 4 = (t− 2)(t− 2).

This agrees with the fact that the TM-ideal Q colored in red in Figure 10 has
χQ(t) = t − 2 and |A(P) \ A(Q)| = 2. On the other hand, the M-ideal Q′ colored
in blue in Figure 10 is not a TM-ideal, and we see that χQ′(t) = t − 1 does not
divide χP(t).

Example 5.2.5. Consider again the poset P in Figure 3, see also Example 2.4.4.
It is supersolvable, with {0̂, 1} and {0̂, 3} both M-ideals. However, it is not strictly
supersolvable and its characteristic polynomial χP(t) = t2 − 3t+3 does not factor
over the integers.

Corollary 5.2.6. Let G ∼= (S1)d × Rv with v > 0, let Γ be a free abelian group
with rk Γ = n, let A be an essential arrangement in T = Hom(Γ,G) whose poset

of layers is strictly supersolvable via the chain of TM-ideals 0̂ ⊂ Q1 ⊂ · · · ⊂ Qn =
P(A), and let ai = |A(Qi) \A(Qi−1)| for each i.

Then the Poincaré polynomial of M(A) factors as:∑
j≥0

rkHj(M(A);Z)tj =
n∏

i=1

(
(1 + t)d + ait

d+v−1
)
.

Proof. By [LTY21, Theorem 7.8], the Poincaré polynomial of M(A) is given by∑
j≥0

rkHj(M(A);Z)tj = (−td+v−1)nχP(A)

(
− (1 + t)d

td+v−1

)
.

The result then follows from the formula of Theorem 5.2.1. □

5.3. Topological fibrations. Recall from Example 3.1.3 the configuration space
Confn(G), viewed as the complement of an abelian arrangement. Cohen [Coh01,
Theorem 1.1.5] observed that fiber bundles of hyperplane arrangement comple-
ments can be pulled back from the classical Fadell–Neuwirth bundles of configu-
ration spaces [FN62] defined by dropping the last point in a configuration. We see
the same phenomenon when our arrangement bundle corresponds to a TM-ideal,
but an M-ideal is not sufficient.

As in §3, we assume throughout that G is a connected abelian Lie group,
T = Hom(Γ,G) for some finite-rank free abelian group Γ, Y is an admissible
subgroup of T , and A is an essential arrangement in T .

Theorem 5.3.1. Suppose that P(AY ) is a TM-ideal of P(A). Then there exists a
map g : M(A/Y ) → Confℓ(G) such that p is the pullback of the Fadell–Neuwirth
bundle Confℓ+1(G) → Confℓ(G) along the map g.

Proof. WriteA\AY = {α1, . . . , αs}, and for each 1 ≤ i ≤ s writeHαi
= ⊔ci

j=1Hαi,j ,

where ci is the number of connected components of Hαi
. By Definition 5.1.1.(1),

the covering map in Corollary 3.3.2 restricts to a homeomorphism pi,j := p|Hαi,j
:
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Hαi,j → T/Y for each 1 ≤ i ≤ s and 1 ≤ j ≤ ci. We can choose coordinates
(e.g., as in the proof of Lemma 3.2.1) such that pi,j is the projection along the last
coordinate, sending (t, r) 7→ t. Since pi,j is a homeomorphism, there are continuous

functions ri,j : T/Y → G such that p−1
i,j : T/Y → Hαi,j sends t 7→ (t, ri,j(t)).

Then the product of the ri,j defines a continuous map ĝ : T/Y → Gℓ, where
ℓ =

∑
i ci. Lemma 3.2.1 guarantees that for any t ∈ M(A/Y ), the points ri,j(t) are

all distinct. Therefore, ĝ restricts to a continuous map g : M(A/Y ) → Confℓ(G).
Notice that the two fiber bundles form a commutative square as depicted in

Figure 11, where the map h : M(A) → Confℓ+1(G) is defined, for (t, z) ∈ M(A) ⊆
T ∼= (T/Y ) × G, by (t, z) 7→ (g(t), z). We now show that this square satisfies the
universal property of a pullback.

X

M(A) Confℓ+1(G)

M(A/Y ) Confℓ(G)

f2
f

f1

h

p π

g

Figure 11. Pullback diagram in the proof of Theorem 5.3.1

Let X be a topological space and f1, f2 two continuous functions such that
g ◦ f1 = π ◦ f2. The map

f : X → M(A), x 7→ (f1(x), (f2(x))ℓ+1)

is well-defined because f1(x) ∈ M(A/Y ) and (f2(x))ℓ+1 does not coincide with any
of the coordinates of g(f1(x)) = (π◦f2)(x) = (f2(x)1, . . . f2(x)ℓ), i.e. the punctures
of the fiber p−1(t). It is continuous because the fi are, and commutes with p and h,
since by definition p◦f = f1 and h◦f = (g◦f1, (f2)ℓ+1) = (π◦f2, (f2)ℓ+1) = f2. □

Remark 5.3.2. The idea to have in mind for the map g of Theorem 5.3.1 is that
it should pick out the punctures in the fiber over a point of M(A/Y ). If P(AY ) is
an M-ideal but not a TM-ideal, then there is some H ∈ A(A\AY ) such that H∩Y
is not connected. The nontrivial monodromy of the covering map H → T/Y then
obstructs the existence of the desired map r within the proof. We will see below
(Theorem 5.3.6) that trivial monodromy implies that the M-ideal P(AY ) is in fact
a TM-ideal.

Corollary 5.3.3. If P(AY ) is a TM-ideal of P(A), then the fiber bundle M(A) →
M(A/Y ) admits a section.

Proof. By Theorem 5.3.1 it suffices to prove that the bundle Confℓ+1(G) →
Confℓ(G) has a section. For v > 0 this follows from [Coh10, Example 4.1]. For the
general case, note that this bundle is isomorphic to the bundle π × id : Confℓ(G \
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0)×G → Confℓ−1(G\0)×G (see eg. [FN62, Theorem 4]). In order to obtain a sec-
tion of π, fix a coordinate direction in G. Given x = (x1, . . . , xℓ−1) ∈ Confℓ−1(G\0)
let µ(x) be the minimum of the (finite) set of (nonzero) distances of the xi from 0
in G. Then a section of π is obtained by mapping x to (x1, . . . , xℓ−1, xℓ), where xℓ

is the point of G at distance µ(x)
2 from 0 in the chosen coordinate direction. □

Corollary 5.3.4. The fundamental group of a strictly supersolvable linear, toric,
or elliptic arrangement has the structure of an iterated semidirect product of free
groups.

Proof. We proceed by induction on the rank of Γ. If rk(Γ) = 1, then M(A) ∼=
G \ {finitely many points} with G = C, C×, or (S1)2, hence the fundamental
group of M(A) is isomorphic to a free group. Now for rk(Γ) > 1, there is a
strictly supersolvable arrangement B for which M(A) → M(B) is a fiber bundle
with F ∼= G \ {finitely many points}. Using the homotopy long exact sequence for
the fibration and Corollary 3.4.4, we have a short exact sequence of fundamental
groups

0 → π1(F ) → π1(M(A)) → π1(M(B)) → 0.

Corollary 5.3.3 implies that this short exact sequence is split, and hence

π1(M(A)) ∼= π1(F )⋊ π1(M(B)).

Since π1(F ) is a free group the result follows by induction. □

Lemma 5.3.5. Assume that G ∼= (S1)d×Rv and v > 0. The inclusion ι : M(A) →
T induces a surjective map of fundamental groups ι∗ : π1(M(A)) → π1(T ).

Proof. The product structure of G induces a decomposition

Hom(Γ,G) = Hom(Γ, (S1)d)×Hom(Γ,Rv).

Thus, every t ∈ Hom(Γ,G) is a pair t = (z, x) with z ∈ Hom(Γ, (S1)d) and x ∈
Hom(Γ,Rv). Now α ∈ Γ is in ker(t) if and only if α ∈ ker(z) ∩ ker(x). Let M(AR)
denote the complement of the arrangement defined by A in Hom(Γ,Rv) ≃ Rvn.
Let r ∈ M(AR). Then for all α ∈ A we have α ̸∈ ker(r : Γ → Rv) and so
α ̸∈ ker((z, r) : Γ → (S1)d × Rv) for every z ∈ Hom(Γ, (S1)d) ≃ (S1)dn. Thus
π−1
R (r) ⊆ M(A), where πR denotes the natural projection T → Rvn induced by

the projection G → Rv. By definition of πR, we have T ≃ π−1
R (r)×Rvn, hence the

inclusion j : π−1
R (r) ↪→ T induces an isomorphism of fundamental groups. Since

j factors as a composition of inclusions Tc ↪→ M(A) ↪→ T , the homomorphism
ι∗ : π1(M(A)) → π1(T ) is surjective as claimed. □

Theorem 5.3.6. Assume that G ∼= (S1)d×Rv and v > 0. Let Y be an admissible
subgroup of T for which M(A) → M(A/Y ) is a fiber bundle with fiber F . If the
monodromy action of π1(M(A/Y )) on H∗(F ;Z) is trivial, then P(AY ) is a TM-
ideal of P(A). Consequently, the conclusions of Theorem 5.3.1 and Corollary 5.3.3
hold, as well as the following tensor decomposition of vector spaces:

H∗(M(A);Q) ∼= H∗(M(A/Y );Q)⊗H∗(F ;Q).
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Proof. The conclusions of Theorem 5.3.1 and Corollary 5.3.3 will hold as long as
P(AY ) is a TM-ideal of P(A). The triviality of the monodromy action implies that
the E2 term of the Serre spectral sequence of the fiber bundle M(A) → M(A/Y )
can be expressed as the above tensor product. Since this tensor product has Hilbert
series equal to that of H∗(M(A);Q) via Corollary 5.2.6, the differentials must be
trivial. It remains to prove that if the monodromy action is trivial, then P(AY ) is
a TM-ideal of P(A).

By Lemma 3.2.1 and Remark 5.1.3, if P(AY ) is not a TM-ideal, then there is
H ∈ A \ AY such that H ∩ Y is disconnected, hence it contains two points y0, y1
in distinct connected components. Since H is path-connected, we can let γ denote
a path from y0 to y1 in H. Then, p(γ) is a closed path in T/Y . The element of
π1(T/Y ) defined by the class of p(γ) determines a continuous map f : Y → Y
with f(y0) = y1 (by uniqueness of lifting).

The inclusions ι : M(A/Y ) ↪→ T/Y and M(A) ↪→ T define a bundle map
from the fibrationM(A) → M(A/Y ) with fiber F to the trivial fibration T → T/Y
with fiber Y .

By Lemma 5.3.5, there is a closed path γ′ in M(A/Y ) whose homotopy class
maps to the class of p(γ) under ι∗. The element of π1(M(A/Y )) defined by γ′ acts
on F via f ′ := f|F , the restriction of f . Now it is enough to prove that f ′ acts
nontrivially on the cohomology of F .

Write k := dimG. The pair (Y, F ) has the (co)homology of a wedge of k-
spheres, one for each puncture of F . Thus we can consider the generators e0, e1 of
Hk(Y, F ) corresponding to y0, y1. The map g induced by f on Hk(Y, F ) satisfies
g(e0) = e1. The functions f, f ′, g define the following automorphism of the long
exact sequence of the pair (Y, F ). (Note that v > 0 implies that the homological
dimension of G – hence of Y – is strictly less than k.)

· · · Hk−1(F ) Hk(Y, F ) Hk(Y ) = 0 · · ·

· · · Hk−1(F ) Hk(Y, F ) Hk(Y ) = 0 · · ·

∂

(f ′)∗ g

Since e0 ∈ Hk(Y, F ) is in the kernel of the differential, there is a ∈ Hk−1(F )
with ∂(a) = e0. Now (f ′)∗(a) must map under ∂ to e1 = g(e0). Since e0 ̸= e1,
we have a ̸= (f ′)∗(a), showing that the action of γ′ ∈ π1(A/Y ) on Hk−1(F ) is
nontrivial. □

Remark 5.3.7. Let G = S1 × R. Then Confℓ(G) is equal to the complement
of a fiber-type hyperplane arrangement, namely the arrangement in Cℓ contain-
ing all diagonal and coordinate hyperplanes. As such, the monodromy action of
π1(Confℓ−1(G)) on the cohomology of the fiber G \ {ℓ− 1 points} is trivial [FR85,
Proposition 2.5]. Using Theorem 5.3.6, this implies a converse of Theorem 5.3.1:
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whenever a toric arrangement bundle M(A) → M(A/Y ) is pulled back from a con-
figuration space bundle Confℓ(G) → Confℓ−1(G), P(AY ) is a TM-ideal of P(A).

Question 5.3.8. Let G be any connected abelian Lie group and Γ a finitely
generated free abelian group. Let A be an arrangement in T = Hom(Γ,G), and let
Y be an admissible subgroup of T for which M(A) → M(A/Y ) is a fiber bundle
with fiber F . What is the monodromy action of π1(M(A/Y )) on the cohomology
of the fiber F?

We conclude with a formula relating the cohomology of a fiber-type toric
arrangement with the lower central series of its fundamental group. For this, recall
the lower central series of a group.

Definition 5.3.9. Let G be a group. The lower central series of G is defined
as G = G1 ⊇ G2 ⊆ G3 ⊇ · · · where Gj+1 = [Gj ,G] for all j ≥ 1. For each j, let
G(j) := Gj/Gj−1. When G is a finitely generated group, each G(j) is a finitely-
generated abelian group [MKS66, Theorem 5.4]. Then, we let φj(G) denote the
rank of G(j) as an abelian group.

Note that G(1) is the abelianization of G. In particular, if X is a topological
space and G = π1(X) is finitely generated, then G(1) ∼= H1(X) and φ1 is the first
Betti number of X.

Theorem 5.3.10. Let A be a strictly supersolvable toric arrangement via the chain
of TM-ideals P(A) = Qn ⊃ Qn−1 ⊃ · · · ⊃ Q1 ⊃ Q0 = 0̂. Let ai = |A(Qi) \A(Qi−1)|
for each i = 1, 2, . . . , n. Let G = π1(M(A)) be the fundamental group of the
arrangement complement, and for each j ≥ 1 abbreviate φj = φj(G). Then each
G(j) is a free abelian group and

∞∏
j=1

(1− tj)φj =

n∏
i=1

(1− (ai + 1)t),

which by Corollary 5.2.6 is equal to the Poincaré polynomial of M(A).

Proof. We proceed by induction on n, with both the base case and the inductive
step relying on the following identity from [MKS66, p. 330 and Corollary 5.12.(iv)].
Let Fr be the free group on r generators, and let Nr,j = φj(Fr). Then

(⋆)

∞∏
j=1

(1− tj)Nr,j = 1− rt.

Now, our base case is an arrangement of a1 points in C×, whose complement
is the complement of a1 + 1 points in C. Thus, the fundamental group is a free
group on r = a1 + 1 generators, for which the groups Fr(j) are free abelian and
(⋆) is precisely the desired formula.

Now for n > 1, let Y ∈ P(A) be the subgroup for which Qn−1 = P(AY ).
Let F be the fiber of the bundle M(A) → M(A/Y ), so that π1(F ) ∼= Fr with
r = an + 1. By Corollary 3.4.4 and Corollary 5.3.3, we have a split short exact
sequence of fundamental groups
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1 π1(F ) π1(M(A)) π1(M(A/Y )) 1

Abbreviate G = π1(M(A)), φj = φj(G), G′ = π1(M(A/Y )), and φ′
j = φj(G

′).
Then [FR85, Corollary 3.6] implies G(j) ∼= G′(j) ⊕ Fr(j) for every j ≥ 1. By our
inductive hypothesis, each G(j) is a direct sum of free abelian groups, hence it is
also free abelian. This direct sum decomposition also implies φj = φ′

j + Nr,j for
every j ≥ 1, thus

∞∏
j=1

(1− tj)φj =

∞∏
j=1

(1− tj)φ
′
j

∞∏
j=1

(1− tj)Nr,j

which by induction and (⋆) is equal to

n−1∏
i=1

(1− (ai + 1)t)(1− (an + 1)t).

□
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[Koh85] T. Kohno. Série de Poincaré-Koszul associée aux groupes de tresses pures. Invent. Math.,
82(1):57–75, 1985.



40 CHRISTIN BIBBY AND EMANUELE DELUCCHI

[LTY21] Y. Liu, T. N. Tran, and M. Yoshinaga. G-Tutte polynomials and abelian Lie group

arrangements. Int. Math. Res. Not. IMRN, (1):152–190, 2021.

[MKS66] W. Magnus, A. Karrass, and D. Solitar. Combinatorial group theory: Presentations of
groups in terms of generators and relations. Interscience Publishers [John Wiley & Sons,

Inc.], New York-London-Sydney, 1966.

[OS80] P. Orlik and L. Solomon. Combinatorics and topology of complements of hyperplanes.
Invent. Math., 56(2):167–189, 1980.

[OT92] P. Orlik and H. Terao. Arrangements of hyperplanes, volume 300 of Grundlehren der

mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1992.

[Par00] L. Paris. Intersection subgroups of complex hyperplane arrangements. Topology Appl.,

105(3):319–343, 2000.
[Pon39] L. Pontrjagin. Topological groups. (Translated by Emma Lehmer), volume 2 of Princeton

Math. Ser. Princeton University Press, Princeton, NJ, 1939.
[Sta72] R. P. Stanley. Supersolvable lattices. Algebra Universalis, 2(1):197–217, 1972.

[Sta72] R. P. Stanley. Modular elements of geometric lattices. Algebra Universalis, 1:214–217,

1971/72.
[Ter86] H. Terao. Modular elements of lattices and topological fibration. Adv. in Math.,

62(2):135–154, 1986.

[WW86] M. L. Wachs and J. W. Walker. On geometric semilattices. Order, 2(4):367–385, 1986.
[XM97] M. A. Xicotencatl Merino. Orbit configuration spaces, infinitesimal braid relations in

homology and equivariant loop spaces. ProQuest LLC, Ann Arbor, MI, 1997. Thesis

(Ph.D.)–University of Rochester.
[Zas77] T. Zaslavsky. A combinatorial analysis of topological dissections. Advances in Math.,

25(3):267–285, 1977.

[Zie91] G. M. Ziegler. Binary supersolvable matroids and modular constructions. Proc. Amer.
Math. Soc., 113(3):817–829, 1991.

Louisiana State University, Baton Rouge, LA, USA

Email address: bibby@math.lsu.edu

University of Applied Arts and Sciences of Southern Switzerland

Email address: emanuele.delucchi@supsi.ch

bibby@math.lsu.edu
emanuele.delucchi@supsi.ch

	1. Introduction
	1.1. Acknowledgements

	2. Supersolvable locally geometric posets
	3. Topological fibrations of arrangements
	4. Geometric posets
	5. Strict supersolvability and configuration spaces
	References

