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Abstract From a root system, one may consider the arrangement of reflecting hyper-
planes, as well as its toric and elliptic analogues. The corresponding Weyl group acts
on the complement of the arrangement and hence on its cohomology. We consider a
sequence of linear, toric, or elliptic arrangements which arise from a family of root
systems of type A, B, C, or D, and we show that the rational cohomology stabilizes as
a sequence of Weyl group representations. Our techniques combine a Leray spectral
sequence argument similar to that of Church in the typeA case alongwith FIW -module
theory which Wilson developed and used in the linear case. A key to the proof relies
on a combinatorial description, using labelled partitions, of the poset of connected
components of intersections of subvarieties in the arrangement.

Keywords Hyperplane arrangement · Toric arrangement · Elliptic arrangement ·
Weyl group · Representation stability
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1 Introduction

In this paper, we consider arrangements of codimension-one subvarieties in a complex
vector space, torus, or abelian variety, determined by a root system of type A, B, C,
or D. The subvarieties in such an arrangement are determined by realizing the root
system as a set of characters on a torus. In each of these cases, the complement of the
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union of subvarieties comes with a natural action of the corresponding Weyl group.
This action makes the rational cohomology into a representation over the Weyl group,
which is the object we study.

These arrangements arising from root systems also have interesting combinatorics.
In the type A case, taking all intersections of subvarieties in the arrangement forms a
lattice which is isomorphic to the partition lattice. In the other linear cases, Barcelo and
Ihrig [2] give a combinatorial description of the intersection lattice. However, in the
toric and elliptic cases, intersections of hyperplanes need not be connected and form
a partially ordered set which is not necessarily a lattice. In these cases, we consider
the poset consisting of connected components of intersections, and in Theorem 1 we
give a combinatorial description akin to that of Barcelo and Ihrig. Understanding the
Weyl group action on the connected components of intersections is then equivalent to
understanding its action on certain types of partitions, called labelled partitions.

We have already said that we are interested in the rational cohomology of the
complement as a representation. But more specifically, we consider the sequence of
representations arising from each family of root systems. We show in Theorem 3 that
this sequence of representations stabilizes in the sense of Church–Farb [9]. That is, for
n large enough, if we decompose the representations into irreducibles, the multiplicity
of each irreducible representation does not depend on n. As a special case, by taking
the trivial representation, the orbit space enjoys homological stability (Corollary 3).

In the case of the symmetric group, the complement is an ordered configura-
tion space. Church [7] showed representation stability of the rational cohomology
of ordered configuration spaces using a Leray spectral sequence and the partition
lattice. We generalize his method of using this spectral sequence for other types of
arrangements by combining it with our combinatorics and with FIW -module theory
developed by Wilson [16,17]. Wilson [17] also showed representation stability for
each linear case.

We also give a slight improvement on Church’s stable range for type A ellip-
tic arrangements in Proposition 3. Recently, Hersh and Reiner [11] showed a better
improvement for the type A linear case, and we wonder if their result or methods may
also be applied to these other arrangements.

2 Arrangements

2.1 Linear, toric, and elliptic arrangements

The three types of arrangementswhichweconsider in this paper are as follows.A linear
arrangement is a set of hyperplanes in a complex vector space. A toric arrangement is
a set of codimension-one subtori (possibly translated) in a complex torus. An abelian
arrangement is a set of codimension-one abelian subvarieties (possibly translated) in
a complex abelian variety. In the case of an abelian arrangement, all of our abelian
varieties will be products of an elliptic curve and we call it an elliptic arrangement.
We denote the complement of A in V by M(A ) = V \ ∪H∈A H .

A layer of an arrangementA is a connected component of an intersection
⋂

H∈S H
for some subset S ⊆ A . Note that the intersections themselves need not be connected.
We say that the arrangement is unimodular if every intersection is connected. Note
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that linear arrangements are always unimodular, but this is not true in general for toric
or elliptic arrangements. The set of layers forms a ranked poset, ordered by reverse
inclusion, with rank given by the complex codimension.

In the linear case, the cohomology of the complement M(A ) is isomorphic to the
Orlik–Solomon algebra [14], which notably depends only on the combinatorics of the
arrangement, its poset of layers. A toric or elliptic arrangement A is locally a linear
arrangement, by which we mean the following. For every x ∈ Xn , the exponential
map gives a homeomorphism between a small neighbourhoodU of x and a small ball
V around 0 in the tangent space Tx Xn . This homeomorphism restricts to homeomor-
phisms U ∩ H ∼= V ∩ Tx H whenever H � x . These hyperplanes V ∩ Tx H form a
linear arrangement inside V ∩ Tx Xn ∼= C

n whose poset of layers is the subposet of
the layers of A which contain x . Since U ∩ M(A ) is homeomorphic to the com-
plement of this linear arrangement, the cohomology of U ∩ M(A ) is isomorphic to
the Orlik–Solomon algebra of the subposet. We will make use of this in the proof of
Lemma 2.

A natural way in which arrangements may arise is from a set of characters on a
complex torus T , say � ⊆ Hom(T, C

×). Here, for each χ ∈ �, we take the set of
connected components of ker χ ⊆ T . This collection of subvarieties defines a toric
arrangementA (C×, �) in T , in view of DeConcini and Procesi [10]. Noting that the
Lie algebra Lie(T ) is a complex vector space, we may take the kernel of each dχ and
get a linear arrangement A (C, �) in Lie(T ). Moreover, for a complex elliptic curve
E , there is an embedding Hom(C×, C

×) ↪→ Hom(E, E) which sends the identity
map on C

× to the identity map on E . This then extends to an embedding

ι : Hom((C×)n, C
×) ↪→ Hom(En, E)

so that given � ⊆ Hom(T, C
×), the collection of connected components of ker ιχ in

En for χ ∈ � gives an elliptic arrangement A (E, �).

2.2 Arrangements from root systems

By taking the perspective of arrangements arising from characters on a torus, we will
now consider the case in which the set of characters is the set of positive roots in a root
system of type A, B, C, or D. Here, if T is an n-dimensional torus, we will denote the
root system by �n ⊆ Hom(T, C

×). Letting X be C, C×, or a complex elliptic curve,
the collection of connected components of the kernel of dχ , χ , or ιχ , respectively, for
χ ∈ �+

n gives an arrangement which we denote by A (X,�+
n ).

Using the standard basis v1, . . . , vn for the integer lattice Hom(T, C
×), the type

Cn root system consists of:

�n = {±(vi ± v j ) | 1 ≤ i < j ≤ n} ∪ {±2vi | 1 ≤ i ≤ n}

and hence the positive roots are:

�+
n = {vi ± v j | 1 ≤ i < j ≤ n} ∪ {2vi | 1 ≤ i ≤ n}.
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For χ ∈ �+
n , the kernel in Xn is not necessarily connected. It is if χ = vi ±v j , giving

the subvarieties:

Hi j := {(x1, . . . , xn) ∈ Xn | xi = x j }

and

H ′
i j := {(x1, . . . , xn) ∈ Xn | xi = x−1

j }

(writing the group operation on X multiplicatively). However, if χ = 2vi , the con-
nected components depend on X . Let X [2] denote the two-torsion points of X . For
X = C, this consists only of the origin, but C

× has two two-torsion points and a
complex elliptic curve has four. The connected components of the kernel of dχ , χ ,
and ιχ are then indexed by X [2]:

Hz
i := {(x1, . . . , xn) ∈ Xn | xi = z} for z ∈ X [2]

In summary, the type Cn arrangement in Xn , denoted byA (X,�+
n ), is defined as the

collection of the above subvarieties: Hi j (for 1 ≤ i < j ≤ n), H ′
i j (for 1 ≤ i < j ≤ n),

and Hz
i (for 1 ≤ i ≤ n, z ∈ X [2]).

The type Bn root system consists of:

�n = {±(vi ± v j ) | 1 ≤ i < j ≤ n} ∪ {±vi | 1 ≤ i ≤ n}.

Now, the kernel of vi (or similarly for dvi or ιvi ) is the identity component of the
kernel of 2vi . Hence, the type Bn arrangement in Xn consists of Hi j (1 ≤ i < j ≤ n),
H ′
i j (1 ≤ i < j ≤ n), and He

i (1 ≤ i ≤ n, with e the identity of X ). Note that in the
linear case, the type B and C arrangements are equal.

The type Dn root system consists of:

�n = {±(vi ± v j ) | 1 ≤ i < j ≤ n}.

Hence the type Dn arrangement consists of the subvarieties Hi j and H ′
i j for 1 ≤ i <

j ≤ n.
The type An−1 root system consists of:

�n = {±(vi − v j ) | 1 ≤ i < j ≤ n}.

Hence the type An−1 arrangement consists of the subvarieties Hi j for 1 ≤ i < j ≤ n.
Note that toric and elliptic arrangements of types B, C, and D, are not unimodular,

as Hi j ∩H ′
i j has connected components indexed by X [2]. More specifically, Hi j ∩H ′

i j
is the collection of points whose i’th and j’th coordinates are both equal to each other
and their inverse, hence equal to a two-torsion point.

Example 1 The best pictures we have for these arrangements are in n = 2 with the
real version of linear and toric arrangements. We draw here the pictures of the toric
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case, in S1 × S1; the subtori of the arrangement are the thickened lines. We warn the
reader that, while the combinatorics of the real versus complex pictures agree, the
topology is very different. For example, the complement of the complex arrangement
is connected.

A1 B2 C2 D2

2.3 Weyl group action

Let X be one of C, C×, or a complex elliptic curve. Considering our root system as a
subset � ⊆ Hom(Xn, X), the action of the corresponding Weyl groupWn on � gives
rise to a natural action of Wn on both the poset of layers and on the complement of
the arrangement. If Hχ is the kernel of χ ∈ � and w ∈ Wn , then w · Hχ = Hw·χ . We
will describe this explicitly in type C.

Consider the hyperoctahedral group Wn = (Z/2) � Sn = (Z/2)n � Sn , the Weyl
group in types Bn and Cn . The group Wn acts on Xn via a combination of permuting
the coordinates and inverting some. More specifically, given w = (σ, (ε1, . . . , εn)) ∈
Sn � (Z/2)n and x = (x1, . . . , xn) ∈ Xn , w · x has εi (xi ) as its σ(i)-th coordinate.
Here, we are considering Z/2 = {±1} so that εi (xi ) = xi if εi = 1, and εi (xi ) = x−1

i
if εi = −1. This gives us the following action on our set of subvarieties:

– w · Hi j = Hσ(i)σ ( j) if εiε j = 1,
– w · Hi j = H ′

σ(i)σ ( j) if εiε j = −1,
– w · H ′

i j = H ′
σ(i)σ ( j) if εiε j = 1,

– w · H ′
i j = Hσ(i)σ ( j) if εiε j = −1,

– w · Hz
i = Hz

σ(i).

For this last subvariety, we note that since the two-torsion points are fixed by the action
of Wn on X , this gives us the action on the connected components of the kernel of
the character 2vi , ∪z∈X [2]Hz

i . Denoting the kernel of χ ∈ � by Hχ , we also have the
action on an intersection given by w · ∩χ∈SHχ = ∩χ∈Sw · Hχ = ∩χ∈SHw·χ . For a
connected component of an intersection (i.e., a layer), we see that if the component
has the point z ∈ X [2] as the i-th coordinate, then the action will send it to a layer
whose σ(i)-th coordinate is z. This gives an action of Wn on the poset of layers.

Since the type B and D arrangements are subarrangements of the type C arrange-
ment, this also describes the action in these cases. For type A, we note that we do not
have an action of Wn , but this description restricts to an action of Sn .

Remark 1 While we naturally have an action of the corresponding Weyl group on
our arrangements, we emphasize that in the type D case, we actually have an action
of the hyperoctahedral group Wn . By considering this action, rather than the type D
Weyl group, on the type Dn arrangements, we can get even stronger results. By [16,
Prop. 3.22], our stability result in Theorem 3 stated for Wn will imply stability for the
typeDWeyl group, as stated in Corollary 1.Moreover, byworkingwith a single group,
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Wn , to get our results in the three new cases (B, C, andD), this simplifies the exposition
as well. Thus, except for our Corollaries 1, 2, and 3, we will work exclusively with
Wn for the type B, C, and D arrangements, and with Sn for the type A arrangement.

3 Combinatorial description of layers

Thegoal of this section is to provide a combinatorial description of layers,which allows
us to better understand and handle the Weyl group action on layers. It will also help us
to break down representations which appear in Sect. 4 into simpler building blocks,
which we can then use to show stability. We start by describing the combinatorial
objects needed and then show their relationship to layers in Theorem 1.

3.1 Labelled partitions

Let S and L be sets.We say that a partition of S labelled by L, or an L-labelled partition
of S, is a partition 	 of S, together with a subset T ⊆ 	 and injection f : T → L .
We say that the parts in T are the labelled parts of 	, while 	\T consists of the
unlabelled parts. For p ∈ T corresponding to z ∈ L , we say that p is labelled by z
and use the notation p = 	z . We use the convention that if z is not in the image of f ,
then 	z = ∅. One may similarly define a partition of a number k labelled by L .

Given one of our root systems, we will define a particular set of labelled parti-
tions, which in Theorem 1 will be shown to describe the layers of the corresponding
arrangement. First, we introduce some notation. Again let X be C, C

×, or a com-
plex elliptic curve with 2-torsion points X [2]. Let [n] = {1, 2, . . . , n} and n =
{1, 1̄, 2, 2̄, . . . , n, n̄}. For S ⊆ n, let S̄ = {x̄ | x ∈ S}, taking ¯̄k = k. We say that
a set S ⊆ n is bar-invariant (or self-barred as in [2]) if S̄ = S.

Let Pn(X) be the set of partitions 	 of n labelled by X [2] such that

(i) For every S ∈ 	, S̄ ∈ 	, and
(ii) S = S̄ if and only if S is labelled.

Each type of root system �n will correspond to a subset C (X,�n) ⊆ Pn(X) as
follows:

– If �n is type C, let C (X,�n) = Pn(X).
– If �n is type B, take the subset of all 	 ∈ Pn(X) such that if |	z| = 2 then z = e
(the identity of X ).

– If �n is type D, take the subset of all 	 ∈ Pn(X) such that |	z| 
= 2 for any
z ∈ X [2].

– If �n is type A, take the subset of all 	 = 	+ ∪ 	+ where 	+ � [n].
In each type, C (X,�n) is a partially ordered set, with 	 < 	′ if 	 is a refinement

of 	′ such that 	z ⊆ 	′
z for each z ∈ X [2]. That is, we order it by refinements which

respect the labelling. Moreover, C (X,�n) is a ranked poset with rk(	) = n − 

2 ,

where 
 is the number of unlabelled parts of 	.
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Example 2 Below is the Hasse diagram of C (C×,�2) when �2 is a type C root
system. Note that the subscripts on some blocks in the partitions denote the labelling;
here, our two-torsion points are X [2] = {±1}.

{{1}, {1̄}, {2}, {2̄}}

{{1, 2}, {1̄, 2̄}} {{1, 2̄}, {1̄, 2}} {{2, 2̄}-1, {1}, {1̄}} {{1, 1̄}-1, {2}, {2̄}}{{2, 2̄}1, {1}, {1̄}}{{1, 1̄}1, {2}, {2̄}}

{{1, 1̄}1, {2, 2̄}-1} {{2, 2̄}1, {1, 1̄}-1} {{1, 1̄, 2, 2̄}-1}{{1, 1̄, 2, 2̄}1}

Example 3 Below is the Hasse diagram ofC (E,�2)where�2 is a type B root system
and E is a complex elliptic curve. Denote the two-torsion points of E by z1 = e (the
identity), z2, z3, and z4.

{{1}, {1̄}, {2}, {2̄}}

{{1, 2}, {1̄, 2̄}} {{1, 2̄}, {1̄, 2}}{{2, 2̄}e, {1}, {1̄}}{{1, 1̄}e, {2}, {2̄}}

{{1, 1̄, 2, 2̄}z3 }{{1, 1̄, 2, 2̄}z2 }{{1, 1̄, 2, 2̄}e} {{1, 1̄, 2, 2̄}z4 }

3.2 Weyl group action

In typeA, the setC (X,�n) is really just the partition lattice, which has an action of Sn .
In the other types, we have an action of the hyperoctahedral group Wn = (Z/2) � Sn .
This action is induced by its action on n, but we will describe it more explicitly. Let
w = (σ, ε) ∈ Wn with σ ∈ Sn and ε ∈ (Z/2)n . Then for k ∈ [n], we havew ·k = σ(k)
if εk = −1 and w · k = σ(k) if εk = 1. This extends to n by w · k̄ = w · k. Then
for S ⊆ n, we have w · S = {w · x | x ∈ S}, and for a partition 	 � n, we have
w · 	 = {w · S | S ∈ 	}, If 	 is a labelled partition, then w · 	 is labelled so that
(w · 	)z = w · (	z) for each label z.

Given a partition 	 ∈ Pn(X), we can define a partition 	̂ of n labelled by X [2],
where 	̂z = |	z |

2 and the unlabelled parts are given by |S| for each pair of unlabelled
parts S, S̄ ∈ 	. For example, if 	 is the labelled partition

{{1, 1̄}e, {2, 4̄}, {2̄, 4}, {3}, {3̄}}

of 4, then we have 	̂ = (1e, 2, 1), a labelled partition of 4.

Lemma 1 Let Pn(X) be the set of partitions of n labelled by X [2], and let Qn(X)

be the set of partitions of n labelled by X [2]. The nonempty fibres of the function
Pn(X) → Qn(X) defined by 	 �→ 	̂ are Wn-orbits.
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Proof TheWn-action preserves the size of the parts in the partition, which means that
for each w ∈ Wn and 	 ∈ Pn(X), we have ŵ	 = 	̂. Moreover, if we have 	̂ = 	̂′,
then we could find some w ∈ Wn with w	 = 	′, constructed as follows.

Suppose that 	̂ = (λz1, . . . , λzm , λ1, . . . , λ
), where X [2] = {z1, . . . , zm}. So we
have |	zi | = |	′

zi | for each i ; let σi be a permutation in Sn which gives a one-to-one
correspondence between these two parts, and let wi = (σi , 1). Now, since λ1, . . . , λ


denotes the sizes of (pairs of) unlabelled blocks, we can index the unlabelled parts
of 	 and 	′ as S1, S̄1, . . . , S
, S̄
 and S′

1, S̄
′
1, . . . , S′


, S̄
′

 so that we have one-to-one

correspondences between Si and S′
i . Ignoring the bars, this one-to-one correspondence

determines a permutation σi ∈ Sn . To get wi = (σi , εi ), we let the j-th coordinate of
εi be −1 if the one-to-one correspondence either sends j to k̄ or j̄ to k for some k;
otherwise, the j-th coordinate of εi will be 1. With this w = wz1 · · · wzmw1 · · · w
,
we have 	′ = w	. ��

This lemma means that for each λ ∈ Qn(X), the set {	 ∈ C (X,�n) | 	̂ = λ} is
either a Wn-orbit or is empty. Example 9 depicts the orbits of C (C×,�2) when �2 is
a type B root system.

3.3 Layers as labelled partitions

The goal of this section is to prove that these labelled partitions give a combinatorial
description of layers of the arrangement. This description will help us to get a handle
on certain representations in Lemma 3. But before proving our claim in Theorem 1,
we consider some examples to demonstrate it.

Example 4 Below is the Hasse diagram for the poset of layers in the case that �2 is
a type C root system and X = C

×. The bijection with the poset in Example 2 should
be visible here.

(C×)2

H12 H ′
12 H−1

2 H−1
1H1

2H1
1

(1,−1) (−1, 1) (−1,−1)(1, 1)

Example 5 Below is the Hasse diagram of the poset of layers in the case that �2 is
a type B root system and X = E is a complex elliptic curve. Denote the two-torsion
points of E by z1 = e (the identity), z2, z3, and z4. The bijection with the poset in
Example 3 should be visible.
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E2

H12 H ′
12He

2He
1

(z2, z2)(e, e) (z3, z3) (z4, z4)

We finally describe how the poset of labelled partitions C (X,�n) corresponds
to the poset of layers of the arrangement A (X,�+

n ). Let X be one of C, C
×, or a

complex elliptic curve, let �n be a root system of type B, C, or D, and let Wn be the
hyperoctahedral group.

Given a partition 	 ∈ C (X,�n), we will define a layer F	 of the arrangement
A (X,�+

n ) as follows. For S ∈ 	, take the collection of subvarieties Hi j if either
i, j ∈ S or ī, j̄ ∈ S; H ′

i j if either i, j̄ ∈ S or ī, j ∈ S; and Hz
i if S = 	z and i ∈ S.

Denote the intersection of these subvarieties by FS , so that we define:

F	 =
⋂

S∈	

FS

Our claim, in Theorem 1, is that F	 is indeed a layer of the arrangement and that this
gives a bijection between the two posets. Since F	 makes an appearance later in the
paper, we will also give a more explicit description of it now.

Write 	 = {S1, S̄1, . . . , S
, S̄
, 	z1 , . . . , 	zm } where {z1, . . . , zm} ⊆ X [2]. For
S ∈ 	, let XS denote the factor of Xn corresponding to indices i with either i ∈ S or
ī ∈ S, so that we can write:

Xn = XS1 × · · · × XS

× X	z1

× · · · × X	zm

We have inclusions ιk : X ↪→ XSk such that the i-th coordinate of ιk(x) is x when
i ∈ Sk and x−1 when ī ∈ Sk . We also have the inclusion ιz j : {z j } ↪→ X	z j

whose

image is the point (z j , . . . , z j ). For a single Sk , we have an inclusion X × Xn−|Sk | →
XSk × Xn−|Sk | given by ιk × id whose image is FSk . Similarly, for S = 	z j , ιz j × id
gives an inclusion {z j } × Xn−|S| → X	z j

× Xn−|S| whose image is F	z j
.

Together, ι1 × · · · × ι
 × ιz1 × · · · × ιzm gives an inclusion

X × · · · × X × {z1} × · · · × {zm} → XS1 × · · · × XS

× X	z1

× · · · × X	zm

with image F	 . In particular, observe that F	 is connected and has codimension n−
,
where 
 is the number of pairs of unlabelled parts in 	.

We provide one more example before proving that this assignment 	 �→ F	 does
indeed give a bijection.

Example 6 Consider a triple intersection of hyperplanes Hi j , H ′
i j and Hik (i, j, k

distinct) in Xn (for n ≥ 3). We have

Hi j ∩ H ′
i j ∩ Hik = {(x1, . . . , xn) ∈ Xn | xi = x j , xi = x−1

j , xi = xk}.
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So for a point x in the intersection, the i-th, j-th, and k-th coordinates must all be
equal and be in X [2]. So we can write:

Hi j ∩ H ′
i j ∩ Hik =

⋃

z∈X [2]
{(x1, . . . , xn) ∈ Xn | xi = x j = xk = z}.

If {i, j, k} = {1, 2, 3}, the connected components will correspond to the labelled
partitions

	 = {{1, 1̄, 2, 2̄, 3, 3̄}z, {4}, {4̄}, . . . , {n}, {n̄}}

with z ∈ X [2]. Note in this example, setting {i, j, k} = {1, 2, 3} and z ∈ X [2], we have
F	 as a connected component of Hi j ∩ H ′

i j ∩ Hik , but this can also be written as the
intersection of all of these subvarieties: H12, H13, H23, H ′

12, H
′
13, H

′
23, H

z
1 , Hz

2 , Hz
3 .

Theorem 1 Let �n be a root system of type B, C, or D, and let X be one of C, C×, or
a complex elliptic curve. Denote the corresponding arrangement byAn = A (X,�+

n )

and the corresponding set of labelled partitions by Cn = C (X,�n). Then, there is a
Wn-equivariant isomorphism of ranked posets between Cn and the layers of An.

Proof We will first describe the bijection and prove the theorem for type C, and then
we restrict to our other types.

The bijection in type C:
Let 	 ∈ Pn(X), our poset of type C, and consider F	 as described above. It

is an intersection of subvarieties in An and it is connected; thus, it is a layer of the
arrangement. Moreover, if	 and	′ are distinct elements ofPn(X), then F	 and F	′
are distinct subvarieties in Xn . To see this, suppose that we have F	 = F	′ . Suppose
we had	z 
= 	′

z for some z ∈ X [2]. If, say, i ∈ 	z\	′
z , then every point of F	 would

have the i-th coordinate equal to z, while this is not the case in F	′ . So we must have
	z = 	′

z for each z. If the unlabelled parts differed, then we would have some i, j
such that either i and j or i and j̄ are in the same unlabelled part in 	 but not in 	′
(or vice versa). This means that for every x ∈ F	 we have xi = x j , or xi = x−1

j
respectively, while this is not true of every point in F	′ .

Now let F be a layer of An , and we will define a labelled partition 	 in Pn(X)

such that F = F	 . From F , we can define an equivalence relation on n as follows:
i ∼ j iff ī ∼ j̄ iff Hi j ⊇ F , i ∼ j̄ iff ī ∼ j iff H ′

i j ⊇ F , and i ∼ ī iff Hz
i ⊇ F

for some z. This gives (by taking equivalence classes) a partition of n where some
parts satisfy S = S̄ and the others come in pairs (S, S̄). We will label the bar-invariant
parts so that we get an element of Pn(X). If S = S̄, then for each i ∈ S, there exists
a z ∈ X [2] with Hz

i ⊇ F . Moreover, this z is the same no matter which i ∈ S we
consider: if i and j are both in S, then i ∼ j and i ∼ j̄ , which means F is contained in
a connected component of Hi j ∩ H ′

i j (the one corresponding to our z). Thus, we may
label S by z. Moreover, if S and T are distinct bar-invariant parts, they correspond to
different elements of X [2]; otherwise, we would have for i, ī ∈ S and j, j̄ ∈ T such
that Hi j ⊇ F and hence i ∼ j .

Compatibility with order and rank: (Type C)
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Assume that 	 is a refinement of 	′ such that 	z ⊆ 	′
z for all z ∈ X [2]. For

all S ∈ 	, there exists T ∈ 	′ such that S ⊆ T , and all T ∈ 	′ have such an S.
Moreover, if S = 	z , then T = 	′

z . Since S ⊆ T implies FS ⊇ FT , we have

F	 =
⋂

S∈	

FS ⊇
⋂

T∈	′
FT = F	′ .

As for rank, recall from our construction that the codimension of F	 is equal to
n − 
, when 	 has 2
 unlabelled parts. This is equal to the rank of 	.

Compatibility with Weyl group action: (Type C)
Let w = (σ, ε) ∈ Wn and F a layer of An . If Hi j ⊇ F , then

wF ⊆ wHi j =
{
Hσ(i)σ ( j) if εiε j = 1

H ′
σ(i)σ ( j) if εiε j = −1.

Similarly, if H ′
i j ⊇ F , then

wF ⊆ wH ′
i j =

{
H ′

σ(i)σ ( j) if εiε j = 1

Hσ(i)σ ( j) if εiε j = −1

Finally, if Hz
i ⊇ F , then Hz

σ(i) ⊇ wF . The first two pieces imply that if S ∈ 	

is unlabelled then wS is an unlabelled part of w	, and the last one implies that
(w	)z = w(	z).

Type Bn :
We now have Cn the set of 	 ∈ Pn(X) such that if |	z| = 2 then z = e, and An

now denotes the type Bn arrangement in Xn . Given 	 ∈ Cn , we may construct F	

as above, but we need to show that F	 is a layer of An . The type Bn arrangement
is a subarrangement of type Cn , where we exclude Hz

i for z 
= e. It is clear that if
S ∈ 	 is unlabelled, then FS is a layer; we need only worry about F	z . If |	z| = 2,
then z = e, and we have F	z = He

i . If |	z| 
= 2, then consider the intersection H	z

of the subvarieties Hi j and H ′
i j for i, j ∈ 	z . This intersection is not connected, but

its connected components are indexed by X [2], and F	z is the connected component
indexed by z.

We also need to show that in the inverse map, if we are restricting ourselves to
layers of the type Bn arrangement, the partition we get will not have |	z| = 2 for
z 
= e. Suppose that |	z| = 2, then there exists i such that i ∼ ī but no j with i ∼ j
or i ∼ j̄ . This implies that Hz

i ⊇ F but no Hi j or H ′
i j contains F . The only way this

can be a layer in type B is if z = e.
Type Dn :
Now let Cn be the set of 	 ∈ Pn(X) such that |	z| 
= 2 for any z ∈ X [2]. Given

such 	, we may again construct F	 as above, but we need to show that this is a layer
of the type Dn arrangement. As in type B, we need only worry about F	z being a
layer. But since |	z| is never 2, we will have F	z as a connected component of the
intersection H	z = ⋂

i, j∈	z
(Hi j ∩ H ′

i j ).
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On the other hand, suppose that we have a layer F of the type D arrangement and
construct the corresponding partition 	 ∈ Pn(X). If 	z = {i, ī}, then there is no j
such that Hi j or H ′

i j contains F , contradicting the fact that F is a layer. ��
Remark 2 The analogous statement for type An−1 is clear, because the poset Cn in
this case is equivalent to the partition lattice of the set [n].
Remark 3 In the linear case, our description is equivalent to that given by Barcelo
and Ihrig [2, Theorems 3.1 & 4.1]. They showed that the poset in question is also
isomorphic to the lattice of parabolic subgroups of the Weyl group. It is also worth
noting that in the type B/C linear case, this is the Dowling lattice. But in other cases,
this labelling helps us take into account the more complicated structure of having
multiple connected components of intersections.

4 Representation stability

Our goal is to show representation stability for the cohomology of our arrangements,
but we first briefly review representation stability and its main tool of FIW -modules.
Throughout this section, we let Wn denote either the symmetric group Sn (type A) or
the hyperoctahedral groupWn (type B/C). For more details on the theory, we refer the
reader to [8,9] for the case of Sn (and much more) and [16,17] for the case of Wn (as
well as the type D Weyl group).

Note that we are working over characteristic zero throughout this paper. A repre-
sentation of a group G will always mean a group homomorphism G → GL(V )where
V is a finite-dimensional vector space over Q. Unless otherwise stated, cohomology
will always be with rational coefficients, and we will write H∗(X) to mean H∗(X; Q)

for a space X .

4.1 Wn-representation stability

To discuss representation stability for a sequence of groups, one needs a consistent
way of describing the irreducible representations. There are many cases in which this
can be done, including the classical families of Weyl groups.

For the symmetric group Sn , irreducible representations are indexed by partitions
of n. If we consider a partition λ = (λ1, . . . , λ
) of k with λ1 ≥ · · · ≥ λ
 > 0 and
n ≥ λ1+k, wemaywrite V (λ)n to denote the irreducible representation of Sn indexed
by the partition λ[n] := (n − k, λ1, . . . , λ
). For example, in this notation, V (0)n is
always the trivial representation and V (1)n is always the standard representation.

For the hyperoctahedral groupWn , irreducible representations are indexed by pairs
of partitions λ = (λ+, λ−) where |λ+| + |λ−| = n. Given a pair of partitions λ =
(λ+, λ−), where λ− is a partition of k, and n large enough, we may write V (λ)n to be
the irreducible representation of Wn corresponding to (λ+[n − k], λ−). For example,
V (0, 0)n is always the trivial representation.

We start with a consistent sequence {Vn} ofWn-representations, that is, each Vn is a
Wn-representation along withWn-equivariant maps ϕn : Vn → Vn+1. Such a sequence
is said to be uniformly representation stable with stable range n ≥ N if for n ≥ N :
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(1.) The map ϕn is injective,
(2.) The image ϕn(Vn) generates Vn+1 as a Q[Wn+1]-module, and
(3.) Vn =

⊕

λ

cλV (λ)n , where the multiplicities cλ do not depend on n.

4.2 FIW -modules

Consider the category FIW (where W denotes either type A or type B/C) consisting
of objects n (with 0 = ∅) and morphisms f : m → n which are injections such that
f (k̄) = f (k) for all k ∈ m, also requiring that f ([n]) ⊆ [n] if W is type A. An
FIW -module is a functor V from the category FIW to the category of Q-modules. We
denote by Vn the image of n. Since End(n) = Wn in the category FIW , the Q-module
Vn comes equipped with an action ofWn . Moreover, the natural inclusions n ↪→ n+1
induce Wn-equivariant maps Vn → Vn+1, making the sequence {Vn} a consistent
sequence of Wn-representations.

Amap of FIW -modules is a natural transformation.We sayU is a sub-FIW -module
of V if there is a map U → V such that Un is a subrepresentation of Vn for all n. An
FIW -module V is finitely generated if there is a finite set of elements of �Vn that are
not contained in any proper sub-FIW -module. An FIW -module V has stability degree
≤ s if (Vn+a)Wn

∼= (Vn+1+a)Wn+1 for every a ≥ 0 and n ≥ s, where the subscript
denotes the coinvariants. We say that V has weight ≤ d if for all n, every irreducible
representation V (λ)n appearing with nonzero multiplicity in Vn satisfies |λ| ≤ d (if λ

is a partition) or |λ+| + |λ−| ≤ d (if λ = (λ+, λ−) is a pair of partitions). Again, we
refer the reader to [16,17] for more details on these concepts; we state here the main
properties and example on which our results rely.

We start by stating a proposition on finitely generated FIW -modules, bounding the
weight and stability degree for kernels, cokernels, and extensions. The statements on
stability degree were made in [8, Lemma 6.3.2.] for type A. Wilson extended this
to FIW to establish part (1) in [16, Prop. 4.18], and the same argument gives part
(2). The statement on weight in part (1) follows from Definition 4.1 in [16], and part
(2) for weights follows from semisimplicity of the representations (since we are in
characteristic zero).

Proposition 1 1. Assume that f : U → V is a map of FIW -modules which are
finitely generated with weight ≤ d and stability degree ≤ s. Then, ker( f ) and
coker( f ) are both finitely generated with weight ≤ d and stability degree ≤ s.

2. Assume that 0 → U → V → Q → 0 is a short exact sequence of FIW -modules,
where U and Q are both finitely generated with weight ≤ d and stability degree
≤ s. Then so is V .

Now, since finitely generated FIW -modules form an abelian category, a spectral
sequence of finitely generated FIW -modules converges to a finitely generated FIW -
module. See, for example, [13, Cor. 2.5] or [12, Thm. 3.3] in the type A case. However,
it takes a little work to get a bound on the stability degree of the abutment. See, for
example, [8, Thm. 6.3.1] for an argument on the bounds for weight and stability degree
in the case of configuration spaces. One could make the same kind of argument for
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the spaces which we work with, but we state a formulation which could be applied
more generally. We state it for sequences which have E3 = E∞, but it could (with
a bit more book-keeping) be stated for sequences with Er = E∞. The idea is that
Proposition 1 tells us how to use the weight and stability degree on one page to bound
the weight and stability degree on the next, continuing until the sequence collapses.
We benefit from the fact that all of our sequences collapse early.

Proposition 2 Suppose that E pq∗ is a first quadrant spectral sequence of FIW –
modules which converges to the FIW -module H p+q and assume that E pq

3 = E pq∞ . If
E pq
2 is finitely generated with weight ≤ dp+2q and stability degree ≤ sp+2q , then Hi

is finitely generated with weight≤ max
0≤p≤i

{d2i−p} and stability degree ≤ max
0≤p≤i

{s2i−p}.

Proof Since each of the FIW -modules in a sequence E p−2,q+1
2 → E p,q

2 → E p+2,q−1
2

has weight ≤ dp+2q and stability degree ≤ sp+2q , part (1) of Proposition 1 implies
that E p,q∞ = E p,q

3 has weight ≤ dp+2q and stability degree ≤ sp+2q .

Fix i , and consider the filtration F0 ⊆ · · · ⊆ Fi = Hi , where Fj/Fj−1 = E j,i− j∞ .
Since F0 and F1/F0 are both finitely generated, so is F1 by part (2) of Proposition 1,
with weight ≤ max{d2i , d2i−1} and stability degree ≤ max{s2i , s2i−1}. Repeating this
for each Fj−1 and Fj/Fj−1 ( j = 1, 2, . . . , i) gives that Hi is finitely generated with
the desired bounds on weight and stability degree. ��

Now having the bounds on weight and stability degree is what allows us to get
a stable range for our sequences, as the following theorem says, due to Church–
Ellenberg–Farb in type A and Wilson in type B/C.

Theorem 2 [16, Thm. 4.26],[8, Thm. 2.58] If V is an FIW -module, withW of type A
or B/C, which is finitely generated with weight ≤ d and stability degree ≤ s, then the
sequence {Vn} of Wn-representations with maps Vn → Vn+1 induced by the natural
inclusions n → n+1 is uniformly representation stable with stable range n ≥ d + s.

In the following example, we describe particularly nice FIW -modules, which will
be useful for us in the next section.

Example 7 ([17, Ex. 1.5.5]) LetU be aWk-representation which is finite dimensional.
Consider the FIW -module IndF IW (U ) which takes n to 0 if n < k and otherwise to
theWn-representation Ind

Wn
Wk×Wn−k

U �Q, whereU �Q is the external tensor product

of U with the trivialWn−k-representation Q. IndF IW (U ) is a finitely generated FIW -
module with weight ≤ k and stability degree ≤ k. Thus, the sequence of induced
representations

{
IndWn

Wk×Wn−k
U � Q

}

is representation stable with stable range n ≥ 2k.
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4.3 Arrangements associated to root systems

Let �n be a root system of type B, C, or D, and let X be one of C, C
×, or a complex

elliptic curve. Then recall our notation of An = A (X,�+
n ) for the corresponding

arrangement, with complement M(An) in Xn and poset of layers Cn = C (X,�n).
Again, by Remark 1, we will work with the action of the hyperoctahedral group Wn

until the corollaries at the end of this section. Throughout this section, cohomology is
assumed to have rational coefficients unless otherwise stated.

Consider the Leray spectral sequence of the inclusion f : M(An) ↪→ Xn , which
is given by

E pq
2 (n) = H p(Xn; Rq f∗QM(An)) �⇒ H p+q(M(An)),

where Rq f∗QM(An) is the sheaf associated to the presheaf which assigns to an open
set U the group Hq(U ∩ M(An)).

We start by analysing the E2-term as a representation, breaking this up into two
lemmas. The first describes the action on the E2-term and gives a decomposition akin
to that of Totaro [15] using our description of layers from Theorem 1, and the second
refines and reorganizes this decomposition in order to write it as a sum of induced
representations. Finally, in Theorem 3, we show that this decomposition gives us
a decomposition into finitely generated FIW -modules and use techniques from the
previous section to establish stability of the cohomology.

Lemma 2 Let �n be a root system of type B, C, or D, and let X be one of C, C
×, or

a complex elliptic curve. Consider the corresponding arrangement An = A (X,�+
n )

and Leray spectral sequence. For each p, q ≥ 0, there is a decomposition

E pq
2 (n) ∼=

⊕

	

H p(F	) ⊗ OSq(	)

where the sum is over 	 ∈ Cn = C (X,�n) such that rk(	) = q, and OSq(	) is the
degree-q part of the Orlik–Solomon algebra of the poset {	′ ∈ Cn | 	′ ≤ 	}.

Moreover, the natural action of w ∈ Wn on the left induces an action on the right-
hand side which permutes the summands according to the action on Cn and uses the
isomorphisms H p(F	) → H p(Fw	) and OSq(	) → OSq(w	).

Proof For the decomposition, we follow the method of [4, Lemma 3.1] specialized to
our arrangements. A key to the proof is an examination of the stalks of Rq f∗QM(An),
where for x ∈ Xn we have

(Rq f∗QM(An))x
∼=

⊕

rk(	)=q
F	�x

OSq(	).

To see how this arises, we must examine Hq(U ∩ M(An)) for small neighbourhoods
U of x . For a small enough neighbourhood, recall from Sect. 2.1 that the cohomology
of U ∩ M(An) is isomorphic to the Orlik–Solomon algebra of the subposet of layers
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which contain x , and this isomorphism respects inclusions of smaller neighbourhoods
U ′ ↪→ U . Let 	 be the maximum element of Cn for which F	 contains x , so that
the subposet of layers which contain x is the poset {	′ ∈ Cn | 	′ ≤ 	}. Then using
Brieskorn’s decomposition of the Orlik–Solomon algebra [5, p. 27] we obtain

Hq(U ∩ M(An)) ∼= OSq(	) ∼=
⊕

rk(	′)=q
	′≤	

OSq(	′).

Next, we will show that Rq f∗QM(An) is isomorphic to
⊕

rk(	)=q(i	)∗(OSq(	))

where i	 : F	 ↪→ Xn is the inclusion and OSq(	) is considered as a constant
sheaf on F	 . Let 	 ∈ Cn so that F	 is a rank-q layer of An , and let A	 = {H ∈
An | H ⊇ F	}, an arrangement in Xn . Then with g : M(A	) ↪→ Xn , the inclusion
M(An) ↪→ M(A	) induces a morphism

Rqg∗QM(A	) → Rq f∗QM(An). (1)

If F is a rank-q layer of A	 with inclusion iF : F ↪→ Xn , then we have a
natural map Rqg∗QM(A	) → (iF )∗(iF )∗Rqg∗QM(A	). Since the sheaf Rqg∗QM(A	)

is supported on the rank-q layers of A	 (similar to our examination of stalks above),
and these layers are disjoint closed subvarieties, these maps form an isomorphism

⊕

rk(F)=q

(iF )∗(iF )∗Rqg∗QM(A	)
∼= Rqg∗QM(A	). (2)

Since F	 is one of these rank-q layers, there is a morphism

(i	)∗(i	)∗Rqg∗QM(A	) →
⊕

rk(F)=q

(iF )∗(iF )∗Rqg∗QM(A	). (3)

Now, since A	 is locally a linear arrangement, for every point x ∈ F	 , we have
small neighbourhoods U for which (i	)∗Rqg∗QM(A	)(U ) ∼= OSq(	). This means
that the sheaf (i	)∗Rqg∗QM(A	) is locally constant on F	 . Moreover, we have a
canonical identification of the stalks via translation, and so this sheaf is in fact constant
on F	 . Thus, we have an isomorphism

(i	)∗ OSq(	) ∼= (i	)∗(i	)∗Rqg∗QM(A	). (4)

By composing (1), (2), (3), and (4), we obtain a morphism

(i	)∗ OSq(	) → Rq f∗QM(A ),

and by summing over all 	 of rank q, we obtain the desired morphism

⊕

rk(	)=q

(i	)∗ OSq(	) → Rq f∗QM(A ). (5)

It is an isomorphism because it is an isomorphism on stalks.
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Finally, from this isomorphism of sheaves we obtain the decomposition

H p(X; Rq f∗QM(An))
∼= H p(X;

⊕

rk(	)=q

(i	)∗(OSq(	)))

∼=
⊕

rk(	)=q

H p(X; (i	)∗(OSq(	)))

∼=
⊕

rk(	)=q

H p(F	) ⊗ OSq(	). (6)

It remains to show that the action is as described, and so we start by reviewing the
action on the left-hand side. For an element w ∈ Wn , there is an isomorphism

(w−1)∗Rq f∗QM(An) → Rq f∗QM(An) (7)

which can be seen in the isomorphisms Hq(w−1(U ) ∩ M(An)) → Hq(U ∩ M(An))

from the homeomorphisms w−1 : U ∩ M(An) → w−1(U ∩ M(An)) = w−1(U ) ∩
M(An) for small open sets U .

The isomorphism (7) induces an isomorphism in cohomology

H p(Xn; (w−1)∗Rq f∗QM(An)) → H p(Xn; Rq f∗QM(An)).

Precomposing with the natural isomorphism on cohomology arising from the home-
omorphism w−1 : Xn → Xn ,

H p(Xn; Rq f∗QM(An)) → H p(Xn; (w−1)∗Rq f∗QM(An)),

we obtain the action of w on H p(Xn; Rq f∗QM(An)).
Now we must see that this action gives the claimed action on the decomposition

(6). The isomorphisms Hq(w−1(U ) ∩ M(An)) → Hq(U ∩ M(An)) along with
Brieskorn’s decomposition show that (5) and (7) induce an isomorphism

(w−1)∗
⊕

rk(	)=q

(i	)∗ OSq(	) →
⊕

rk(	)=q

(i	)∗ OSq(	)

which maps the summand corresponding to 	 to that of w	 using the isomorphism
OSq(	) → OSq(w	). Hence, also the action on the decomposition (6) takes the
summand corresponding to 	 to that of w	 using this isomorphism along with the
isomorphism H p(F	) → H p(Fw	)which corresponds to the homeomorphismw−1 :
w(F	) = Fw	 → F	 . ��

Lemma 3 Let �n be a root system of type B, C, or D, and let X be one of C, C
×,

or a complex elliptic curve. Consider the corresponding arrangementA (X,�+
n ) and

Leray spectral sequence. Assume that p, q ≥ 0 and n ≥ p + 2q.
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There are Wk–representations V (λ, r, α) indexed by some finite set I = {(λ, r, α)},
where k ≤ p + 2q depends on (λ, r, α), such that

E pq
2 (n) ∼=

⊕

I

IndWn
Wk×Wn−k

V (λ, r, α) � Q.

Proof Fix the notation of �n , X , An = A (X,�n), Cn = C (X,�n), and Qn =
Qn(X). Also assume that p, q ≥ 0 and n ≥ p + 2q.

First we recall the Wn-orbits in the indexing set Cn . In Lemma 1, we saw that for
every λ ∈ Qn , the set {	 ∈ Cn | 	̂ = λ} is either empty or a Wn-orbit. We will
introduce a more convenient way to index these orbits using labelled partitions of q,
Qq , so that it is independent of n.

For λ ∈ Qq , define λ〈n〉 ∈ Qn as follows: say (λ〈n〉)z = λz and if (λ1, . . . , λ
) are
the unlabelled parts of λ with λ1 ≥ · · · ≥ λ
 > 0, let (λ1 + 1, . . . , λ
 + 1, 1, . . . , 1)
be the unlabelled parts of λ〈n〉. In order for this to be a partition of n, note that we
must add n − q − 
 ones to the end of the partition and it will have n − q unlabelled
parts. For example, if λ is the labelled partition (1e, 2, 1) of 4, then λ〈8〉 is the partition
(1e, 3, 2, 1, 1). Note that for every 	 ∈ Cn with rank q, there is some λ ∈ Qq such
that λ〈n〉 = 	̂, so that indexing byQq will cover all of our Wn-orbits.

With this in mind, we may rewrite the decomposition of Lemma 2 as

E pq
2 (n) ∼=

⊕

λ∈Qq

⊕

	̂=λ〈n〉
H p(F	) ⊗ OSq(	),

which is a decomposition into Wn-representations indexed by λ ∈ Qq . But these
representations can and should be decomposed further.

Let	 ∈ Cn . Suppose that {i1}, {ī1}, . . . , {is}, {īs} are all of the singleton parts in	.
Referring to our coordinate-wise description of F	 in Sect. 3.3, we see that it factors
as

F	 = F ′
	 × Xi1 × · · · × Xis

where each subscript i j denotes the coordinate in which the factor X appears. This
means we can use the Künneth formula to write

H p(F	) ∼=
⊕

r+∑
ai=p

Hr (F ′
	) ⊗ Ha1(Xi1) ⊗ · · · ⊗ Has (Xis ).

We denote a = (a1, . . . , as), and let â � (p − r) be the partition which lists the
nonzero elements of a in decreasing order. For example, if a = (0, 2, 0, 1, 2), then
â = (2, 2, 1). Note that we may consider a as an n-tuple where a1, . . . , as are the
coordinates corresponding to i1, . . . , is and we extend by 0. So we have an action of
Wn via the action of Sn by permuting coordinates. The orbits of this action on a’s are
indexed by α � (p − r).

123



J Algebr Comb (2018) 48:51–75 69

Given λ ∈ Qq , r ∈ {0, . . . , p}, and α � (p − r), we will define the following:

E(λ, r, α)n =
⊕

	̂=λ〈n〉

⊕

â=α

Hr (F ′
	) ⊗ Ha1(Xi1) ⊗ · · · ⊗ Has (Xis ) ⊗ OSq(	).

Our claim is that each E(λ, r, α)n is a Wn-representation, giving us the following
decomposition and the indexing set in the statement of the theorem:

E pq
2 (n) ∼=

⊕

λ∈Qq

p⊕

r=0

⊕

α�(p−r)

E(λ, r, α)n .

The action of w ∈ Wn sends the summand indexed by (	, r, a) to that indexed by
(w	, r, wa). The orbit of the index (	, r, a) is then indexed by (λ, r, α), which gives
the desired decomposition of Wn-representations, but moreover means that Wn acts
transitively on the (nontrivial) summands of each E(λ, r, α)n .

Now it remains to find the value k (dependent on (λ, r, α) and independent of
n) and Wk-representation V (λ, r, α) for which E(λ, r, α)n is the desired induced
representation. SinceWn acts transitively on the summands, for an arbitrary summand
V (	, r, a) with stabilizer denoted by G, we have E(λ, r, α)n = IndWn

G V (	, r, a).
We can pick a particularly nice choice of	 and a, by “left-justifying” in the same way
Church does. Take a = (α1, . . . , αt , 0, . . . , 0) and 	 to have singletons {n − s + 1},
{n − s + 1}, . . . , {n}, {n̄} along with some fixed partition of n-s (independent of n
since n − s = q + 
).

Let 
 be the number of unlabelled parts of λ and 
(α) = t , and define k = q+
+ t .
This is independent of n, but note that k = n − s + t . Consider Wk as the subgroup
of Wn which acts on k, and consider Wn−k as acting on n\k. The stabilizer G of our
summand V (	, r, α) satisfies Wn−k ⊆ G ⊆ Wk × Wn−k , and moreover, Wn−k acts
trivially on V (	, r, a). Thus, we can write G = H × Wn−k for some H ⊆ Wk and
view V (	, r, a) as a representation over H .We define V (λ, r, α) = IndWk

H V (	, r, a).
Note that by our choice of	 and a, theWk–representation V (λ, r, α) does not depend
on n.

Finally,

E(λ, r, α)n = IndWn
G V (	, r, a)

= IndWn
H×Wn−k

V (	, r, a) � Q

= IndWn
Wk×Wn−k

(
IndWk×Wn−k

H×Wn−k
V (	, r, a) � Q

)

= IndWn
Wk×Wn−k

(
IndWk

H V (	, r, a)
)

� Q

= IndWn
Wk×Wn−k

V (λ, r, α) � Q.

��
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Remark 4 While the lemma required n ≥ p+2q, one could still make sense of such a
decomposition for any n. The point of making a restriction on n is so that the partitions
actually determine representations of Wn . But one could just ignore the summands
which do not make sense because n is too small.

Theorem 3 Let X be one of C, C
×, or a complex elliptic curve, and let Wn be the

hyperoctahedral group. Let {�n} be a sequence of root systems in type B, C, or D, and
letAn = A (X,�+

n ) be the corresponding arrangements in Xn. Then for each i ≥ 0,
the sequence {Hi (M(An))} of Wn-representations is uniformly representation stable
with stable range n ≥ 4i .

Proof Note that for any inclusion ι : n ↪→ mwith ι(k̄) = ι(k), we have induced maps
Xm → Xn and M(Am) → M(An). By functoriality of the Leray spectral sequence,
we have maps from the Leray spectral sequence associated to An to that of Am . This
makes the Leray spectral sequence a spectral sequence of FIW -modules. We claim
that our decomposition of E pq

2 (n) in Lemma 3 actually gives us a decomposition of
FIW -modules

E pq
2

∼=
⊕

I

IndF IW (V (λ, r, α)).

Since each summand on the right-hand side is finitely generated with weight≤ p+2q
and stability degree ≤ p + 2q, the finite direct sum giving E pq

2 must be as well. In
each of our cases, we have E3 = E∞ (see Lemma 3.2 and Remark 3.5 in [4]), so the
theorem then follows from Proposition 2 and Theorem 2.

To see our decomposition as FIW -modules, the fact that V (λ, r, α) does not depend
on n tells us that for each morphism (i.e., injection) ι : n → n+1 in the category FIW ,
the following diagram commutes: ��

⊕
IndWn

Wk×Wn−k
V (λ, r, α) � Q

⊕
IndWn+1

Wk×Wn+1−k
V (λ, r, α) � Q

E pq
2 (n) E pq

2 (n + 1)

Remark 5 The argument in Lemma 3 is very similar to that given by Church [7] in
the type A case, generalized to work with Wn and labelled partitions (rather than Sn
and partitions). In a separate paper, Church, Ellenberg, and Farb [8, Theorem 6.2.1]
provide an alternative proof of representation stability for the type A case, which uses
the fact that the E2-term is generated by the cohomology of the linear arrangement
along with the cohomology of the ambient space. The fact that these generators are
finitely generated FI-modules is enough to show that each piece of the E2-term is.
However, in the other cases, the lack of unimodularity makes it more complicated.
We still have that the cohomology of the linear arrangement and the cohomology of
the ambient space give finitely generated FIW -modules [17]. However, these together
are not enough to generate the E2-term. Instead of dealing with these extra generators
separately, we have decided to follow Church’s original argument more closely.
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There are a few easy consequences of the stability. First, if we consider Wn to be
the type A or type DWeyl groups, both of which are a subgroup of the type B/CWeyl
group Wn , then the restriction of an FIW -module to an FIW -module preserves finite
generation [16, Prop. 3.22]. This gives us the following:

Corollary 1 Let {�n} be a sequence of root systems in type B, C, or D. Let X be one
of C, C×, or a complex elliptic curve, and letAn = A (X,�+

n ) be the corresponding
arrangement in Xn. LetWn be the type A, B/C, or D Weyl groups. Then, the sequence
{Hi (M(An))} of Wn-representations is uniformly representation stable.

Because of this, we will state the other corollaries in this generality. We also obtain
an analogue of [17, Cor. 5.10] on the polynomiality of characters.

Corollary 2 Let {�n} be a sequence of root systems in type A, B, C, or D, and let
Wn be the corresponding Weyl groups. Let X be one of C, C

×, or a complex elliptic
curve, and let An = A (X,�+

n ) be the corresponding arrangement in Xn. Then, the
sequence of characters of the Wn-representations Hi (M(An)) is given by a unique
character polynomial of degree ≤ 2i . In particular, we have that dim Hi (M(An)) is
a polynomial in n of degree ≤ 2i .

Finally, since Hi (M(An)/Wn) ∼= Hi (M(An))
Wn and Theorem 3 implies stability

of the multiplicity of the trivial representation, we can make a statement on homo-
logical stability. Arnol’d [1] established homological stability for the type A linear
arrangement, and Church [7] gave a more general type A homological stability result.
The other linear cases have been studied by Brieskorn [5], but as far as the author
knows, it has not been stated for the toric and elliptic analogues in types B, C, and D.

Corollary 3 Let {�n} be a sequence of root systems in type A, B, C, or D, and let
Wn be the corresponding Weyl groups. Let X be one of C, C

×, or a complex elliptic
curve, and let An = A (X,�+

n ) be the corresponding arrangement in Xn. Then,
the orbit spaces M(An)/Wn enjoy rational homological stability. That is, for each i ,
Hi (M(An)/Wn) does not depend on n for n ≥ 4i .

4.4 Examples and computations

Computations such as finding the stable multiplicities of irreducible representations
and the character polynomials are difficult in general. In [6, Thm. 1(1)], Chen recently
gave a generating function for the stable multiplicities of Hi (M(A (X,�+

n ))) in the
case that X = C and �n is type A. But more general computations, even for the other
linear or type A cases, are not known.

One aspect of the elliptic case that might make it harder is that not even the Betti
numbers are known in general (there is a nice combinatorial description of the Betti
numbers for linear and toric arrangements). But if one wanted to compute the stable
multiplicities for the elliptic case, one might try to first compute them for the E2-term.
What you see, even in type A, is some tensor products of the linear case with an
exterior algebra. Thus, even if the multiplicities of the linear case were known, one
would have to deal with computation of the Kronecker coefficients from the tensor
product.
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We do show somework for the degree one cohomology. Even in degree two, though,
it starts to get more complicated.

Example 8 Here are computations of the stable multiplicities of H1(M(An)) when
�n is type A and An = A (X,�+

n ).

1. If X = C, then H1(M(An)) = V (0) ⊕ V (1) ⊕ V (2) for n ≥ 4. Church and Farb
give this and a decomposition for degree two in [9].

2. If X = C
×, then H1(M(An)) = V (0)⊕2 ⊕ V (1)⊕2 ⊕ V (2) for n ≥ 4.

3. If X is an elliptic curve, then we have E01∞(n) = 0 and hence for n ≥ 2,
H1(M(An)) = E10

2 (n) = V (0)⊕2 ⊕ V (1)⊕2.

Example 9 In this example, we demonstrate the decomposition of Lemma 3 for first-
degree cohomology H1(M(A (C×,�+

2 ))) in the case that �2 is type B. In the Leray
spectral sequence for toric arrangements, we have that E2 = E∞, and so the decom-
positions of E01

2 and E10
2 together give a decomposition of the cohomology. First, we

consider our poset of labelled partitions, drawn so that orbits are grouped together.

{{1}, {1̄}, {2}, {2̄}}

{{1, 2}, {1̄, 2̄}} {{1, 2̄}, {1̄, 2}}{{2, 2̄}1, {1}, {1̄}}{{1, 1̄}1, {2}, {2̄}}

{{1, 1̄, 2, 2̄}-1}{{1, 1̄, 2, 2̄}1}

Even though this example is about n = 2, there is one note that we can make
here for general n. We have E10

2 = H1((C×)n), which is the first-degree part of an
exterior algebra of Q

n . The Weyl group acts in the standard way on Q
n , giving us

E10
2 (n) = V ((n − 1), (1)). This tells us in particular that E10

2 (2) = V ((1), (1)), and
stably we have E10

2 (n) = V (∅, (1))n .
For E01

2 , we must have r = 0 and α = 0, and so our decomposition is indexed by
the two orbits in the middle of the above picture. These correspond to the two labelled
partitions of 1: (11) and (1). In the first orbit, let 	 = {{1, 1̄}1, {2}, {2̄}}, and in the
second orbit, let 	′ = {{1, 2}, {1̄, 2̄}}. We have:

H1(M(A2)) = E10
2 (2) ⊕ E01

2 (2)

= V ((1), (1)) ⊕ E((11), 0, 0)2 ⊕ E((1), 0, 0)2

= V ((1), (1)) ⊕ IndW2
W1×W1

V (	, 0, 0) ⊕ IndW2
D2

V (	′, 0, 0)

= V ((1), (1)) ⊕ IndW2
W1×W1

OS1(	) ⊕ IndW2
D2

OS1(	′)

= V ((1), (1)) ⊕ IndW2
W1×W1

H1(C2\H1) ⊕ IndW2
D2

H1(C2\H12)

= V ((1), (1)) ⊕ IndW2
W1×W1

V ((1),∅) � Q ⊕ IndW2
D2

V ((2),∅)
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Note that this does not give us the stable multiplicities, since we need n ≥ 4.
However, Wilson [17] gave a decomposition of E01

2 , which we can consider as the
first-degree cohomology of the linear type B/C arrangement. This decomposition, as
an FIW -module is IndF IW (1,∅)⊕ IndF IW (2,∅)⊕ IndF IW (∅, 2). By decomposing this
into irreducibles when n = 4 and using E10

2 (n) = V (∅, (1))n , one could compute the
stable multiplicities.

If we had considered the type D2 arrangement, we would have

H1(M(A2)) = V ((1), (1)) ⊕ V ((2),∅) ⊕ V (∅, (2)).

The only difference from type B2 is that we have only one orbit of rank one, indexed
by the partition (1).

If we had considered the type C2 arrangement, we would have three orbits: (11),
(1−1), and (1). The first and last would act as before; the new orbit would act just as
(11) did. Thus, we would have the same decomposition as in the type B2 case with an
extra factor of IndF IW (1,∅).

Example 10 In this example, we demonstrate an aspect of the polynomiality of char-
acters as in Corollary 2. For each of our arrangementsAn = A (X,�+

n ), we state the
dimension of H1(M(An)). These formulas hold for all n ≥ 2.

X = C X = C
× X = E

Type An−1
(n
2
) (n

2
) + n 2n

Type Bn 2
(n
2
) + n 2

(n
2
) + 2n

(n
2
) + 2n

Type Cn 2
(n
2
) + n 2

(n
2
) + 3n

(n
2
) + 5n

Type Dn 2
(n
2
)

2
(n
2
) + n 2n

4.5 An improvement for type A

In our main results, we had ignored type A for ease of working only with Wn and
because the result was already known, but the stable range for some type A arrange-
ments can be improved. Recall that we know the sequence stabilizes once n ≥ 4i ,
in each type (that is, for each X and family of root systems). Recently, Hersh and
Reiner [11] improved the stable range for the type A linear case, showing that the i-th
cohomology stabilizes for n ≥ 3i + 1. We show an improvement for the elliptic case,
and we wonder if it can be improved further, or if Hersh and Reiner’s result can be
used to improve the range of the toric case.

Proposition 3 If {�n} is a sequence of type A root systems and X is a complex elliptic
curve, let An = A (X,�+

n ). Then for each i ≥ 1, the stable range of the sequence
{Hi (M(An))} of Sn-representations may be improved to n ≥ 4i − 2.
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Proof Fix i ≥ 1. We claim that the differential d : E0,i
2 (n) → E2,i−1

2 (n) is injective

for all n, and hence E0,i
3 = E0,i∞ = 0 for all n. Thus, in our filtration F0 ⊆ · · · ⊆ Fi =

Hi , the maximum weight (and similarly stability degree) among Fj and Fj/Fj−1 is
2i−1.This implies that Hi (M(An)) is representation stable forn ≥ 2(2i−1) = 4i−2.

First, we refer the reader to [15] for a description of a decomposition of and dif-
ferential on the E2 term, as well as [3] for a description of a basis, in the case of type
A arrangements. Now to show injectivity of this differential, we pick our standard
generators xi , yi (1 ≤ i ≤ n) for H∗(Xn) and gi j (1 ≤ i < j ≤ n) for

E0,1
2 (n) =

⊕

1≤i< j≤n

OS1(Hi j )

where OS1(Hi j ) ∼= H1(C×). The differential sends gi j to the class of the diagonal Hi j

in H2(Xn), which is given by (xi − x j )(yi − y j ). A basis for E2,0
2 = H2(Xn) is given

by pairs xi x j , yi y j (i 
= j) along with pairs xi y j . So if we had a linear combination∑
ci j gi j in the kernel of the differential, then its image

∑
ci j (xi − x j )(yi − y j )would

be zero. We can write this sum in terms of the basis as
∑

di xi yi −∑
ci j (xi y j + x j yi )

for some coefficients di . Since xi y j appears once, with coefficient ci j , we must have
ci j = 0.

To extend this to E0,q
2 → E2,q−1

2 , we recall the basis given by Bezrukavnikov [3].

For E0,q
2 , we have monomials gi1 j1 . . . giq jq with is > js for each s and with i1 >

i2 > · · · > iq . Similarly, a basis for E2,q−1
2 is given by zazbgi1 j1 . . . giq−1 jq−1 where

we have the same conditions on the indices on g’s, za stands for xa or ya , zb stands for
xb or yb, and we have a, b /∈ {i1, . . . , iq−1}. Then suppose we have d(

∑
cSgS) = 0

where S runs through the sets indexing our monomial basis and the cS are some
rational coefficients. Consider one such S = {(i1, j1), . . . , (iq , jq)}. In the expansion
of d(

∑
cSgS) in themonomial basis, the coefficient of xiq y jq gi1 j1 . . . giq−1 jq−1 is equal

to ±cS . This is because we have i1 > i2 > · · · > iq−1 > iq > jq ; there is no other
S′ from which this monomial arises in the differential. Thus, we must have each
cS = 0. ��
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