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ABSTRACT. We use weighted characteristic polynomials to compute Tutte polynomials
of generalized parallel connections in the case in which the simplification of the maximal
common restriction of the two constituent matroids is a modular flat of the simplifications
of both matroids. In particular, this includes cycle matroids of graphs that are identified
along complete subgraphs. We also develop formulas for Tutte polynomials of the k-sums
that are obtained from such generalized parallel connections.

1. INTRODUCTION

The Tutte polynomial t(M ;x, y) of a matroid M encodes a great deal of information
about the matroid, including the rank and corank, whether the matroid is connected, the
numbers of independent sets of each cardinality, and the numbers of flats of each rank
having sufficiently large cardinality [6, 7]. The Tutte polynomial is also intimately related
to many important and difficult problems in a wide variety of areas, such as graph theory,
linear coding theory, arrangements of hyperplanes, and knot theory [7, 13]. Computing
the Tutte polynomial of a matroid is known to be #P -hard, so there is great interest in
formulas that reduce this computation to simpler computations. One of the most basic
instances of such a formula is that for the Tutte polynomial of direct sums of matroids:
t(M1 ⊕ M2; x, y) = t(M1;x, y) t(M2;x, y). Knowing this formula, a natural next step
is to develop formulas for Tutte polynomials of matroids that are connected but that can
be written in terms of other matroids via operations such as parallel connections, series
connections, 2-sums, and their generalizations. The previously known formulas of this
type are for parallel connections, series connections, and 2-sums [3, 6], and 3-sums and
generalized parallel connections along three-point lines (see [1], including the results of
J. Oxley stated at the end of that paper). In this paper, we treat all generalized parallel
connections in which the simplification of the maximal common restriction of the two
constituent matroids is a modular flat of the simplifications of both matroids. In this case,
we develop a formula for the Tutte polynomial of the generalized parallel connection in
terms of the Tutte polynomials of contractions of the constituent matroids by flats of the
maximal common restriction. We also derive such a formula for the Tutte polynomials of
the k-sums that are obtained from such generalized parallel connections. Our main tool is
the weighted characteristic polynomial, which is equivalent to the Tutte polynomial. (For
other recent applications of the weighted characteristic polynomial, see [2, 9].)

The key points needed about Tutte polynomials and weighted characteristic polynomials
are reviewed in Section 2; further background can be found in [6, 7, 8]. The necessary
background on generalized parallel connections and k-sums is given in Section 3; more
information can be found in [4, 10]. The formula for the Tutte polynomial of a generalized
parallel connection is developed in Section 4 and that for the Tutte polynomial of a k-sum
is treated in Section 5. Our terminology and notation largely follow [10] with a few mild
variations that are made explicit in the paper.
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2. TUTTE POLYNOMIALS AND WEIGHTED CHARACTERISTIC POLYNOMIALS

The Tutte polynomial t(M ; x, y) of a matroid M on the set S is given by

(1) t(M ; x, y) =
∑

A⊆S

(x− 1)r(M)−r(A)(y − 1)|A|−r(A).

The characteristic polynomial χ(M ; λ) of M is, up to sign, a special evaluation of the
Tutte polynomial of M :

χ(M ; λ) = (−1)r(M)t(M ; 1− λ, 0).

The characteristic polynomial can be formulated in a variety of ways. Equation (1) yields
the following Boolean expansion of the characteristic polynomial.

χ(M ;λ) =
∑

A⊆S

(−1)|A|λr(M)−r(A)

The characteristic polynomial can also be expressed in the following way:

χ(M ; λ) =
∑

flats F
of M

µ(∅, F )λr(M)−r(F ),

where µ is the Möbius function of M (see [11, 14]). It follows easily from any of these
formulations that χ(M ; λ) = 0 if M has loops. Thus, for a contraction M/Z of M , the
characteristic polynomial χ(M/Z;λ) is nonzero only if Z is a flat of M .

Brylawski [5] defined the weighted characteristic polynomial χ(M ; x, y) of M to be

χ(M ;x, y) =
∑

flats F
of M

x|F |χ(M/F ; y).

(By the remark above about characteristic polynomials of contractions, we see that this
sum could be taken over all subsets F of the ground set of M . The weighted characteristic
polynomial is, upon switching the variables, the coboundary polynomial of [8]. In Section
6.3.F of [7], the notation χ(M ;x, y) is used for the coboundary polynomial.)

The following well-known formulas make precise the statement that the Tutte polyno-
mial t(M ; x, y) and the weighted characteristic polynomial χ(M ; x, y) are equivalent.

t(M ; x, y) =
χ
(
M ; y, (x− 1)(y − 1)

)

(y − 1)r(M)
(2)

χ(M ;x, y) = (x− 1)r(M) t

(
M ;

y

x− 1
+ 1, x

)
(3)

3. GENERALIZED PARALLEL CONNECTIONS AND k-SUMS

Assume that the following conditions hold for the matroids M1 and M2 on the ground
sets S1 and S2, respectively:

(G1) M1|T = M2|T where T = S1 ∩ S2,
(G2) clM1(T ) is a modular flat of M1, and
(G3) each element of clM1(T )− T is either a loop or parallel to an element of T .

Let N denote the common restriction M1|T = M2|T . The generalized parallel connection
of M1 and M2 at T is the matroid PN (M1,M2) whose flats are precisely the subsets A
of S1 ∪ S2 such that A ∩ S1 is a flat of M1 and A ∩ S2 is a flat of M2. Equivalently, the
flats of PN (M1,M2) are the subsets of S1 ∪S2 of the form A1 ∪A2 where A1 and A2 are
flats of M1 and M2, respectively, and A1 ∩ T = A2 ∩ T . Observe that if T is the empty
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set, then PN (M1,M2) is the direct sum M1 ⊕M2. While it is not required by the general
definition, the main results of this paper assume the following two additional conditions:

(G4) clM2(T ) is a modular flat of M2, and
(G5) each element of clM2(T )− T is either a loop or parallel to an element of T .

In the case of graphs whose maximal common restriction is a clique, the generalized
parallel connection of the corresponding cycle matroids yields the cycle matroid of their
clique-sum [12]. Another special case that has received considerable attention is that of
the parallel connection P (M1,M2) of two matroids M1 and M2; in this case, the common
restriction T is a singleton {p}; since we must have M1|T = M2|T , either p is a loop of
both M1 and M2 or p is a loop of neither M1 nor M2. (See [3, 10].) The series connection
S(M1,M2) of two matroids M1 and M2 is given by the dual operation: S(M1,M2) =(
P (M∗

1 ,M∗
2 )

)∗.
An operation that is closely related to parallel connections is the construction of 2-sums.

This operation plays an important role in matroid theory; for instance, a result proved
independently by Bixby, Cunningham, and Seymour says that a 2-connected matroid is not
3-connected if and only if it can be written as a 2-sum of two of its proper minors (see [10,
Section 8.3]). The operation of 3-sum has been defined for binary matroids (see [10]).
Consistent with these definitions, we define the k-sum of two matroids as follows. Assume
that M1 and M2 are matroids on the ground sets S1 and S2, that conditions (G1)–(G3)
hold, and that r(T ) = k− 1. The k-sum of M1 and M2 is the deletion PN (M1,M2)\T of
the generalized parallel connection of M1 and M2.

Our results on Tutte polynomials of k-sums will follow relatively directly from our work
on Tutte polynomials of generalized parallel connections and one technical lemma that we
develop in Section 5, hence the rest of this section focuses on properties of generalized
parallel connections.

We first turn to the ranks of flats in PN (M1,M2). The rank of a flat A of a matroid
is the number of flats other than cl(∅) in a saturated chain of flats from cl(∅) to A. Using
this perspective on rank together with the definition of the flats of PN (M1,M2), it follows
that the rank of a flat A1 ∪A2 of PN (M1,M2), where A1 and A2 are flats of M1 and M2,
respectively, with W = A1 ∩ T = A2 ∩ T , is

rN (W ) +
(
rM1(A1)− rN (W )

)
+

(
rM2(A2)− rN (W )

)
,

that is,

(4) r(A1 ∪A2) = rM1(A1) + rM2(A2)− rN (W ).

In particular, the rank of the matroid PN (M1,M2) is

(5) r
(
PN (M1,M2)

)
= r(M1) + r(M2)− r(N).

The following result contains the parts of [10, Proposition 12.4.14] that we need in this
paper.

Theorem 1. Assume that M1 and M2 are matroids on the ground sets S1 and S2, and that
conditions (G1)–(G3) hold. Then the following properties hold.

(i) PN (M1, M2)|S1 = M1 and PN (M1,M2)|S2 = M2.
(ii) If x ∈ S1 − T , then PN (M1,M2)\x = PN (M1\x, M2).

(iii) If x ∈ S1 − clM1(T ), then PN (M1,M2)/x = PN (M1/x,M2).
(iv) If x ∈ S2 − T , then PN (M1,M2)\x = PN (M1, M2\x).
(v) If x ∈ S2 − clM2(T ), then PN (M1,M2)/x = PN (M1,M2/x).

(vi) If x ∈ T , then PN (M1,M2)/x = PN/x(M1/x,M2/x).
(vii) PN (M1, M2)/T = (M1/T )⊕ (M2/T ).
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Using condition (G3), one can adapt these formulas to identify contractions by elements
in clM1(T )− T ; however, there are no corresponding results for contractions by elements
in clM2(T )−T in the absence of condition (G5). Note that parts (iii) and (vi) of Theorem 1
rely on the following lemma [4, Corollary 3.9], which we also use below.

Lemma 2. Assume that F is a modular flat of a matroid M and that A is a subset of the
ground set of M . Then clM/A(F −A) is a modular flat of M/A.

To apply the definition of the weighted characteristic polynomial to a generalized paral-
lel connection PN (M1,M2) under the added assumptions (G4) and (G5), we need to know
the characteristic polynomials of contractions of PN (M1,M2) by flats. The next lemma,
which requires conditions (G4) and (G5), addresses these contractions.

Lemma 3. Assume that M1 and M2 are matroids on the ground sets S1 and S2, and that
conditions (G1)–(G5) hold. For a flat F of PN (M1,M2) with F ∩S1 = A1, F ∩S2 = A2,
and F ∩ T = W , we have

(6) PN (M1,M2)/F = PN/W (M1/A1,M2/A2).

Proof. By viewing the contraction PN (M1,M2)/F as a sequence of contractions by points
(i.e., flats of rank-1), it suffices to show that equation (6) is true if F is a point, and (so
that the argument may be applied recursively) that the corresponding contractions M1/A1

and M2/A2 also satisfy conditions (G1)–(G5). By Lemma 2, the closures of T − W
in M1/A1 and M2/A2 are modular flats so conditions (G2) and (G4) are valid for these
contractions. Throughout this proof, cl denotes the closure operator of PN (M1,M2). By
conditions (G3), (G5), and the description of flats of PN (M1,M2), the closure cl(T ) is
clearly clM1(T ) ∪ clM2(T ).

Assume that F is a point and that r
(
F ∩ clM1(T )

)
= 1; by conditions (G3) and (G5),

this is equivalent to the case in which r
(
F ∩ clM2(T )

)
= 1. By condition (G3), the point

F contains at least one element, say x, in T that is not a loop. By part (vi) of Theorem 1,
we have PN (M1,M2)/x = PN/x(M1/x,M2/x). Each element z of F − x is a loop
of PN (M1,M2)/x and of one or both of M1/x and M2/x, according to whether z is in
S1 − T , S2 − T , or T . Since contracting a loop is the same as deleting the loop, one
of parts (ii), (iv), or (vi) of Theorem 1 applies to any loop. Thus equation (6) follows.
Since A1 ⊆ clM1(T ) and A2 ⊆ clM2(T ), we get clM1/A1(T − W ) ⊆ clM1(T ) and
clM2/A2(T − W ) ⊆ clM2(T ), from which it follows that conditions (G3) and (G5) are
valid for M1/A1 and M2/A2. Since x is in F ∩ T , condition (G1) is also valid for these
contractions.

Assume that F is a point that intersects clM1(T ) and clM2(T ) only in loops. Let x be
an element in F that is not a loop; we may assume x is in S1 − clM1(T ). Thus, x is not in
cl(T ). We have PN (M1,M2)/x = PN (M1/x,M2) by part (iii) of Theorem 1. It follows
that each element z of F − x is a loop of PN (M1,M2)/x and of one or both of M1/x and
M2, so equation (6) follows as above. Note that

(M1/A1)|(T −W ) = M1|(T −W ) = M2|(T −W ) = (M2/A2)|(T −W )

since F is not in cl(T ), so condition (G1) holds for M1/A1 and M2/A2. From equation (4)
we have rM2(A2) = 0; therefore clM2/A2(T −W ) ⊆ clM2(T ), so M2/A2 satisfies condi-
tion (G5). Finally, to address condition (G3) assume u is in clM1/A1(T −W )− clM1(T ).
Thus, u is in clM1(T ∪ {x})− clM1(T ). Now clM1(T ) is a modular hyperplane of the re-
striction M1|

(
clM1(T∪{x})

)
, so the line clM1({x, u}), which is not contained in clM1(T ),

must intersect T in a set of rank 1. It follows that in M1/A1, the element u is parallel to
some element of T −W ; from this we see that M1/A1 satisfies condition (G3). ¤
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Turning to the characteristic polynomial, part (vii) of Theorem 1 and basic properties of
the characteristic polynomial give the following formula:

(7) χ
(
PN (M1,M2)/T ; λ

)
= χ(M1/T ; λ)χ(M2/T ; λ).

The characteristic polynomial of PN (M1,M2) is given by the following result due to Bry-
lawski [4, Theorem 7.8].

Theorem 4. Assume that M1 and M2 are matroids on the ground sets S1 and S2, and that
conditions (G1)–(G3) hold. If the maximal common restriction N of M1 and M2 has no
loops, then

χ
(
PN (M1,M2); λ

)
=

χ(M1; λ)χ(M2;λ)
χ(N ; λ)

.

Combining Brylawski’s theorem with Lemma 3 gives the following result.

Theorem 5. Assume M1 and M2 are matroids on the ground sets S1 and S2, and that
conditions (G1)–(G5) hold. For a flat F of PN (M1,M2) with F ∩S1 = A1, F ∩S2 = A2,
and F ∩ T = W , we have

χ
(
PN (M1,M2)/F ; λ

)
=

χ(M1/A1;λ)χ(M2/A2;λ)
χ(N/W ;λ)

.

Theorem 5 applies even in the case W = T if we take the characteristic polynomial
of the empty matroid to be 1. With this convention, equation (7) is a special case of
Theorem 5.

4. TUTTE POLYNOMIALS OF GENERALIZED PARALLEL CONNECTIONS

In this section, we prove the following theorem on Tutte polynomials of generalized
parallel connections and we specialize this to Tutte polynomials of parallel connections
and series connections [3, 6], and to Tutte polynomials of generalized parallel connections
along three-point lines [1].

Theorem 6. Assume M1 and M2 are matroids on the ground sets S1 and S2, and that
conditions (G1)–(G5) hold. The Tutte polynomial t

(
PN (M1,M2); x, y

)
of the generalized

parallel connection PN (M1,M2) is given by the following formula:

(y − 1)r(T )
∑

flats W
of N

1
y|W | χ

(
N/W ; (x− 1)(y − 1)

)

×




∑

flats Z of N
with W⊆Z

µN (W,Z)
y|Z|

(y − 1)r(Z)
t(M1/Z;x, y)




×




∑

flats Z of N
with W⊆Z

µN (W,Z)
y|Z|

(y − 1)r(Z)
t(M2/Z;x, y)


 ,

where µN is the Möbius function of N .

Proof. By the definition of the weighted characteristic polynomial and the second for-
mulation of the flats of the generalized parallel connection, it follows that the weighted
characteristic polynomial χ

(
PN (M1,M2); x, y

)
of PN (M1, M2) is given by the follow-

ing formula:∑

flats W
of N

∑

flats A1 of M1,
A2 of M2 with

A1∩T=W=A2∩T

x|A1|+|A2|−|W |χ
(
PN (M1,M2)/(A1 ∪A2); y

)
.
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This summation simplifies as follows. First use Theorem 5 to get
∑

flats W
of N

∑

flats A1 of M1,
A2 of M2 with

A1∩T=W=A2∩T

x|A1|+|A2|−|W |χ
(
PN (M1,M2)/(A1 ∪A2); y

)

=
∑

flats W
of N

1
x|W |

∑

flats A1 of M1,
A2 of M2 with

A1∩T=W=A2∩T

x|A1|x|A2|χ(M1/A1; y)χ(M2/A2; y)
χ(N/W ; y)

=
∑

flats W
of N

1
x|W | χ(N/W ; y)

∑

flats A1 of M1
with A1∩T=W

x|A1|χ(M1/A1; y)(8)

×
∑

flats A2 of M2
with A2∩T=W

x|A2|χ(M2/A2; y).(9)

We next show that the sums in lines (8) and (9) can be written as sums of weighted char-
acteristic polynomials as follows:

(10)
∑

flats A1 of M1
with A1∩T=W

x|A1|χ(M1/A1; y) =
∑

flats Z of N
with W⊆Z

µN (W,Z)x|Z|χ(M1/Z; x, y),

(11)
∑

flats A2 of M2
with A2∩T=W

x|A2|χ(M2/A2; y) =
∑

flats Z of N
with W⊆Z

µN (W,Z)x|Z|χ(M2/Z; x, y).

To see equation (10), note that the right side of this equation is
∑

flats Z of N
with W⊆Z

µN (W,Z)x|Z|
∑

flats A1 of M1
with Z⊆A1

x|A1|−|Z|χ(M1/A1; y).

Thus, the term x|A1|χ(M1/A1; y) occurs in this sum with coefficient
∑

flats Z of N :
W⊆Z⊆A1∩T

µN (W,Z).

Thus, this coefficient is 1 if A1∩T = W , and 0 otherwise, as needed to prove equation (10).
By using equations (10) and (11) to rewrite the sums in lines (8) and (9), we get

χ
(
PN (M1,M2); x, y

)
=

∑

flats W
of N

1
x|W |χ(N/W ; y)

×




∑

flats Z of N
with W⊆Z

µN (W,Z)x|Z|χ(M1/Z; x, y)




×




∑

flats Z of N
with W⊆Z

µN (W,Z)x|Z|χ(M2/Z; x, y)


 .

The formula in the theorem now follows by applying equations (2) and (5) to the last
equation. ¤

We now turn to several corollaries of Theorem 6.
It follows from the definition of the parallel connection that if the ground sets of two

matroids M1 and M2 intersect in a single element p that is a loop of both M1 and M2,
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then their parallel connection P (M1,M2) is the direct sum M1⊕ (M2\p). In this case, we
therefore have t

(
P (M1,M2); x, y

)
= (1/y) t(M1;x, y) t(M2; x, y). Dually, if the ground

sets of two matroids M1 and M2 intersect in a single element that is an isthmus of both M1

and M2, then t
(
S(M1,M2); x, y

)
= (1/x) t(M1; x, y) t(M2; x, y). Corollary 7 considers

a slightly more general setting than [3, Theorem 6.15] in that it considers matroids whose
grounds sets intersect in a point, that is, a flat of rank 1, thereby allowing this flat to contain
loops and parallel elements. (See also Section 4 of [6].)

Corollary 7. Assume that M1 and M2 are matroids on the ground sets S1 and S2, that
N := M1|T = M2|T , where T = S1 ∩ S2, and that r(N) = 1. Assume that N contains
h elements, j of which are loops. The Tutte polynomial of PN (M1,M2) is given by the
following formula.

t
(
PN (M1,M2); x, y

)
=

y − 1
(xy − x− y)yj

t(M1;x, y) t(M2;x, y)

− yh−j

xy − x− y
t(M1;x, y) t(M2/T ; x, y)

− yh−j

xy − x− y
t(M1/T ; x, y) t(M2; x, y)

+
y2h−j + yh(xy − x− y)

(xy − x− y)(y − 1)
t(M1/T ;x, y) t(M2/T ; x, y)

In particular, if T = {p} and r(T ) = 1, then the Tutte polynomial of the parallel connec-
tion P (M1,M2) is given by the following formula.

t
(
P (M1,M2); x, y

)
=

y − 1
xy − x− y

t(M1;x, y) t(M2;x, y)

− y

xy − x− y
t(M1; x, y) t(M2/p; x, y)

− y

xy − x− y
t(M1/p; x, y) t(M2; x, y)

+
xy

xy − x− y
t(M1/p; x, y) t(M2/p; x, y)

Assume that M1 and M2 are matroids on the sets S1 and S2, that S1 ∩ S2 = {p}, and
that p is not an isthmus of either M1 or M2. The Tutte polynomial of the series connection
S(M1,M2) is given by the following formula.

t
(
S(M1,M2); x, y

)
=

x− 1
xy − x− y

t(M1; x, y) t(M2; x, y)

− x

xy − x− y
t(M1; x, y) t(M2\p; x, y)

− x

xy − x− y
t(M1\p; x, y) t(M2; x, y)

+
xy

xy − x− y
t(M1\p; x, y) t(M2\p;x, y)

In the case of a three-point line, the formula in the next corollary of Theorem 6 reduces
to formulas in [1].

Corollary 8. Assume that M1 and M2 are matroids on the ground sets S1 and S2, that
T := S1 ∩S2 = {p1, p2, . . . , pn}, that the restrictions M1|T and M2|T are isomorphic to
the uniform matroid U2,n, and that conditions (G2)–(G5) hold. Let a(x, y) = xy − x− y
and b(x, y) = xy − x − y − n + 2. The Tutte polynomial of the generalized parallel
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connection PN (M1, M2) is given by the following formula.

(y − 1)2

a(x, y)b(x, y)
t(M1;x, y)t(M2;x, y)

− y(y − 1)
a(x, y)b(x, y)

n∑

i=1

(
t(M1/pi; x, y)t(M2; x, y) + t(M1; x, y)t(M2/pi; x, y)

)

+
(n− 1)yn

a(x, y)b(x, y)
(
t(M1/T ; x, y)t(M2; x, y) + t(M1; x, y)t(M2/T ;x, y)

)

+
y2

a(x, y)b(x, y)

∑

1≤i,j≤n
i 6=j

t(M1/pi; x, y)t(M2/pj ; x, y)

+
y
(
b(x, y) + y

)

a(x, y)b(x, y)

n∑

i=1

t(M1/pi;x, y)t(M2/pi; x, y)

− yn(x + n− 2)
a(x, y)b(x, y)

n∑

i=1

(
t(M1/pi; x, y)t(M2/T ;x, y) + t(M1/T ; x, y)t(M2/pi; x, y)

)

+
yn

(
(n− 1)2yn + nyn−1b(x, y) + a(x, y)b(x, y)

)

a(x, y)b(x, y)(y − 1)2
t(M1/T ;x, y)t(M2/T ; x, y)

Proof. By Theorem 6, t
(
PN (M1,M2); x, y

)
is given by the following expression.

(y − 1)2

a(x, y)b(x, y)
×

(
t(M1;x, y)−

(
n∑

i=1

y

y − 1
t(M1/pi; x, y)

)
+ (n− 1)

yn

(y − 1)2
t(M1/T ; x, y)

)
×

(
t(M2;x, y)−

(
n∑

i=1

y

y − 1
t(M2/pi; x, y)

)
+ (n− 1)

yn

(y − 1)2
t(M2/T ; x, y)

)

+
(y − 1)2

y · a(x, y)

n∑

i=1

((
y

y − 1
t(M1/pi; x, y)− yn

(y − 1)2
t(M1/T ;x, y)

)
×

(
y

y − 1
t(M2/pi; x, y)− yn

(y − 1)2
t(M2/T ;x, y)

))

+
(y − 1)2

yn

yn

(y − 1)2
t(M1/T ;x, y)

yn

(y − 1)2
t(M2/T ;x, y)

The corollary follows from algebraic manipulation of this expression. ¤

5. TUTTE POLYNOMIALS OF k-SUMS

By the deletion-contraction formula, the Tutte polynomial of each single-element dele-
tion by a non-loop, non-isthmus can be written in terms of the Tutte polynomials of the
matroid and the corresponding single-element contraction. Specifically, we have that if e
is neither a loop nor an isthmus of M , then

(12) t(M\e; x, y) = t(M ; x, y)− t(M/e;x, y).

If e is a loop of M , we can write the Tutte polynomial of the single-element deletion M\e
in terms of the Tutte polynomial of M via the following equation:

(13) t(M\e; x, y) = y−1 t(M ;x, y).
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The formula for the Tutte polynomial of a k-sum that we give in Theorem 10 follows by
combining Theorem 6 with the extension of equations (12) and (13) that we develop in the
next several paragraphs and summarize in Lemma 9.

Let D be a subset of the ground set of M for which r(M\D) = r(M). From this it
follows that no element e of D is an isthmus of M\E for any subset E of D − e. Since
contractions do not introduce isthmuses, we also have that no element e of D is an isthmus
of M/F\E for any disjoint subsets E and F of D − e.

Assume D is {e1, e2, . . . , ek}. For h with 1 ≤ h ≤ k, let Dh be {e1, e2, . . . , eh}.
Computing t(M\D;x, y) using equations (12) and (13) gives

(14) t(M\D;x, y) = t(M\Dk−1;x, y)− t(M/ek\Dk−1; x, y)

if ek is not a loop of M\Dk−1 (or equivalently, of M ), and

(15) t(M\D; x, y) = y−1 t(M\Dk−1; x, y)

if ek is a loop of M . All the Tutte polynomials that arise upon iteration have the form
t(M/E\Dh;x, y) where E ⊆ D − Dh; note however that due to equation (13), not ev-
ery Tutte polynomial of this form necessarily appears in this expansion. Applying equa-
tions (12) and (13) to t(M/E\Dh; x, y) gives

t(M/E\Dh; x, y) = t(M/E\Dh−1;x, y)− t(M/E ∪ eh\Dh−1;x, y)

if eh is not a loop of M/E and

t(M/E\Dh; x, y) = y−1 t(M/E\Dh−1;x, y)

if eh is a loop of M/E.
To state the effect of applying equations (12) and (13) repeatedly until no deletions

remain, we introduce some notation. For a subset E of D and an element ei in D, let E+
i

be {ej | ej ∈ E and j > i}. Let the functions αD and βD on the set of subsets of D be
defined as follows. For E ⊆ D, let βD(E) be the number of elements ei in D − E such
that ei is a loop of M/E+

i . For E ⊆ D, let

αD(E) =
{

0, if some ej in E is a loop of M/E+
j ;

(−1)|E|y−βD(E), otherwise.

Clearly αD and βD depend upon M and the linear ordering that is implicit in our listing of
the elements e1, e2, . . . , ek of D, but we suppress this dependence in the notation.

The considerations above lead to Lemma 9, which can be proved by induction using
equations (14) and (15) together with the following observations. Let α′Dk−1

be defined in
the same manner as αD but considering Dk−1 to be in M/ek instead of M . It follows that
if ek is not a loop of M , then α′Dk−1

(E) = −αD(E ∪ ek) for E ⊆ Dk−1. Similarly, if
ek is not a loop of M , then αDk−1(E) = αD(E); if ek is a loop of M , then αDk−1(E) =
y αD(E).

Lemma 9. Assume that for some subset D of the ground set of a matroid M , we have
r(M\D) = r(M). Then

t(M\D; x, y) =
∑

E⊆D

αD(E) t(M/E; x, y).

Note that if N is a restriction of M that contains the set D, then the definition of βD

does not depend upon whether D is considered to be in N or in M ; the same is true of αD.
With Lemma 9, we can prove the main result of this section.

Theorem 10. Assume that M1 and M2 are matroids on the ground sets S1 and S2, and
that conditions (G1)–(G5) hold. Assume that N has rank k − 1. Let B be a basis of the
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contraction PN (M1,M2)/
(
(S1∪S2)−T

)
. The Tutte polynomial t

(
PN (M1,M2)\T ; x, y

)
of the k-sum PN (M1,M2)\T is given by the following formula.

x−|B|
∑

E:E⊆T−B

αT−B(E) (y − 1)r(T )+r(E)

×
∑

flats W of N
with E⊆W

1
y|W |+|E| χ

(
N/W ; (x− 1)(y − 1)

)

×




∑

flats Z of N
with W⊆Z

µN (W,Z)
y|Z|

(y − 1)r(Z)
t(M1/Z; x, y)




×




∑

flats Z of N
with W⊆Z

µN (W,Z)
y|Z|

(y − 1)r(Z)
t(M2/Z; x, y)




Proof. Note that the elements of B are isthmuses of PN (M1,M2)\(T −B), so

x|B| t
(
PN (M1,M2)\T ; x, y

)
= t

(
PN (M1,M2)\(T −B); x, y

)
.

Also note that PN (M1,M2)\(T −B) and PN (M1,M2) have the same rank, so Lemma 9
can be applied to compute t

(
PN (M1,M2)\(T −B); x, y

)
. Using this lemma, we get

t
(
PN (M1,M2)\(T −B); x, y

)
=

∑

E⊆T−B

αT−B(E) t
(
PN (M1,M2)/E;x, y

)
.

By part (vi) of Theorem 1, the contraction PN (M1,M2)/E is the generalized parallel con-
nection PN/E(M1/E,M2/E). Note that since E ⊆ T , the contractions M1/E and M2/E
satisfy conditions (G1)–(G5). The formula in the theorem now follows by applying The-
orem 6 to evaluate the Tutte polynomial of each of these generalized parallel connections
PN/E(M1/E, M2/E). ¤
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