
Appendix of Matroid Cryptomorphisms

Thomas Brylawski

The following is a survey of 13 of the more common ways to describe
matroids. In the first section, an axiomatization is given for each description.
The axiom AO is usually a nontriviality or normalization condition (such
as, for bases, that the family is nonempty) to rule out degeneracy, and Al
describes a general mathematical structure (e.g., that bases form a clutter
in that no two are comparable). Finally, A2 is the characteristic axiom (basis
exchange in our example) that distinguishes the family of matroidal bases
from other clutters (such as k-edge paths in a graph, maximal antichains in
a poset, etc.).

As a comparison, consider point-set topology. There, for example, the
characteristic axiom for the (topological) closure operator, cl, would be

CL2T. cl(A u B) = cl(A) u cl(B)
(whereas the normalization axiom would be that Q0 = 0).

Similarly, for the family F of closed sets, the topological axioms
would be

FOT. X and the empty set are closed.
F2T. Finite unions of closed sets are closed.
Primed axioms, in general, can replace their unprimed counterparts

to give an equivalent axiomatization. Thus, for example, bases can be
axiomatized by BO, B1, B2, as well as by BO, B1, B2(5), or by BO, BY, B2.
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Note that, for example, B1 and BY are-not equivalent per se, but among
families of subsets of X that obey BO and B2, they describe the same sub-
class of families. (In other words, BO, 131, B2 together prove B1', and BO,
B1', B2 prove B1.) Note that bases give the largest number of equivalent
axiomatizations from the apparently modest B2 [basis exchange] to the
apparently much stronger B2 (2) [symmetric subset exchange] to the (new)
axiom B2(9> [algorithmic duality]. We remark that B2 and B2(2) were proved
equivalent for nonlinear matroids only in the 1970s. Note that the first three
axiomatizations involve special structures (lattice, subset operator, and
integer-valued function on subsets), and the final 10 all axiomatize special
families of subsets of the groundset.

In the second section we give the matroid cryptomorphisms that
relate one matroid structure in an invertible way with another. Some of these
cryptomorphisms are quite general (such as those that relate a simplicial
complex with its clutter of maximal elements, or a closure system in which
each point is closed with a point lattice). These are the cryptomorphisms

that can be generalized to those that pair structures axiomatized by
AO and Al with structures axiomatized by A'O and A'1. Axiom A2 is then
interpreted in Ad' by axiom A'2. Other cryptomorphisms, however, are more
subtle, so that, for example, general closure systems do not satisfy a chain
condition, and thus a rank function such as that given by fCL-, would not,
in general, be well defined if the closure system obeyed only axioms CLO
and CL1.

The reader is encouraged to show that primed axioms are equivalent
to their unprimed counterparts or to prove that any of the cryptomorphism
pairs f w ,, and f K. H are inverses and do, indeed, prove one axiom system
from the other. One can also develop one's own cryptomorphic theory of
matroids [two recent examples have been by the family of nonspanning sets
and by the boundary operator: A H cl(A) n cl(X - A)].

In conclusion, we interpret our cryptomorphic descriptions for four
important classes of matroids (vector, affine, transversal, and graphic) and
then give a sampling of when an axiom or cryptomorphism has a special
version that characterizes binary matroids. Research problems here could
include giving cryptomorphic descriptions for other classes (orientable
matroids, gammoids, etc.) or describing a class of structures that obeys a
particular weaker or stronger set of axioms. [A recent example of the former
is the class of "greedoids" that satisfy a generalization to strings of B2(').
An example of the latter is the class of matroids that satisfy bijective subset
exchange (see footnote 11).]

In the following, we remind the reader that B -- A means that the
subset B properly contains A. Further, B covers A in the family A', denoted
B >- A if B A, but for no member C of .' do we have that B C A.
A similar definition of cover is used for lattices (posets) L, where atoms are
lattice elements that cover the minimum element 6 e L.
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AXIOMATIZATIONS FOR THE MATROID M(E)

(1) Geometric lattice L: f: E'-+ A(L)
LO. f maps a subset E' (the nonloops) of E onto the atoms A of a lattice

L.
L1. [Point lattice] All elements of L are suprema of atoms.

L1'. [Relative complementation] For all lattice elements c, d,
and e, with c < d < e, there is d' e L such that d' v d = e
andd'nd=c.

L1". No two join-irreducible elements of L are comparable
(c e L is join-irreducible if c = d v e implies c = d or c = e).

L2. [Semimodularity] There is a rank function p on L [p(0) =
0, and p(d) = p(c) + 1 whenever d >- c] such that for all d, e e L,

p(d) + p(e) >_ p(d v e) + p(d n e).

L2'. [Birkhoff covering property] If c and d both cover c v d,
then c v d covers both c and d.

L2". For all b, c, and d, if c covers or equals b, then c v d covers
or equals b v d.

L2"'. [Atom modularity] If a >- 0, then

p(b) + p(a) = p(b v a) + p(b n a).'

(2) Closure operator: cl: 2E -+ 2E

(3)

CL1. [Closure axioms]
(a) [Increasing] A c cl(A).
(b) [Monotone] If A c B, then cl(A) c cl(B).
(c) [Idempotent] cl[cl(A)] = cl(A).

CL1'. (a) A c cl(A).
(b) If A c cl(B), then cl(A) s cl(B).

CL1". A u cl[cl(A)] s cl(A u B).
CL2. [MacLane-Steinitz exchange] If x e cl(A u {y}) - cl(A), then

y e cl(A u {x}).
CL2'. If cl(A) B c cl(A u {x}), then cl(B) = cl(A u {x}).

Rank function: r: 2E -> Z
R0. [Normalization] r(o)=O.
R1. [Unit rank increase] r(A u {x}) = r(A) or r(A) + 1.

Rl'. r({x}) = 0 or 1 for all x e E.2

1 We can add a converse to L2and obtain one axiom equivalent to both L1 and L2:
d >- c if and only if d = c v a for any element in the nonempty set of atoms

{a: a < d, a c}.
a R1 is implied by R0, Rl', and R2 (or R2"), not by R0, R1', and R2'.
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R2. [Semimodularity] r(A) + r(B) >- r(A u B) + r(A n B).
R2'. [Local semimodularity] If r(A) = r(A u {x}) _

r(A u {y}), then r(A u {x, y}) = r(A).
R2". If A ? B, then r(A) - r(B) > r(A u C) - r(B u C).3

Families of Subsets of E

(4) Closed sets or flats: .F
FO. EeF.
Fl. [Closed-set family] If F1, F2 e F, then F1 n F2 C_ F.
F2. If F1, . . . , F,, is the family of closed sets that cover F (i.e., each

F, contains F properly with no closed set between), then
F1 - F, ... , F,, - F partition E - F.
F2'. u{F': F'>- F} = E.

(5) Hyperplanes: .°
HO. E0A.
Hl. [Clutter; Incomparability] One hyperplane cannot properly

contain another.
H2. [Weak inclusion] For all distinct H1, H2 e f and x e E there

is a hyperplane H such that (H1 n H2) u {x} c H.
H2'. [Strong inclusion] For all distinct hyperplanes H1, H2,

x 0 H1 u H2, and y e H1 - H2, there exists H e . such
that (H1 n H2) u {x} c H and y 0 H.

(6) Circuits: W
CO. 0 0 W.
Cl. [Incomparability] One circuit cannot properly contain an-

other.
C2. [Weak elimination] (C1 U C2) - {x} contains a circuit for all

distinct circuits C1 and C2, and x e E.
The rank function is easily shown to be cryptomorphic to an edge-labeled Boolean algebra,

Aux
where the edge (of the Hasse diagram) % is labeled by r(A u x) - r(A). RI is equivalent

A
to having all squares labeled as follows:

R2 is equivalent to further eliminating
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C2'. If I c E contains no circuit, then I u {x} contains at most
one circuit.

C2". [Strong elimination] For all circuits C1 and C2 with
x e C1 n C2 and y e C1 - C2, there is a circuit C contain-
ing y such that C E- (Cl U C2) - (X)-'

C2"'. For all circuits C1, ... , C1, such that, for all i, C1
W'- i C;, and for all E' c E with IE'I < k, there is a circuit

C such that C s (U,= 1 C,) - E'.5
(7) Bonds: '* are axiomatized the same as entry (6), Circuits.
(8) Open sets: (9

00. Q e(9.
01. Unions of open sets are open.
02. For all open sets 01 and 02, and x e 01 n 02, there is an open

set 0 such that
(O1u02)-{x}ZD 0? (01u02)-(01n02).

02'. (a) Every open set is a union of minimal (nonempty) open
sets, and (b) for all 01 0 02, x e 01 n 02, there is a
nonempty open set 0 c (01 u 02) - {x}.6

02". If 01, ... , O,, is the family of open sets covered by 0
then n I Oi = 0.

(9) Cycles: (9* are axiomatized the same as entry (8), Open sets.
(10) Spanning sets: .'

SO. E e .9' (or: SO'. 9' 0 0).
S1. [Order filter] If S e 9' and S' ? S, then S' e Y.
S2. If S and S' are spanning sets with ISI = Si I+ 1, then there is an

element x e S - S' such that S - {x} spans.'
S2'. Minimal spanning sets containing a fixed subset E' E are

equicardinal.
(11) Independent sets: .5

10. 0 e I (or: IO'. 5 0 0).

° Weak elimination implies its strong counterpart directly only by a rather involved induction
argument. However, the cryptomorphisms of the next section provide an alternate method
of showing that C2 implies C2". In particular, CO, Cl, and C2 imply the independent-set
axioms (using induction on IF - II to prove 12). We then easily prove the rank-function
axioms RO, R1, and R2. Finally, we use RO, RI, and R2" (an easy consequence of R2) to
prove strong circuit elimination.
An important analogue of C2 that is a consequence of the circuit axioms (but does not imply
C2) is circuit transitivity:

If x e C1 - C21 y e C2 - C1, and z e C1 n C21 then there is a circuit C E- C1 U C2 that
contains both x and y. (It may or may not contain z.)

e The family {0, x, y, xy, xyz} shows that axiom 02'(b) alone does not imply 02.
Complementing the family in footnote 8, we see that we cannot remove the restriction that x be
not in S'.
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I1. [Order ideal; Simplicial complex] If.I e ./ and I' c I, then I' E 5.
12. If I and I' are independent sets, with III = II'I + 1, then there is

an element x e I - I' such that Fu {x} is independent.'
12'. [Pure subcomplexes] For all E' E- E, the maximal inde-

pendent subsets of E' are equicardinal.
(12) Dependent sets:

DO. 00!2.
D1. [Order filter] If D e _9 and D' Q D, then D' a -9.
D2. If D, and D2 are dependent sets, then either Dt n D2 is dependent

or (Dt u D2) - {x} is dependent for all x e E.
D2'. If 10 3 but I u {x} and I u {y} are both in -9, then all

(III + 1)-element subsets of D = I u {x, y} are dependent.'

(13) Bases: R
BO. -4 :0.
B1. [Incomparability] One basis cannot properly contain another.

BY. [Equicardinality] All bases have the same size.
B2. [Weak exchange] For all bases B and B' and x E B, there is a

y e B' such that (B - x) u {y} is a basis.
B2'. [Symmetric exchange] For all B, B' E R and x E B, there

is a y e B' such that both (B - x) u {y} and (B' - y) u {x}
are bases. to

B2(2). [Symmetric-subset exchange; Matroidal Laplace expan-
sion] For all B, He R and A 9 B, there is a subset
A' g B' such that (B - A) u A' and (B' - A) u A are both
bases.

B2t3). [Bijective exchange] For all B, He -4, there is a bijection
f: B -+ B' such that (B - x) u { f(x)} is a basis for all
xcB.tt

B2t41. [Dual exchange] For all B, B' a R, y e B' - B, there is
an x e B - B' such that (B - x) u {y} is a basis.12

s Weakening the stipulation x e I - I' in 12 by the statement x e I results in an axiom that does
not imply 12, as is shown by the family to, w, x, y, z, wx, wy, wz, xy, xz, yz, wxy}.
D2' is D2 with the restriction on the hypothesis that ID1 - DZI = ID2 - D11 = 1.

10 For both B2 and B2', we get an equivalent axiom by replacing "... x e B ... y e B' ..." with
..xeB-B'... yeB'-B... .

" Axiom B213) is, in fact, equivalent to both B1 and B2. In general, we cannot combine B2'
and B2(3) to get bijective symmetric exchange {where both (B - x) v { f(x)} and [B' - f(x)] v
{x} are bases}. The matroid of the complete graph K4 does not satisfy bijective symmetric
exchange. On the other hand, transversal matroids and their minors (gammoids) satisfy the
stronger combination of B2'2) and B2(3): bijective subset exchange, where there exists a
bijection f: B -. B' such that (B - A) u f(A) is a basis for all A c B.

'2 Axiom B2(4), with "... y e B' - B ... x e B - B' . . " replaced by B2(4) ("... y e H. . . x E
B...') is too weak. For example, the equicardinal family {xyu, xyv, xyw, uvx, uvy, uvw} satis-
fies B2141 but not B2.
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B20l. [Basis interpolation or Middle basis axiom] For all
I c He -4 and S 2 B" a 9, with I c S, there is a basis
B such that I c B 9 S.

B2(6). For any total order < on E (IEI = n), associate the n-ary
relation R' with the family 9, where (x,, x2, ... , Xk,
xk,...,xk)e9` if {x1,...,xk}e-4 and xi>xi+1 for
all i. Then the lexicographically maximum member of

` is also the componentwise maximum.13
B2('). The "greedy algorithm" gives the optimal member of _V:

If w: E -+ R is any assignment of weights giving w(xl) >-
w(x2) > >- w(x,,), and if we define w(B) = > xeB w(x),
then w(B) for all B e a, where I o = 0, and, for
all i,

I. =
Ii_ 1 v {xi} if this subset is contained in a basis,

` [Ii-1 otherwise.ta

B2(8). The "stingy algorithm" gives the optimal member of R:
If w: E -* R is any assignment of weights giving w(xI) >-

>- then w(S0) >- w(B) for all B e -4, where S = E,
and, for i = n - 1, n - 2,..., 0,

Si
(Si+l - {x;+l} if this subset contains a basis,=

Si+l l otherwise.

B291. [Algorithmic duality] For all one-to-one assignments
of weights, the greedy algorithm and the stingy algorithm
return the same subset.l s

CRYPTOMORPHISMS

In this section, for any matroid M described by the axiom system . #, we
show how to get a structure that satisfies .#'. Using this cryptomorphism we
can prove the axioms for .11" from the axioms for M. Often, but not always,
13 (x1.... , (xi, ... , x;,) in the lexicographic order if for some k (1 5 k 5 n), xk < xk, while

xi = xi for all i < k. (x1.... , is a componentwise maximum if xi Z x' , f o r all (x'1, ... , x;J e
R` and all i. The least element of each basis is repeated to "fill out" the n-tuple. This
convention is not necessary under the equicardinality assumption Bl'.
If w is allowed to take on negative values, B2(') will imply B1 as well as B2. An equivalent
axiom would result if we considered only one-to-one weight functions, in which case we
would have the conclusion that w(B) for all B e 9, B # 1p. This axiomatization, at the
heart of algorithmic matroid theory, shows that if we have weighted subsets over a family
known to be the bases of a matroid, we can find the maximum in time O{n[log n + 1(n)]},
where we sort in time 0(n log n) and check independence in time 1(n).
Axiom B2(9) is easily shown to imply the same axiom for the family R* of complementary
subsets and is therefore a good way to prove matroid duality. Similar "self-dual" axioms
are B2' and B2'5).

14

15



Appendix of,Matroid Cryptomorphisms 305

the ith axiom for A' implies the ith axiom for . #' (i = 0, 1, 2). Sometimes.
however, the axioms for A' are used to make the cryptomorphism well de-
fined, and once it is, the axioms for . &' follow easily.

Note that although it has little intuitive appeal, the rank function
gives straightforward descriptions for all other axiomatizations.

We do not give cryptomorphic descriptions from open sets, spanning
sets, or dependent sets, because matroids are seldom defined by these families.
In addition, we do not present any cryptomorphisms to lattices, because
most are quite awkward. [The only two natural ones are in terms of closed
sets (L is obtained by ordering the members of F by inclusion) or hyperplanes
(L is the infimum subsemilattice of the Boolean algebra 2E generated by _-Y).]
For cryptomorphisms in terms of the geometric lattice L, we assume that
the matroid is a combinatorial geometry on the atoms of L.

The statement "(use . i)" in the coordinate in Table A. 1 means
that there is no natural way to go directly from .' to . #' without using an
intermediate cryptomorphism: A' --> R -i. . #'.The most straightforward dual
cryptomorphisms are mentioned in brackets: [* ...]. Hence, [*Dual set] in
the (7.(8*, 6.W) coordinate means that the circuit family of M* coincides with
the bond family of M. Although these are not strictly cryptomorphisms, in
that they do not relate one structural description of a matroid with another
description of the same matroid, they do, for example, explain why circuits
and bonds have the same axiom system.

PROTOTYPICAL EXAMPLES

We describe, where natural, each cryptomorphic description for the classes
of vector matroids, affine matroids, transversal matroids, and graphical
matroids. A check means that this example furnished the name of the
cryptomorphism (such as circuits of graphs), and an arrow means that the
corresponding axiom system is relatively easy to verify on the class. All
matroids are on the set E.

Vector (or Linear)

E is the set of column vectors of an r x n matrix M' over the field F, where
M' has linearly independent rows. F is a sufficiently large extension field of
F.

1. L: L(M) is the supremum semilattice of PG(r - 1, F) generated by the
one-dimensional subspaces spanned by members of E.

2. cl: Linear closure [x e cl(A) if x = I f ai, F, ai e A].
3. r: Linear rank [r(A) is the size of a largest square nonsingular sub-

matrix contained in the submatrix A].
4..F: Linearly closed subsets; subspaces of F" intersected with E.



TABLE A.1

To define:
I n terms of:

2. Closure operator

For all A - E, cl(A)

1. Lattice {xeE:x<v{y:yeA}}
L (with atoms E)

2. Closure operator

cl

3. Rank function {x: r(A) = r(A u x)}
r

4. Closed sets n{F:F2A,Fe.}
F

5. Hyperplanes n{H: H 2 A, H e F} (where
3t° the empty intersection

equals E)

6. Circuits {x: xc A, or there is a CE
with xeCcAu{x}}

7. Bonds

9. Cycles {x: xc A, or there is a Ce 2*
0* with xe Cc Au {x}}

11. Independent sets E - {x:x0Aand Iu{x}e.f
.f for all 1 5,1 c A}

13. Bases (Use independent sets)

3. Rank function
r(A) =

p(v (y: y e A}), where p is the
lattice rank (= length of a
maximal chain from 0).

(By recursion) if A = B u {x},

r(B) +
0 X e cl(B),(1

otherwis

Maximum size of chain of closed
sets, all properly contained in
A

c(() - c(A), where for A 5 E,
c(A) = max{k: there exist
H1,...,Hkeai°where for all
j, H; 2 A, and
Hj2H,n...nH,_1}

Al J- max{k: there are k
circuits C1..... C. such that
for allj, C, cA,and
C;ZC,u...uCj_,}

(Use hyperplanes)

IAI - max{k:
0 SF Ct C2 ... sF Ck S A}

max{Ill: 1 c 5, I c A}

max{IB n Al: B e.4}

4. Closed sets 5. Hyperplanes 6. Circuits
Fe IF if HeFif Ce9!ifC# 0and

F is (the set of atoms below) H is (the set of atoms below) The supremum semilattice
some element in L some element covered by 1 generated by C is a (once)

truncated Boolean algebra

cl(F) = F H# E, and x H if and only if For C' c C, cl(C') = C if and
cl(H u {x}) = E only if IC - C'I = 1

r(F u {x}) = r(F) + 1 for all

F is an intersection of
hyperplanes

r(H) = r(E) - 1 = r(H u {x}) - 1
for allx0H

H is a maximal proper closed set

r(C) = ICI - 1 = r(C - {x))
for all xeC

(Use cycles: add "C is minimal
such that" in 4 -. 9)

(Use cycles: add "C is minimal
such that" in 5 -. 9)

[*Dual complement]

IC - Fl I forallCe9; (Use closed sets)

(Use hyperplanes) H is the complement of a bond (Use cycles: add "C is minimal
such that" in 7 -. 9)

[*Dual set]
IC - FI # 1 for all C e 0* (Use closed sets) C is a minimal cycle
[*Dual complement]

I u {x} e 5 whenever 19 F, (Use bases) (Use dependent sets: add "C
Ie5,andx0F is minimal such that" in

(Use independent sets) H is maximal with respect to

containing no basis
(Use dependent sets: add "C

is minimal such that" in
13 -. 12)



7. Bonds 8. Open sets 9. Cycles
BEW*if 0E(rif CE('*if C=0or
B#0and

1. (Use hyperplanes) (Use closed sets) x< V{y:yEC-{x}}
for all xcC

2. B is minimal such cl(E-0)=E-0 cl(C - x) = cl(C) for
that cl(E - B) 0 E all

3. B is minimal such that r(E-0)=r[E-0)ux]-1 r(C - x) = r(C) for all
r(E - B) = r(E) - 1 for allxe0 xcC

4. B is a minimal 0 is a complement of a closed IC - FI # 1 for all
complement of a set Fe,
closed set [*Dual complement]

5. B is a hyperplane (Use bonds) IC - HI # 1 for all
complement HEa'

6. (Use open sets: add JO nCI #lfor all CE1 C is a union of circuits
"B is minimal such
that" in 6 8)

[*Dual set]
7. 0 = 0, or 0 is a union of IC n BI 0 1 for all

bonds Be1*

9. (Use open sets: add I0nCI#lforallCEL1*
"B is minimal such [*Dual set]
that" in 9 -. 8)

11. (Use bases) For all x c- 0, and independent For all x E C, there
sets I disjoint from 0, is a maximal
I u {x} is independent independent subset

IofCwith x0I
13. B is minimal with (Use independent sets) For all bases B and

respect to meeting xeCcB,there isa
every basis y c- C - B such that

(B - {x}) o {y} is a
basis

10. Spanning sets 11. Independent sets 12. Dependent sets 13. Bases

SE .9' if IE5 if Dc1Aif BE-4 if

1= V{X:XeS} Suprema of subsets of There is a redundancy Suprema of subsets of B
I form a Boolean among the suprema form a Boolean algebra
algebra of subsets of D that includes 1

cl(S) = E x cl(I - {x}) for all x e cl(D - {x}) for some cl(B) = E 0 cl(B - x) for
xcI XED all xCB

r(S) = r(E) r(I)=III r(D) < IDI r(B) = IBI = r(E)

S is contained in no
proper closed set

S is contained in no
hyperplane

For every x E I, There is an x e D such (Use spanning sets: add
I - F = (x) for that D - F # {x} for "B minimal such that")
some F e S all FE.F

For every x E I, There is an x c D such (Use spanning sets: add
I-H={x}for that D - H 0 {x} for "B minimal such that")
some H E .Ir all HEY

For all x # S, there is
a circuit C such that
xECSSv{x}

I contains no circuit D contains some circuit (Use independent sets: add
"B maximal such that")

S meets every bond For every x E 1, some There is an x e D such (Use spanning sets: add
bond intersects I in that no bond "B minimal such that")
only x intersects D in only x

For allA9E-S, I contains no D contains a nonempty (Use independent sets: add
there is a cycle C nonempty cycle cycle "B maximal such that")
such that C - S = A

Maximal independent D is not independent B is a maximal independent
subsets of S are set

maximal in E
[*Dual complement]
S contains some basis I is contained in some D is contained in no [*Dual complement]

basis basis


