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Abstract

We prove that the posets of connected components of intersections of toric and
elliptic arrangements defined by root systems are EL-shellable and we compute their
homotopy type. Our method rests on Bibby’s description of such posets by means
of “labeled partitions”: after giving an EL-labeling and counting homology chains
for general posets of labeled partitions, we obtain the stated results by considering
the appropriate subposets.

Mathematics Subject Classifications: 05E45, 06A07, 52B22

1 Introduction

The focus of the theory of arrangements, which to date has been mainly on the study
of linear subspaces, has recently broadened to arrangements of hypersurfaces in complex
tori or in products of elliptic curves (called “toric” and “elliptic” arrangements). This led
to a renewed interest in the general combinatorial theory of topological dissections, which
dates back to the seventies. Here the poset of connected components of intersections of
a family of submanifolds (which we will call poset of components for short) has played a
crucial role ever since Zaslavsky’s seminal paper [21].

In the classical case of arrangements of linear hyperplanes, the poset of components
coincides with the poset of intersections, i.e., with the poset of flats of the associated ma-
troid, and thus has the structure of a geometric lattice. In the case of toric arrangements,
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the poset of components has been studied for combinatorial purposes [12, 16, 18] as well
as in view of topological applications [10, 7]. The literature on elliptic arrangements is
still sparse; of particular interest for us is the work of Christin Bibby [3] who began a
unified treatment of linear, toric and elliptic arrangements.

One of the main initial impulses for the study of linear arrangements came from the
theory of Coxeter groups and root systems. In fact, to every (finite) root system one
can associate the linear arrangement of “reflecting” hyperplanes in the (contragradient)
representation of the associated Coxeter group, and the rich combinatorial structure of
Coxeter groups allows a particularly explicit description of the posets of intersections
of such arrangements. Bibby showed that this nice combinatorial description extends
naturally to the toric and elliptic case (see Section 2.2 for details). Thus, arrangements
defined by root systems appear to be a natural testbed for the study of arrangements also
beyond the linear case.

Shellability is a property of cell complexes first formalized in the context of bound-
aries of polytopes, where it gained celebrity due to its role in the solution of the upper
bound conjecture for convex polytopes by McMullen [17]. The notion of shellability was
subsequently extended to the context of simplicial (and regular CW-) complexes and is
still widely studied nowadays due to its strong topological and algebraic implications. For
instance: a shellable simplicial complex is homotopy equivalent to a wedge of spheres, and
its Stanley-Reisner ring is Cohen-Macaulay. We refer to [15] for a wider background on
shellability, and we focus here on the case of partially ordered sets. A partially ordered
set (or poset) is called shellable if the simplicial complex of its totally ordered subsets
(i.e., its order complex) is shellable. Shellability of posets was introduced by Björner,
leading to the theory of lexicographic shellability that was first developed by Björner and
Wachs [5, 6] and which subsequently blossomed, garnering the interest of a wide research
community.

Posets of components of linear hyperplane arrangements – and, more generally, geo-
metric lattices – are shellable. Indeed, geometric lattices can be characterized by their
particularly nice shellability properties [9] and the number of spheres in the homotopy
type of their order complex is an evaluation of the characteristic polynomial of their asso-
ciated matroid. It is therefore natural to ask whether posets of components of toric and
elliptic arrangements are shellable.

In this paper we focus on the case of arrangements associated to root systems, where
we can take advantage of Bibby’s description of the posets of components as certain posets
of labeled partitions. This leads us to introduce a two-parameter class of posets of labeled
partitions which we prove to be EL-shellable. The posets of components of linear, toric or
elliptic arrangements of every Weyl type are subposets of elements of our two-parameter
class and the induced labelings are, in fact, EL-labelings. In particular, the homotopy
type of those posets is that of a wedge of spheres; the number of these spheres can be
interpreted in general as the number of r-flourishing, q-blooming trees (see Definitions 26
and 30). Then, we have a “case-and-type free” proof of the following.

Theorem. Let A be a (linear, toric or elliptic) arrangement defined by a Weyl system
and let C(A) denote the associated poset of components. Then, C(A) is EL-shellable. In
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particular the order complex of the poset C(A) (obtained by removing the minimum 0̂ and
the maximum 1̂ if necessary) is homotopy equivalent to a wedge of spheres of dimension
equal to the poset rank of C(A). Closed formulas for the number of spheres are given in
Table 1.

Type Linear Toric Elliptic

An n! n! n!
Bn (2n− 1)!!

(2n− 3)!!(n− 1) [. . . ]

Cn (2n− 1)!! (2n+ 1)!!
Dn (2n− 3)!!(n− 1) (2n− 5)!!(n2 − 3n+ 3) [. . . ]

Table 1: Closed formulas for the number of spheres. In the two missing cases, the number
of spheres can be obtained by setting m = 4 in the formulas of Theorem 23. See Remark
21 for a discussion of how some of these values could also be obtained as evaluations of
characteristic or Tutte-type polynomials.

This paper is structured as follows. In Section 2 we introduce the poset Πn,Σ of Σ-
labeled partitions of the set {1, 1, . . . , n, n}, where Σ is any finite set. We then describe
the four classes of subposets of Πn,Σ which, following Bibby [3], are isomorphic to the
posets of components of linear (|Σ| = 1), toric (|Σ| = 2) and elliptic (|Σ| = 4) arrange-
ments defined by the four infinite Weyl families. In Section 3 we recall the notion of
shellability and review some technical results on edge-lexicographic shellings. In Section
4 we prove the shellability of posets Πn,Σ by constructing an EL-labeling. Then we prove
that this labeling induces EL-labelings on all the above-mentioned subposets correspond-
ing to posets of components of arrangements defined by root systems. In particular, the
(reduced) order complexes of said posets are homotopy equivalent of a wedge of spheres;
the homotopy type of such posets is hence determined by the number of these spheres.
The closing Section 5 tackles this enumeration problem: we give general formulas (for any
Σ) and deduce closed expressions for (almost) all cases of arrangements defined by root
systems.

2 Preliminaries

In this section we introduce the main characters and review some relevant results from
the literature. On matters concerning posets we adopt the terminology from [20].

2.1 The poset of Σ-labeled partitions of [[n]]

A partition of a given finite set S is a collection π = {B1, . . . , Bl} of disjoint sets, called
“blocks”, such that

⋃
iBi = S. We will signify this by writing

π = B1 | · · · | Bl.
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Let now Σ be a finite set (of “signs”). A partition of S labeled by Σ is a partition π of
S together with a subset T ⊆ π and an injection f : T → Σ. The blocks in T are called
signed blocks of π and those of π \ T are called unsigned blocks of π.

For any given integer n ∈ N let

[n] := {1, . . . , n}; [[n]] := {1, 1, 2, 2, . . . , n, n}.

Notice that the set [[n]] carries a natural involution · : [[n]]→ [[n]] defined as i 7→ i, i 7→ i
for all i = 1, . . . , n. In general, given a subset X ⊆ [[n]] we write

X := {x | x ∈ X}.

The finest partition of [[n]] is that in which every block is a singleton. We will denote
it by

0̂ := 1 | 1 | 2 | 2 | · · · | n | n.
Definition 1. Let Σ be a set (of “signs”). We say that π is a Σ-labeled partition of [[n]]
if π is a partition of [[n]] labeled by Σ such that

• for every R ∈ π, R ∈ π, and

• S = S if and only if S ∈ π is signed.

We will write this as follows:

π = Sσ1 | · · · | Sσl | R1 | R1| · · · | Rk | Rk. (1)

Here the signed blocks are denoted by S, and carry the sign σi ∈ Σ as an index. The
unsigned blocks are denoted by Ri. We call Σ(π) := {σ1, . . . , σl} the sign of π.

Given a Σ-labeled partition as in Equation (1) and a sign σ ∈ Σ(π), we write πσ := Sσ.

Definition 2. Let π be a Σ-labeled partition of [[n]] written as in Equation (1) and let

ψ := S ′τ1 | . . . | S
′
τm | R

′
1 | R′1 | · · · | R′q | R′q.

We say that π is a refinement of ψ if:

• Σ(π) ⊆ Σ(ψ), and moreover: for every σ ∈ Σ(π), πσ ⊆ ψσ;

• for every i ∈ [k] there are two blocks of ψ, say T and T , such that Ri ⊆ T and
Ri ⊆ T (notice that T and T can be equal if T = T = ψτj for some j ∈ [m]).

We write π � ψ if π is a refinement of ψ. Notice that this defines a partial order relation
on the set of all Σ-labeled partitions of [[n]].

Remark 3. In the situation of the above definition, if there is no Σ-labeled partition φ of
[[n]] such that π ≺ φ ≺ ψ we say that ψ covers π and write π ≺· ψ.

Definition 4. We write Πn,Σ for the poset of all Σ-labeled partitions of [[n]], with a new
element 1̂ added to the top, partially ordered by �. Therefore, the element 1̂ covers all
the maximal Σ-labeled partitions. See Figure 1.

Remark 5. The poset Πn,Σ is ranked, with rank function given by: rk(π) = n − k for
π 6= 1̂ (where k is as in Equation (1)), and rk(1̂) = n+ 1.
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1̂

1, 1, 2, 2(+) 1, 1(+) | 2, 2(−) 2, 2(+) | 1, 1(−) 1, 1, 2, 2(−)

1, 1(+) | 2 | 2 2, 2(+) | 1 | 1 1, 2 | 1, 2 1, 2 | 1, 2 2, 2(−) | 1 | 1 1, 1(−) | 2 | 2

1 | 1 | 2 | 2

Figure 1: The Hasse diagram of the poset Πn,Σ for n = 2 and Σ = {+,−}.

2.2 Arrangements associated to root systems and their posets of components

Let G denote a dimension one complex algebraic group (i.e., G is C, C∗, or an elliptic
curve E). We consider arrangements of subvarieties in Gd defined by any set of elements
a1, . . . , al in a lattice (free abelian group) L of rank d as follows: for every i = 1, . . . , l let

Hi := {ϕ ∈ Hom(L,G) | ai ∈ kerϕ},

a subset of Hom(L,G) ' Gd. The (linear, toric or elliptic) arrangement associated to
a1, . . . , al (and to G = C, C∗ or E, respectively) is the set

A := {H1, . . . , Hl}.

A component of A is any connected component of an intersection ∩B for some B ⊆ A.
The poset of components of A is denoted by C(A).

Remark 6 (Characteristic polynomials). Recall that the characteristic polynomial of a
finite, ranked and bounded-below poset P is

χP (t) :=
∑
p∈P

µP (0̂, p)trk(P )−rk(p).

If A is an arrangement, the poset C(A) is by nature bounded below and ranked by
codimension, and its characteristic polynomial can be computed as an evaluation of Tutte-
type polynomials. In fact, A ⊆ Gd can be seen as the quotient of an arrangement of
hyperplanes A� ⊆ Cd by a group Γ of translations. If A is itself a linear arrangement,
Γ = {id}. If A is a toric (or elliptic) arrangement, A� is an infinite, periodic arrangement
of hyperplanes, and Γ ' Zd (or Z2d). In any case we have an action of the group Γ on the
semimatroid defined by A�, to which in [11] is associated a two variable Tutte polynomial
TA(x, y). Also, recall [11, Theorem F]:

χC(A)(t) = (−1)dTA(1− t, 0).
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In particular, when A is a linear arrangement TA(x, y) equals the classical Tutte polyno-
mial of the associated matroid; when A is a toric arrangement, then TA(x, y) is Moci’s
arithmetic Tutte polynomial [18].

A distinguished class of examples arises from root systems of type A, B, C or D.
To any such root system is associated a (linear, toric or elliptic) arrangement by taking
a1, . . . , al to be a set of positive roots, as in [3, Section 2.2].

Theorem 7 (Barcelo-Ihrig [2, Theorem 4.1], Bibby [3, Theorem 3.3]). The posets of
components of arrangements associated to root systems have the following form, where
|Σ| = 1 in the linear case, |Σ| = 2 in the toric case and |Σ| = 4 in the elliptic case.

Type An−1: C(A) is isomorphic to the subposet of Πn,Σ \ {1̂} consisting of all el-
ements of the form R1 | R1 | · · · | Rk | Rk where R1 | · · · | Rk is a
partition of [n]. Thus, in all cases C(A) is isomorphic to the classical
lattice of all partitions of [n] ordered by refinement.

Type Bn: Fix some distinguished element σ ∈ Σ. C(A) is isomorphic to the
subposet of Πn,Σ \ {1̂} consisting of all elements x ∈ Πn,Σ \ {1̂} such
that |xσ| 6= 2 whenever σ 6= σ.

Type Cn: C(A) is isomorphic to Πn,Σ \ {1̂}.
Type Dn: C(A) is isomorphic to the subposet of Πn,Σ \ {1̂} consisting of all ele-

ments x ∈ Πn,Σ \ {1̂} such that |xσ| 6= 2 for all σ ∈ Σ.

Our results will apply to the following more general families of posets.

Definition 8. For any n ∈ N and any finite set of signs Σ with a distinguished element
σ ∈ Σ, the poset of Σ-signed partitions of type An−1, Bn, Cn or Dn is the subposet of
Πn,Σ satisfying the corresponding condition in Theorem 7.

Remark 9. All the subposets in Theorem 7 and Definition 8 are ranked, with rank function
induced by Πn,Σ.

Remark 10. When A is an arrangement of hyperplanes, the characteristic polynomial of
C(A) is known classically [19, Definition 2.52, Theorem 4.137, Corollary 6.62]). In the
toric case, Ardila-Castillo-Henley [1] gave formulas for the arithmetic Tutte polynomials
of the associated arrangements, from which in principle the characteristic polynomial can
be computed. In the elliptic case no explicit formula is known to us.

3 Shellability of posets and subposets

3.1 Shellings

We refer to [5] for basics on the notion of shellings of simplicial complexes. Here we
only recall that, from a topological point of view, a shellable simplicial complex has the
homotopy type of a wedge of spheres. When the complex at hand is the order complex
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of a poset, the following theorem gives an interpretation of the sphere count in terms of
the poset’s characteristic polynomial.

Theorem 11. Let P be a bounded and ranked poset and suppose that ∆(P ) is shellable,
where P = P \{0̂, 1̂}. Then ∆(P ) is a wedge of (−1)dχP (0) spheres of dimension rk(P )−2,
where χP denotes the characteristic polynomial of P .

Proof. If P is ranked, the complex ∆(P ) is of pure dimension d := rk(P )− 2. Moreover,
any shellable complex of pure dimension d decomposes in a wedge of spheres all of which
have dimension d. Therefore, the Euler characteristic of ∆(P ) is 1+(−1)dk where k is the
number of spheres in the wedge. A theorem of P. Hall [20, Theorem 3.8.6] states that the
Euler characteristic of ∆(P ) equals µP (0̂, 1̂) + 1. But by definition of the characteristic
polynomial one sees µP (0̂, 1̂) = χP (0). Therefore, χP (0) + 1 = 1 + (−1)dk, thus k =
(−1)dχP (0).

3.2 EL-labelings

We follow [5, Section 5] for the definition of EL-labelings. Let P be a bounded poset,
where the top and bottom elements are denoted by 1̂ and 0̂, respectively. In addition,
denote by E(P ) the set of edges of the Hasse diagram of P , and by Exy the edge between
x and y whenever x≺· y.

An edge labeling of P is a map λ : E(P ) → Λ, where Λ is some poset. Given an edge
labeling λ, each maximal chain c = (x ≺· z1 ≺· . . . ≺· zt ≺· y) between any two elements
x � y has an associated word

λ(c) = λ(Exz1)λ(Ez1z2) · · · λ(Ezty).

We say that the chain c is increasing if the associated word λ(c) is strictly increasing, and
decreasing if the associated word is weakly decreasing. Maximal chains in a fixed interval
[x, y] ⊆ P can be compared “lexicographically” (i.e. by using the lexicographic order on
the corresponding words).

Definition 12. Let P be a bounded poset. An edge-lexicographical labeling (or simply
EL-labeling) of P is an edge labeling such that in each closed interval [x, y] ⊆ P there
is a unique increasing maximal chain which lexicographically precedes all other maximal
chains of [x, y].

The main motivation for introducing EL-labelings of posets is given by the following
theorem.

Theorem 13 ([5, Theorem 5.8]). Let P be a bounded poset with an EL-labeling. Then the
lexicographic order of the maximal chains of P is a shelling of the order complex ∆(P ).
Moreover, the corresponding order of the maximal chains of P is a shelling of ∆(P ).

The shelling induced by an EL-labeling is called an EL-shelling. A bounded poset
that admits an EL-labeling is said to be EL-shellable.
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Remark 14. If P is an EL-shellable poset, the homotopy type of ∆(P ) is that of a wedge
of spheres indexed over the maximal chains of P with decreasing label. More precisely, if
DP is the set of maximal chains of P with decreasing labels,

∆(P ) '
∨
c∈DP

S|c|−3.

Notice that, if P is ranked, all maximal chains have the same cardinality.

3.3 Products of posets

Let P1 and P2 be bounded posets, with EL-labelings λ1 : E(P1)→ Λ1 and λ2 : E(P2)→ Λ2,
respectively. Assume that Λ1 and Λ2 are disjoint and totally ordered. Let λ : E(P1×P2)→
Λ1 ∪ Λ2 be the edge labeling of P1 × P2 defined as follows:

λ(E(a,b)(c,b)) = λ1(Eac),
λ(E(a,b)(a,d)) = λ2(Ebd).

Theorem 15 ([6, Proposition 10.15]). Fix any shuffle of the total orders on Λ1 and Λ2,
to get a total order of Λ1 ∪ Λ2. Then the product edge labeling λ defined above is an
EL-labeling.

3.4 A criterion for subposets

When P is a shellable bounded poset, certain subposets Q ⊆ P are also shellable through
some induced labeling. A general criterion is given by [6, Theorem 10.2]. Here we only
state and prove the following simple and more specific criterion.

Lemma 16. Let P be a bounded and ranked poset, with an EL-labeling λ. Let Q ⊆ P
be a ranked subposet of P containing 0̂ and 1̂, with rank function given by restricting the
rank function of P . Then, if for all x � y in Q the unique increasing maximal chain in
[x, y] ⊆ P is also contained in Q, the edge labeling λ|E(Q) is an EL-labeling of Q.

Proof. The hypothesis on the ranks ensures that E(Q) ⊆ E(P ), so it makes sense to
restrict λ to E(Q).

Let x � y be elements of Q. Denote by [x, y]Q the interval bounded by x and y in
Q, and by [x, y]P the interval bounded by x and y in P . Since λ is an EL-labeling of P ,
there exists a unique increasing maximal chain c in [x, y]P : this chain belongs to [x, y]Q by
hypothesis. Maximal chains of [x, y]Q are also maximal chains of [x, y]P by the hypotesis
on the ranks. Since c lexicographically precedes all other maximal chains of [x, y]P , in
particular it precedes all other maximal chains of [x, y]Q.

4 Shellability of posets of Σ-labeled partitions

4.1 EL-labeling for the poset of Σ-labeled partitions of [[n]]

For a block R of some Σ-labeled partition, define the representative of R as the minimum
element i ∈ [n] such that i ∈ R or ī ∈ R. Denote by r(R) the representative of R. Notice
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that R and R share the same representative, and that the representative of R does not
necessarily belong to R.

We call a block R ⊆ [[n]] normalized if the representative of R belongs to R. For
instance, {2, 4̄, 5} is normalized and {2̄, 4, 5} is not. Notice that exactly one of R and R
is normalized, whenever R is an unsigned block.

An edge Exy of the Hasse diagram of Πn,Σ with y 6= 1̂ is called:

• of sign σ if xσ ( yσ for a σ ∈ Σ;

• coherent if R ∪R′ ∈ y for some normalized unsigned blocks R,R′ ∈ x, R 6= R′;

• non-coherent if R ∪R′ ∈ y for some normalized unsigned blocks R,R′ ∈ x, R 6= R′.

If y 6= 1̂, the edge Exy is of exactly one of these three types. We also say that Exy is
unsigned if it is either coherent or non-coherent, and that it is signed otherwise.

Definition 17. Given a total ordering < of Σ define the following edge labeling λ of Πn,Σ.

• Let Exy be an unsigned edge. Let R,R′ ∈ x such that R ∪R′ ∈ y, as above, and let
i and j be the representatives of R and R′. Then:

λ(Exy) =

{
(0,max(i, j)) if Exy is coherent;

(2,min(i, j)) if Exy is non-coherent.

• Let Exy be an edge of sign σ. Then:

λ(Exy) =

{
(1, |Σ(x)6σ|) if σ ∈ Σ(x) ;

(1, |Σ6σ ∪ Σ(x)|) otherwise.

• For x≺· 1̂, let
λ(Ex1̂) = (1, 2).

Labels are ordered lexicographically.

Theorem 18. The labeling λ of Definition 17 is an EL-labeling of Πn,Σ.

Proof. The proof is divided into five parts.

1. Intervals [x, z] that contain only coherent edges. Here x and z must have the same
signed part. Thus, every such interval is isomorphic to an interval of the lattice
of standard partitions of [n] \

⋃
σ∈Σ xσ. The isomorphism maps an element xσ1 |

. . . | xσl | R1 | R1 | . . . | Rk | Rk ∈ [x, z] to R̃1 | . . . | R̃k where, for all i,

R̃i := (Ri ∪Ri)∩ [n]. This isomorphism maps the labeling λ to one of the standard
EL-labelings of the partition lattice [4, Example 2.9]. In particular there is an unique
increasing maximal chain from x to z.
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2. Intervals of the form [x, 1̂]. Recursively define a maximal chain cx1̂ in [x, 1̂] as
follows.

For x≺· 1̂, define cx1̂ = (x≺· 1̂). Here notice that λ(Ex1̂) = (1, 2).

Let x ≺ 1̂ be an element of Πn,Σ not covered by 1̂.

• Case 1: there exist unsigned normalized blocks R 6= R′ in x. Among all such
pairs (R,R′), choose the (only) one for which (r(R), r(R′)) is lexicographically
least. Let z be the Σ-labeled partition obtained from x by replacing R | R |
R′ | R′ with R ∪R′ | R ∪R′.
Then set cx1̂ = (x≺· cz1̂). Notice that Exz is coherent and λ(Exz) = (0, r(R′)).

• Case 2: no such pair (R,R′) exists. Since x is not covered by 1̂, there exists
a unique normalized unsigned block R in x. Let z be the Σ-labeled partition
obtained from x by labeling R ∪R by σ where σ is:

– min< Σ(x) if Σ(x) 6= ∅ (here in fact R∪R is merged with the existing block
xσ);

– min< Σ if Σ(x) = ∅.
Then set cx1̂ = x≺· cz1̂. Notice that Exz is of sign σ and λ(Exz) = (1, 1). Also,
notice that z ≺· 1̂, so cx1̂ = (x≺· z ≺· 1̂).

We are going to prove that cx1̂ is the unique increasing maximal chain in [x, 1̂], and
that it is lexicographically least among all the maximal chains in [x, 1̂].

� By construction, cx1̂ is increasing.

� Let c be any increasing maximal chain in [x, 1̂]. We want to show that c = cx1̂.
Assume that x is not covered by 1̂ (otherwise the chain is trivial).

Since the last label of c is (1, 2), c does not contain any non-coherent edges,
and it contains exactly one signed edge. So c contains: first, coherent edges,
with labels of the form (0, ∗); then, one signed edge labeled (1, 1); finally, one
edge ending in 1̂, labeled (1, 2).

Therefore there exists some z ∈ c such that c ∩ [x, z] only consists of coherent
edges and c∩ [z, 1̂] consists in one signed edge and one edge ending in 1̂. Here
z is uniquely determined by x, and c ∩ [z, 1̂] is uniquely determined by the
increasing property of c.

The interval [x, z] contains only coherent edges, thus by Part (1) it contains a
unique increasing maximal chain which must coincide with c∩ [x, z]. Therefore
there is an unique increasing maximal chain in [x, 1̂] and c = cx1̂.

� In both Case 1 and Case 2 above, λ(Exz) < λ(Exz′) for every z′ 6= z that covers
x in [x, 1̂]. Then cx1̂ is lexicographically least among the maximal chains in
[x, 1̂].
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3. Intervals [x, y] where y is of the form y = R | R. Recursively define a maximal
chain cxy in [x, y] as follows.

For x = y, set cyy = y. Assume then x ≺ y.

• Case 1: there exist unsigned normalized blocks T 6= T ′ in x such that T ∪T ′ is
contained in a block of y. Choose the unique pair (T, T ′) of blocks of x such that
(r(T ), r(T ′)) is lexicographically least. Let z be the partition obtained from x
by replacing T | T | T ′ | T ′ with T ∪ T ′ | T ∪ T ′. Then set cxy = (x ≺· czy).
Notice that Exz is coherent and λ(Exz) = (0, r(T ′)).

• Case 2: no such pair (T, T ′) exists. Then x ≺· y and there exist unsigned
normalized blocks Q 6= Q′ in x such that Q ∪Q′ coincides with R or R. Then
set cxy = (x ≺· y). Notice that Exy is non-coherent and λ(Exy) = (2, r), where
r = min(r(Q), r(Q′)).

We are going to prove that cxy is the unique increasing maximal chain in [x, y], and
that it is lexicographically least among all the maximal chains in [x, y].

� By construction, cxy is increasing.

� Let c be any increasing maximal chain in [x, y]. We want to show that c = cxy.

The chains in [x, y] have no signed edges. Since the labels of coherent edges
are smaller than the labels of non-coherent edges, coherent edges precede non-
coherent edges along c. So there exists an element z ∈ c such that c∩ [x, z] only
consists of coherent edges, and c ∩ [z, y] only consists of non-coherent edges.

If the last edge of c is non-coherent, then its label must be (2, r(R)). This is
also the minimum possible label for a non-coherent edge in the interval [x, y].
Therefore, since c is increasing, it contains at most one non-coherent edge.

Thus z is uniquely determined by x and y: if R is the union of the normalized
blocks of x, then c cannot end with a non-coherent edge, so z = y; otherwise,
z = Q | Q | Q′ | Q′ where Q ∪ Q′ = R and both Q and Q′ are unions of
normalized blocks of x. Also c ∩ [z, y] is uniquely determined.

Consider now the interval [x, z]. This interval contains only coherent edges,
thus by Part (1) it contains a unique increasing maximal chain which must
coincide with c∩ [x, z]. Therefore there is an unique increasing maximal chain
in [x, 1̂] and c = cx1̂.

� In both Case 1 and Case 2 above, λ(Exz) < λ(Exz′) for any z′ 6= z that covers
x in the interval [x, y]. Then cxy is lexicographically least among the maximal
chains in [x, y].

4. Intervals [x, y] where y has only signed blocks or (unsigned) singleton blocks. Recur-
sively define a maximal chain cxy in [x, y] as follows.

For x = y, set cyy = y. Assume then x ≺ y.
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• Case 1: there exist unsigned normalized blocks R 6= R′ of x such that R∪R′ is
contained in some block of y. Among all such pairs (R,R′), choose the (only)
one for which (r(R), r(R′)) is lexicographically minimal. Let z be the Σ-labeled
partition obtained from x by replacing R | R | R′ | R′ with R ∪ R′ | R ∪ R′.
Set cxy = (x≺· czy). Notice that Exz is coherent, so λ(Exz) = (0, r(R′)).

• Case 2: no such pair (R,R′) exists. Then there are at most |Σ(y)| elements
z ∈ [x, y] that cover x, since for every sign σ ∈ Σ(y) there is at most one
element z such that Exz is of sign σ. If possible, choose z such that the sign of
Exz equals min {σ ∈ Σ(x) | xσ ( yσ}. Otherwise choose z such that the sign
of Exz equals min {σ ∈ Σ(y) | xσ ( yσ}. Set cxy = (x≺· czy). Notice that Exz
is a signed edge, and λ(Exz) is of the form (1, ∗).

We are going to prove that cxy is the unique increasing maximal chain in [x, y], and
that it is lexicographically least among all the maximal chains in [x, y].

� By construction, cxy is increasing.

� Let c be any increasing maximal chain in [x, y]. We want to show that c = cxy.

Since y contains no unsigned block, the last edge of c must be signed. In
particular it must have a label of the form (1, ∗). Then an increasing chain in
[x, y] can only contain coherent edges and signed edges. In addition, coherent
edges precede signed edges along c. Therefore there exists an element z ∈ c
such that c ∩ [x, z] only consists of coherent edges and c ∩ [z, y] only consists
of signed edges.

It is clear that every maximal chain in [x, y] contains at least

t := |{σ ∈ Σ(y) | xσ ( yσ}|

signed edges. Suppose that a maximal chain d of [x, y] contains more than t
signed edges. So d contains at least two edges of the same sign τ , and one of
the following cases occurs. (If d has more than two edges of sign τ , consider
the first two such edges.)

∗ τ ∈ Σ(x) and the two edges of sign τ are separated only by edges of sign
in Σ(x). Then d has two edges with the same label and therefore it is not
increasing.

∗ τ ∈ Σ(x) and the two edges of sign τ are separated only by edges of sign
σ ∈ Σ(y) \ Σ(x) such that τ < σ. Then the two edges of sign τ have the
same label, and d is not increasing.

∗ τ ∈ Σ(x) and the two edges of sign τ are separated by some edge of sign
σ ∈ Σ(y) \ Σ(x) such that σ < τ . Then the last such edge has a label
greater than or equal to the label of the second edge of sign τ , and d is not
increasing.

∗ τ ∈ Σ(y) \ Σ(x). Then the second edge of sign τ has a label smaller than
or equal to the label of the first edge of sign τ and d is not increasing.

the electronic journal of combinatorics 26(4) (2019), #P4.14 12



In any case, d is not increasing. So every increasing maximal chain in [x, y]
contains exactly t signed edges, and all these edges are of different sign.

Therefore z is uniquely determined by x and y. The only way for c ∩ [z, y] to
be increasing is to contain first all the edges of sign σ ∈ Σ(x) in increasing
order and then all the edges of sign σ ∈ Σ(y) \Σ(x) in increasing order. Then
c ∩ [z, y] is also uniquely determined.

Consider now the interval [x, z], which contains only coherent edges. By Part
(1), such interval contains a unique increasing maximal chain which must coin-
cide with c ∩ [x, z]. In particular, there is an unique increasing maximal chain
in [x, y] and c = cxy.

� In both Case 1 and Case 2 above, λ(Exz) < λ(Exz′) for any z′ 6= z that covers
x in the interval [x, y]. Then cxy is lexicographically least among the maximal
chains in [x, y].

5. General intervals [x, z] with z 6= 1̂. Given any set of disjoint (signed or unsigned)
blocks X1, . . . , Xt let us write {{X1, · · · , Xt}} for the Σ-labeled partition whose
blocks are X1, . . . , Xt and a singleton block for every element of [[n]]\(X1∪ . . .∪Xt).

Write
z = zσ1 | · · · | zσl | R1 | R1 | · · · | Rk | Rk,

let x0 := {{B ∈ x : B ⊆ zσ for some σ ∈ Σ(z)}} be the Σ-labeled partition whose
nonsingleton blocks are the nonsingleton blocks of x contained in some signed block
of z, and define the following intervals:

J(0) := [x0, {{zσ1 , · · · , zσl}}]
J(i) :=

[
{{B ∈ x : B ⊆ Ri ∪Ri}}, {{Ri, Ri}}

]
for i = 1, . . . , k.

There is a poset isomorphism

J(0)× · · · × J(k)→ [x, z]

mapping every (k + 1)-tuple of partitions on the left-hand side to their common
refinement.

In Parts (3)-(4) we have proved that the labeling λ on each J(i) is an EL-labeling.
If we let Λi be the set of labels used in J(i) we see that Λi ∩Λj = ∅ whenever i 6= j.
Thus, the lexicographic order on Λ0∪· · ·∪Λk is a shuffle of the lexicographic orders
of the Λi’s. The edge labeling induced on [x, z] as in Section 3.3 equals λ which, by
Theorem 15, is then an EL-labeling of [x, z].

4.2 Arrangements associated to root systems

Theorem 19. For any set of signs Σ with a distinguished element σ ∈ Σ, the poset of
Σ-labeled partitions of type An, Bn, Cn and Dn is EL-shellable.
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Proof. For type Cn the claim is a direct consequence of Theorem 18. For type An the
poset of components is isomorphic to a classical partition lattice which, being a geometric
lattice, is EL-shellable.

Now let P denote a poset of Σ-labeled partitions of type Bn or Dn with a top element
1̂ added. Then, P is a ranked subposet of Πn,Σ with rank function induced by that of the
ambient poset. In view of Lemma 16 we consider x � z in P and write

x≺· x1 ≺· · · · ≺· xi−1 ≺· xi︸ ︷︷ ︸
Ei

≺· · · · ≺· z

for the unique increasing chain in Πn,Σ. We have to show that this chain is contained in P .
By way of contradiction let i be minimal such that xi 6∈ P . The only way this can happen
is if there is σ ∈ Σ(z) \ Σ(xi−1) such that |(xi)σ| = 2 (in particular, Ei is a signed edge).
This implies that zσ 6= ∅, but since z ∈ P it must be zσ ) (xi)σ. In particular there must
be another edge Ej of sign σ with j > i. But then λ(Ej) 6 λ(Ei): a contradiction.

Corollary 20. Posets of components of (linear, toric, elliptic) arrangements associated
to root systems are EL-shellable. In particular, ∆(C(A)) is homotopy equivalent to a
wedge of |TA(1, 0)| spheres if C(A) is bounded (this happens in the case A and for linear
arrangements), and to a wedge of |TA(0, 0)| spheres otherwise.

Proof. The first claim is immediate from Theorem 19 via the classification given in The-
orem 7. The second claim follows from Theorem 11 and Remark 6. The implication is
direct if C(A) is bounded. Otherwise, we complete C(A) by adding a maximal element
and we use the identity χP (0) = −χP\{1̂}(1), valid for every bounded poset P .

Remark 21. Corollary 20 expresses the homotopy type of posets of components of arrange-
ments associated to root systems in terms of the arrangement’s Tutte (or characteristic,
cf. Remark 6) polynomial. This would allow us already to fill in the leftmost column of
Table 1 and, in principle, also the middle column (see Remark 10). In the elliptic case,
no explicit form for the Tutte polynomials of the corresponding group action is known to
us. Therefore, in the following section we address the problem of the homotopy type of
these posets from another (unified) perspective, using Remark 14.

5 The homotopy type of posets of labeled partitions

In order to determine the homotopy type of posets of labeled partitions we have to count
maximal decreasing chains in our EL-labeled posets (see Remark 14). To this end, we
first introduce increasing ordered trees. Such trees appeared in the literature under various
names (e.g. heap-ordered trees [8], ordered trees with no inversions [13], simple drawings
of rooted plane trees [14]).

Definition 22. An increasing ordered tree is a rooted tree, with nodes labeled 0, 1, . . . , n
(for some n > 0), such that:
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Figure 2: All different increasing ordered trees on 3 nodes. The second and the third tree
differ in the total order of the children of the root.

• each path from the root to any leaf has increasing labels (in particular, the root has
label 0);

• for each node, a total order of its children is specified.

We will sometimes use a different (ordered) set of labels (but the root will have the
minimal label). See Figure 2 for a picture of the three different increasing ordered trees
on 3 nodes.

In general, the number of increasing ordered trees on n + 1 nodes is (2n − 1)!!. This
is a classical result which appeared several times in the literature [8, 13, 14]. A simple
proof by induction is as follows: given an increasing ordered tree on n nodes (labeled
0, . . . , n − 1), there are 2n − 1 ways to append an additional node labeled n, to form an
increasing ordered tree on n+ 1 nodes.

We are now ready to state and prove the general result about the number of decreasing
maximal chains.

Theorem 23. The number of decreasing maximal chains from 0̂ to 1̂, in the subposet of
Πn,Σ of type Bn, Cn, or Dn, is∑

π=π1|···|πk ∈Πn

f(π) · (2|π1| − 3)!! · · · (2|πk| − 3)!!. (2)

Here Πn is the poset of standard partitions of [n], and f : Πn → N depends on the type
(B, C, or D) and on m = |Σ|. In order to define f(π), let us denote by k the number of
blocks of π, and by s the number of nonsingleton blocks of π.

Type Cn: f(π) = (k+m−2)!
(m−2)!

. For m = 1, set f(π) = 0.

Type Dn: f(π) =

{∑min(m,s)
r=2

(
m
r

) (k−2)!
(r−2)!

s!
(s−r)! if π 6= [n];

m− 1 if π = [n].
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Type Bn: f(π) =



∑min(m, s+1)
r=2

(
m−1
r−1

) (k−2)!
(r−2)!

(k − r + 1) s!
(s−r+1)!

+
∑min(m−1, s)

r=2

(
m−1
r

) (k−2)!
(r−2)!

s!
(s−r)!

if π 6= [n];

m− 1 if π = [n].

Proof. Let D be the set of decreasing maximal chains from 0̂ to 1̂. When read bottom-
to-top, chains c ∈ D consist of:

• a sequence of non-coherent edges, labeled (2, ∗);

• then, a sequence of signed edges, labeled (1, ∗);

• finally, one last edge labeled (1, 2).

Define a projection η : D → Πn,∅ ⊆ Πn,Σ, mapping a chain c ∈ D to the (unique) element
z ∈ c which comes after all the non-coherent edges and before all the signed edges.
In addition, let ρ : Πn,∅ → Πn be the natural order-preserving projection that maps a
partition z = R1 | R1 | · · · | Rk | Rk ∈ Πn,∅ to the partition π = π1 | · · · | πk ∈ Πn with
blocks πi = (Ri ∪Ri) ∩ [n].

Label the edges of Πn following the “non-coherent” rule: if α ≺· β in Πn, and β is
obtained from α by merging the two blocks αi and αj, then label Eαβ by min(αi ∪ αj).
This is not an EL-labeling of Πn, but it is (the second component of) the image of our
EL-labeling of Πn,Σ through the map ρ, restricted to non-coherent edges of Πn,∅ ⊆ Πn,Σ.

Both maps η and ρ are clearly surjective. We claim that, for each partition π = π1 |
· · · | πk ∈ Πn, ∣∣(ρ ◦ η)−1(π)

∣∣ = f(π) · (2|π1| − 3)!! · · · (2|πk| − 3)!!.

We prove this through the following steps.

1. The number of decreasing maximal chains of [0̂, π] ⊆ Πn is

(2|π1| − 3)!! · · · (2|πk| − 3)!!.

2. In the preimage under ρ of every decreasing maximal chain of [0̂, π] ⊆ Πn, there is
exactly one decreasing chain of Πn,∅ with all non-coherent edges.

3. For every z ∈ ρ−1(π), the number of decreasing maximal chains of [z, 1̂] without un-
signed edges is f(π). Notice that the interval [z, 1̂] is different in each subposet of Πn,Σ,
depending on the type (B, C, or D); the definition of f changes accordingly.

These three steps prove the above claim, which in turn completes the proof of this theorem.
Let us prove each of the three steps.
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1. The interval [0̂, π] is a product of intervals [0̂, π1], . . . , [0̂, πk], and the labeling splits
accordingly. Without loss of generality, we can then assume that π consists of a
single block π1

∼= {1, . . . , `}. Decreasing maximal chains c of [0̂, π] are in one-to-one
correspondence with increasing ordered trees T on nodes {1, . . . , `}: a node j is a direct
child of a node i < j in T if and only if the chain c features a merge of blocks R and
R′ with min(R) = i and min(R′) = j; the set of direct children of a node is ordered
according to the sequence of the corresponding merges in c. The number of such trees
is (2`− 3)!!, as discussed at the beginning of this section.

2. Given a decreasing maximal chain c of [0̂, π] ⊆ Πn, a lift to Πn,∅ can be constructed
explicitly by induction, starting from 0̂ and parsing the chain in increasing order. In
fact, for every edge α≺·β in Πn and for every choice of x ∈ ρ−1(α), there are two ways
to lift β to some y ·� x, and in exactly one of these two cases the resulting edge Exy is
non-coherent.

3. Such a chain is uniquely determined by an ordering of the blocks π1, . . . , πk of π (which
will determine the order of the merges), and by a decreasing sequence of k labels

(1,m) > (1, a1) > . . . > (1, ak) > (1, 2) (3)

to be assigned to the edges (the sequence of labels uniquely determines the sequence
of signs). Any ordering of the blocks of π and any decreasing sequence of labels gives
rise to a valid chain, provided that (in types Bn and Dn) no inadmissible block īiσ is
created. Given a decreasing sequence of labels, we call such an ordering of the blocks
of π a valid ordering. In type Cn, any ordering of the blocks of π is always valid,
regardless of the sequence of labels. Notice that for m = 1 there are no decreasing
sequences of labels: in this case f(π) = 0.

• Let us first consider type Cn, so that all signed blocks are admissible. Then there
are k! possible orderings of the blocks, and

(
k+m−2

k

)
decreasing sequences of k

labels, so we get

f(π) = k! ·
(
k +m− 2

k

)
=

(k +m− 2)!

(m− 2)!
.

• Consider now type Dn. The sequence of signs associated to a decreasing sequence
of labels as in (3) contains exactly r different signs if and only if ar > r and
ar+1 6 r. Therefore, for a fixed r ∈ {1, . . . ,m}, the sequences of labels which give
rise to exactly r different signs are those of the form

(1,m) > (1, a1) > . . . > (1, ar) > (1, r) > (1, ar+1) > . . . > (1, ak) > (1, 2).

The number of such sequences is
(
m
r

)(
k−2
r−2

)
for r > 2. For r = 1, there are m− 1

sequences if k = 1, and 0 otherwise.

If k = 1 (i.e. π = [n]), exactly one sign is used and we get f([n]) = m−1. Suppose
from now on k > 2, i.e. π 6= [n].
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We have to compute the number of valid orderings of the k blocks of π. Recall
that s is the number of nonsingleton blocks of π. Each time a sign appears for
the first time in the chain, a nonsingleton block must be signed. Then, for a
fixed number r ∈ {2, . . . ,m} of signs appearing in the chain, the number of valid
orderings of the k blocks is s (s− 1) · · · (s− r + 1) · (k − r)!. Therefore

f(π) =

min(m,s)∑
r=2

(
m

r

)(
k − 2

r − 2

)
s!

(s− r)!
(k − r)!

=

min(m,s)∑
r=2

(
m

r

)
(k − 2)!

(r − 2)!

s!

(s− r)!
.

• Finally consider type Bn, where we have a distinguished sign σ that can admit
doubleton blocks (i.e., of the form {i, i}σ). It is convenient to assume that σ is
the maximal element of Σ with respect to the total order of Definition 17. Then a
sequence of labels (1,m) > (1, a1) > . . . > (1, ak) > (1, 2) gives rise to a sequence
of signs containing sigma if and only if a1 = m. Both cases a1 = m and a1 6 m−1
can be treated as in type Dn.

5.1 Linear arrangements

In the case of linear arrangements (m = 1), the number of maximal decreasing chains is
0. This happens because Πn,{σ} \ {1̂} still has a unique maximal element [n]σ. Therefore

one is interested in counting the decreasing chains from 0̂ to [n]σ.

Theorem 24. The number of maximal decreasing chains from 0̂ to [n]σ, in the subposet of
Πn,{σ} of type Bn, Cn, or Dn, is given by (2) with the following definition of f : Πn → N.

Type Bn = Cn: f(π) = k!.

Type Dn: f(π) = s · (k − 1)!.

Proof. It is completely analogous to the proof of Theorem 23.

We want to give a graph-theoretic interpretation of Formula (2) for these two defini-
tions of f : Πn → N, in order to obtain the (well-known) closed formulas of Table 1 for
linear types Bn = Cn and Dn.

Proposition 25. Formula (2) with f(π) = k! counts the increasing ordered trees on
n+ 1 nodes. Therefore the number of decreasing chains from 0̂ to [n]σ for the linear type
Bn = Cn is (2n− 1)!!.

Proof. Consider an increasing ordered tree on n+ 1 nodes, labeled 0, 1, . . . , n. The set of
subtrees corresponding to the children of the root is a partition of {1, . . . , n}. For a fixed
partition π ∈ Πn, the possible trees that induce such partition can be recovered as follows:
order the blocks of π in k! ways; for each block πi, construct an increasing ordered tree
with nodes labeled by elements of πi, in (2|πi| − 3)!! ways. Summing over the partitions
π ∈ Πn, Formula (2) is obtained.

the electronic journal of combinatorics 26(4) (2019), #P4.14 18



0

1

3 2

4

0

2

3

4

1

Figure 3: Both these trees are 1-flourishing but not 2-flourishing.

An analogous interpretation can be given for the linear type Dn, provided that we
introduce the following class of increasing ordered trees.

Definition 26. Let r > 0 be an integer. An increasing ordered tree is r-flourishing if
the root has at least r children, and none of the first r children of the root is a leaf. See
Figure 3 for some examples.

Lemma 27. The number of r-flourishing trees on n+ 1 nodes is given by

(2n− 2r − 1)!! · (n− r)(n− r − 1) · · · (n− 2r + 1)

for n > 2r, and 0 otherwise.

Proof. Let ν(n, r) be the number of r-flourishing trees on n + 1 nodes. We are going to
prove the following recursive relation:

ν(n, r) = ν(n− 1, r) · (2n− r − 1) + ν(n− 2, r − 1) · (n− 1)r.

• The first summand counts the r-flourishing trees obtained by appending an addi-
tional node n to some r-flourishing tree on n nodes. The node n cannot be appended
as one of the first r children of the root, so 2n− r − 1 possible positions remain.

• The second summand counts the r-flourishing trees that would not be r-flourishing
after removing the node n. Node n must be the only child of some other node i,
one of the first r children of the root. There are n − 1 choices for i, and r choices
for its position. Once the nodes n and i are removed, an (r − 1)-flourishing tree on
n nodes remains.

The formula given in the statement holds for r = 0 or n = 0, and a straightforward
computation shows that it satisfies the recursive relation.

Similarly to Proposition 25, the number of decreasing chains for the linear type Dn

has the following graph-theoretic interpretation.
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Proposition 28. Formula (2) with f(π) = s · (k − 1)! counts the increasing ordered 1-
flourishing trees on n+1 nodes. Therefore the number of maximal decreasing chains from
0̂ to [n]σ for the linear type Dn is (2n− 3)!! · (n− 1).

Proof. The first part is analogous to the proof of Proposition 25. The second part then
follows from Lemma 27 for r = 1.

5.2 Toric arrangements

In the toric case (m = 2) the formulas of Theorem 23 are as follows.

Type Cn: f(π) = k!.

Type Bn: f(π) = s · (k − 1)!.

Type Dn: f(π) =

{
s(s− 1) · (k − 2)! if π 6= [n];

1 if π = [n].

In particular the number of decreasing chains in the toric type Cn is the same as in
the linear type Cn (or Bn), and the number of decreasing chains in the toric type Bn is
the same as in the linear type Dn.

A closed formula for the toric type Dn can also be found, similarly to the linear type
Dn. One only has to separately take care of the partition π = [n], which contributes by
(2n− 3)!! to the total sum.

Proposition 29. Formula (2) with f(π) = s(s−1) · (k−2)! counts the increasing ordered
2-flourishing trees on n + 1 nodes. Therefore the number of maximal decreasing chains
from 0̂ to 1̂ for the toric type Dn is

(2n− 5)!! · (n− 2)(n− 3) + (2n− 3)!! = (2n− 5)!! · (n2 − 3n+ 3).

Proof. The first part is analogous to the proof of Proposition 25. Then the second part
follows from Lemma 27 for r = 2.

5.3 Elliptic arrangements

In the elliptic case (m = 4), we are going to derive a closed formula only for type Cn. In
order to do so, we introduce a variant of increasing ordered trees.

Definition 30. Let q > 0 be an integer. A q-blooming tree on n+1 nodes is an increasing
ordered tree on n+1 nodes, with q extra indistinguishable unlabeled nodes (called blooms)
appended to the root. The only thing that matters about blooms is their position in the
total order of the children of the root. See Figure 4 for some examples.

Lemma 31. The number of q-blooming trees on n+ 1 nodes is

(2n+ q − 1)!!

(q − 1)!!
.
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Figure 4: All different 2-blooming trees constructed from the leftmost increasing ordered
tree of Figure 2 (these are 3 of the 15 different 2-blooming trees on 3 nodes). Blooms are
unlabeled and with a double border.

Proof. The proof is by induction on n. For n = 0 there is only one q-blooming tree,
consisting of the root with q blooms attached to it. Given a q-blooming tree on n > 1
nodes (labeled 0, . . . , n−1), there are exactly 2n+q−1 positions where an additional node
n can be attached in order to obtain a q-blooming tree on n+ 1 nodes. Every q-blooming
tree on n+ 1 nodes is obtained exactly once, from some q-blooming tree on n nodes.

Proposition 32. Formula (2) with f(π) = (k+m−2)!
(m−2)!

counts the increasing ordered (m− 2)-

blooming trees on n+ 1 nodes. Therefore the number of decreasing chains from 0̂ to 1̂ for
the elliptic type Cn is (2n+ 1)!!.

Proof. The first part is analogous to the proof of Proposition 25. Then the second part
follows from Lemma 31 for q = 2.

Remark 33. A closed formula for r-flourishing q-blooming trees on n + 1 nodes (if such
a formula exists at all) would yield a closed formula for the number of decreasing chains
also for elliptic types Bn and Dn. Here by an r-flourishing q-blooming tree we mean a
q-blooming tree whose r leftmost children of the root are neither leaves nor blooms. E.g.,
among the three 2-blooming trees in Figure 4 only the rightmost one is 1-flourishing.
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