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Abstract

We call a poset factorable if its characteristic polynomial
has all positive integer roots. Inspired by inductive and
divisional freeness of a central hyperplane arrangement,
we introduce and study the notion of inductive posets
and their superclass of divisional posets. It then moti-
vates us to define the so-called inductive and divisional
abelian (Lie group) arrangements, whose posets of lay-
ers serve as the main examples of our posets. Our first
main result is that every divisional poset is factorable.
Our second main result shows that the class of inductive
posets contains strictly supersolvable posets, the notion
recently introduced due to Bibby and Delucchi (2022).
This result can be regarded as an extension of a classical
result due to Jambu and Terao (Adv. in Math. 52 (1984)
248-258), which asserts that every supersolvable hyper-
plane arrangement is inductively free. Our third main
result is an application to toric arrangements, which
states that the toric arrangement defined by an arbitrary
ideal of a root system of type A, B or C with respect to
the root lattice is inductive.

MSC 2020
06A07 (primary), 52C35 (secondary)

© 2023 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article

under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

J. London Math. Soc. (2) 2024;109:€12829.
https://doi.org/10.1112/jlms.12829

wileyonlinelibrary.com/journal/jlms 10f32


mailto:tan.tran@math.uni-hannover.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jlms
https://doi.org/10.1112/jlms.12829
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12829&domain=pdf&date_stamp=2023-10-22

20f32 PAGARIA ET AL.

Contents
1. INTRODUCTION . . . . . . o e e s e e e e e e 2
2. PRELIMINARIES . . . . . . . e e 4
20, Posets. . .. e e e e e 4
2.2, Freearrangements . . . . . . . . . ..o hhh e e e e e e e e e e e 7
3. INDUCTIVE AND DIVISIONAL POSETS. . . . . . . . . ... v 9
4. STRICTLY SUPERSOLVABLE IMPLIES INDUCTIVE . . . ... ... ......... 13
5. INDUCTIVE AND DIVISIONAL ABELIAN ARRANGEMENTS . . . . ... ... ... 16
6. LOCALIZATION OF HYPERPLANE AND TORIC ARRANGEMENTS. . . . . ... .. 20
7. APPLICATION TO TORIC ARRANGEMENTS OF IDEALS OF ROOT SYSTEMS . . . . 22
71 Type C . . . o o e e e e e e e e e e e e e 25
7.2. TYPEB . . e e e e e e e e e 28
REFERENCES. . . . . . . e e e 31

1 | INTRODUCTION

A hyperplane arrangement  is a finite set of hyperplanes (1-codimensional affine subspaces)
in a finite-dimensional vector space V. The intersection poset L(#') of # is the set of all
nonempty intersections of hyperplanes in #, which is often referred to as the combinatorics of
. The arrangement # is called factorable if its characteristic polynomial y 4 (t) has all non-
negative integer roots. In this case, we call the roots of y4(t) the (combinatorial) exponents
of 7.

An arrangement is called central if every hyperplane in it goes through the origin. A central
arrangement % is said to be free if its module D(’) of logarithmic derivations is a free module
(Definition 2.16). A remarkable theorem connecting algebra and combinatorics of arrange-
ments due to Terao asserts that if an arrangement 7 is free, then it is factorable and its
combinatorial exponents coincide with the degrees of the derivations in any basis for D(#’)
(Theorem 2.17).

Definition 1.1. A property P of arrangements is called a combinatorial property (or combinatori-
ally determined) if for any distinct arrangements %, and %, in V having the same combinatorics,
that is, their intersection posets are isomorphic L(#) ~ L(¥%,), then %, has property P if and
only if %, has property P.

Based on the factorization theorem mentioned above, Terao conjectured that freeness is a
combinatorial property [22, Conjecture 4.138]. Terao’s conjecture remains open till now even in
dimension 3.

A natural approach to the conjecture is to find a significant class of arrangements whose
freeness is combinatorially determined. Motivated by the addition-deletion theorem for free
arrangements [22, Theorem 4.51], Terao first defined the class of inductively free arrangements
in which an arrangement can be built from the empty arrangement by adding a hyperplane one
at a time subject to the inductive freeness of both deleted and restricted arrangements, and a
divisibility condition on the characteristic polynomials (Definition 2.19). A notable feature of this
class due to Jambu and Terao [16] is that it contains supersolvable arrangements (Definition 2.18),
a prominent class of arrangements defined earlier by Stanley [26]. Later on, Abe [1] proved a
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INDUCTIVE AND DIVISIONAL POSETS | 30f32

refinement of the addition—-deletion theorem, and introduced a proper superclass of inductively
free arrangements, the so-called divisionally free arrangements (Definition 2.20). Both inductively
and divisionally free arrangements are combinatorially determined, proper subclasses of free
arrangements (Remark 2.21). In particular, inductive or divisional freeness is a sufficient condition
for the arrangement’ factorability.

In recent years, there has been increasing attention toward extending the known properties of
hyperplane arrangements to toric arrangements, or more generally, to abelian arrangements. Given
an abelian Lie group G = (S')% x RP (a,b > 0) and a finite set A of integral vectorsin I = z%, Liu,
Yoshinaga, and the third author [19] defined the abelian arrangement of = 9/(A, G) by means of
group homomorphisms from I to G (see Section 5 for details). In particular, when G = R (or C)
we obtain a real (or complex) hyperplane arrangement, and when G = S! (or C) this is known
as a real (or complex) toric arrangement that describes a finite set of (translated) hypertori in a
finite-dimensional torus.

We recall some important results of abelian arrangements. In [19], a formula for the Poincaré
polynomial of the complement of &/ when G is noncompact (i.e., b > 0) is given; this generalizes
the formulae of Orlik and Solomon [21], and De Concini, Procesi, and Moci [10, 20] for complex
hyperplane and toric arrangements. (The cohomology ring structure is also known [8, 10, 21] in
the case of hyperplane or toric arrangements.) In [33], the intersection poset (or poset of layers)
L(of) of o is defined as the set of all connected components of intersections of elements in &/, and
its characteristic polynomial is computed.

It is well-known that the intersection poset of a central hyperplane arrangement is a geomet-
ric lattice (Definition 2.2). Bibby and Delucchi [5] recently introduced a more general notion of
(locally) geometric posets (Definitions 2.3 and 2.13) and showed that these posets describe the inter-
section data of abelian arrangements (Theorem 5.2). Furthermore, based on an extension of the
concept of lattice modularity, the authors defined the notion of strictly supersolvable posets (Def-
inition 2.9), which is of our particular interest here. It is proved that every strictly supersolvable
poset is factorable (Theorem 2.10), which extends the result by Stanley for supersolvable lattices
[26].

The first motivation for this work is a pursuit of a theory for “free abelian arrangements”. As of
this writing, we do not know how to pass from algebraic consideration of freeness of hyperplane
arrangements to abelian or just toric arrangements. However, at the purely combinatorial level
using only information from the posets, it is possible to define and study the combinatorial struc-
tures of abelian arrangements and geometric posets in the same way that inductive freeness and
divisional freeness do for hyperplane arrangements and geometric lattices.

In this paper, we give definitions of inductive and divisional posets as subclasses of locally geo-
metric posets (Definitions 3.6 and 3.7). The former is a proper subclass of the latter owing to a
deletion-restriction formula for characteristic polynomials (Theorem 3.5 and Proposition 3.8). On
the arrangement theoretic side, we define inductive and divisional arrangements in a similar way
(Definitions 5.9 and 5.10). We show that an abelian arrangement is inductive (resp., divisional)
if and only if its intersection poset is inductive (resp., divisional) (Theorem 5.11). As a conse-
quence, inductiveness and divisionality are combinatorial properties of abelian arrangements
(Corollary 5.12).

The second motivation is a contribution to factorability of an abelian arrangement, or more
generally, of a locally geometric poset (Definition 2.1). Beyond ranked lattices, there are some
reasons for an arbitrary poset to be factorable (e.g., [12]). Our first main result in the paper is that
a divisional (in particular, an inductive) poset has this factorability.
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40f32 | PAGARIA ET AL.

Theorem 1.2. Ifa poset is divisional, then it is factorable.

Our second main result is a generalization of the classical result of Jambu and Terao [16]
mentioned earlier for supersolvable and inductively free arrangements.

Theorem 1.3. If a poset is strictly supersolvable, then it is inductive.

Using the notion of characteristic quasi-polynomial from [17], the third author [32] showed that
the toric arrangement defined by an arbitrary ideal of a root system of type A, B or C with respect
to the root lattice is factorable. Our third main result is a strengthening of this result.

Theorem 1.4. The toric arrangement defined by an arbitrary ideal of a root system of type A, B or
C with respect to the root lattice is inductive.

Finally, we give a discussion on the localization at a layer of an abelian arrangement (Section 6).
It is shown that inductive freeness of a hyperplane arrangement is preserved under taking local-
ization [14]. We show that it is not the case for an arbitrary abelian arrangement by providing an
example of an inductive toric arrangement with a noninductive localization. Furthermore, this
example indicates a rather interesting phenomenon that changing the base group G would turn
a noninductive arrangement into an inductive one, there exists a finite set .4 of integral vectors
whose corresponding hyperplane arrangement &/ (R) is not inductive but the toric arrangement
d(S) is.

2 | PRELIMINARIES
2.1 | Posets
We begin by recalling the definitions and basic facts of (locally) geometric posets and (strictly)
supersolvable posets following [5].

All posets (P, <p) will be finite and have a unique minimal element 0. All P will also be ranked
meaning that for every x € P, all maximal chains among those with x as greatest element have
the same length, denoted rk(x). Define the rank of a poset P to be

rk(P) := max{rk(x) | x € P}.

The Mébius function u := up of a poset P is the map up : P X P — Z defined by

1 if a=>b,
up(a,b) :=9— Y cccp Mpa,c) if a<b,
0 otherwise.

The characteristic polynomial yp(t) € Z[t] of P is defined as

xp(0) =) p(0, xR,

XEP
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INDUCTIVE AND DIVISIONAL POSETS | 50f32

Definition 2.1. A poset P is factorable if the roots of its characteristic polynomial y,(t) form a
subset of positive integer roots. In this case, we call the roots of y () the (combinatorial) exponents
of P and write

exp(P) = {dy, ..., dy(p}
for the multiset of exponents. Denote by FR the class of factorable posets.

The trivial lattice {0} is factorable because Xi63(t) = 1. In this case, exp({0}) = 0.

Let P and Q be posets. A poset morphism o : P — Q is an order-preserving map, thatis, x <y
implies o(x) < o(y) for all x,y € P. We call o a poset isomorphism if o is bijective and its inverse
is a poset morphism. The posets P and Q are said to be isomorphic, written P ~ Q if there exists
a poset isomorphismo : P — Q.

ForasubsetT C P, the join \/ T (resp., meet /\ T) of T is the set of minimal upper bounds (resp.,
maximal lower bounds) of elements in T. That is,

\/T::min{beP|b>a,Va€T} and /\T::max{beplbsa,VaeT}.

In particular, when T = {x,y}, wewritex Vy :=\/Tand x Ay := A\ T.
For x € P, define

Py :={y€P|ly<x} and P, :={y€eP|y>x}
We call x € P an atom if rk(x) = 1. Denote the set of atoms of P by A(P). For x,y € P, by y
covers x, written X < y, we mean x < y and x < z < y implies x = z.
The poset P is a lattice if |[x Vy| =1 and |x A y| =1 for any x,y € P. In this case by abuse of

notation we write, for example,a = xvyforae x vy.

Definition 2.2. A lattice L is called geometric if for all x,y € L: x < y if and only if there is an
atoma € A(L) witha £ x,y = xVa.

Definition 2.3. A poset P is called locally geometric if P, is a geometric lattice for every x € P.

Remark 2.4. If P is a locally geometric poset, then so are P, and P, for any x € P [5, Remark
2.2.6].

Definition 2.5. For any subset B C A(P), define P(B) to be the poset consisting of the minimal
element 0 and all possible joins of the elements in B. We call P(B) the subposet of P generated by
B.

Remark 2.6. Note that P(A(P)) = P and every element of P(B) is an element of P. If P is a locally
geometric poset (or a lattice), then so is P(B).

Definition 2.7. An element x in a geometric lattice L is modularifforallz < x and all y € L:

xAyvz)=((xAy)Vz.
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6 of 32 | PAGARIA ET AL.

Let P be a locally geometric poset. An order ideal in P is a downward-closed subset. The poset
P (or an order ideal of P) is called pure if all maximal elements have the same rank. An order
ideal Q of P is join-closed if T C Q implies \/ T C Q. We denote by max(P) the set of maximal
elements in P.

Definition 2.8 ([5, Definitions 2.4.1 and 5.1.1]). An M-ideal of a locally geometric poset P is a pure,
join-closed, order ideal Q C P satisfying the following two conditions.

(1) lavy|=z1foranyy € Qand a € A(P) \ A(Q).
(2) for every x € max(P), there is some y € max(Q) such that y is a modular element in the
geometric lattice P, .

An M-ideal Q C P is called a TM-ideal if condition (1) above is replaced by a stronger condition
that such a and y have a unique minimal upper bound, that is,

(1*) lavy|=1foranyy € Q and a € A(P) \ A(Q).

Note that the element y in Definition 2.8 (2) is necessarily unique because Q is join-closed. The
following is a generalization of Stanley’s supersolvable lattices [26].

Definition 2.9 ([5, Definitions 2.5.1 and 5.1.4]). A locally geometric poset P is supersolvable (resp.,
strictly supersolvable) if there is a chain, called an M-chain (resp., a TM-chain)

{0}=0,£0, ¢+ GQ, =P,

where each Q; is an M-ideal (resp., a TM-ideal) of Q;,; with rk(Q;) =i.

Theorem 2.10 ([5, Theorem 5.2.1]). Let Q be a TM-ideal of a locally geometric poset P with rk(Q)
rk(P) — 1, and let d = |A(P) \ A(Q)|. Then

xp(t) = (t — d)xo(t).

In particular, if P is strictly supersolvable with a TM-chain {0} = Q, € Q, € - € Q, = P, and d,
|A(Q;) \ A(Q;_,)| for each i, then P is factorable with exponents

exp(P) ={d,,....d,}.

Definition 2.11. A locally geometric poset P is locally supersolvable if P, is supersolvable for
every x € P.

Remark 2.12. Denote by SSS, SS and LSS the class of strictly supersolvable, supersolvable and
locally supersolvable posets, respectively. By [5, Remark 2.5.4 and Example 5.2.5],

SSS C SS C LSS.

Moreover, if L is a geometric lattice, then L € SSS if and only if L € SS [5, Proposition 5.1.9].
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Definition 2.13 ([5, Definition 4.1.1]). A locally geometric poset P is geometric if for all x,y € P:
if rk(x) < rk(y) and I C A(P) is such that y € \/ I and |I| = rk(y), then there is a € I such that
agxandavx#0.

When a poset is geometric, we have the following useful characterization of an M-ideal.

Lemma 2.14 ([5, Theorem 4.1.2]). Let P be a geometric poset, and let Q be a pure, join-closed, proper
order ideal of P. Then Q is an M-ideal with tk(Q) = rk(P) — 1 if and only if for any two distinct
a;,a, € A(P)\ A(Q) and every x € a, V a, there exists a; € A(Q) such that x > a.

2.2 | Free arrangements

Now we recall the definition of free arrangements and their related properties. Our stan-
dard reference is [22]. Throughout this subsection, an “arrangement” means a ‘“central
hyperplane arrangement”.

Let K be a field and let T = K”. Let % be an arrangement in T. Let L(%) be the intersection
poset of 7. We agree that T is a unique minimal element in L(%’). Thus, L(¥) is a geometric
lattice that can be equipped with the rank function rk(X) := codim(X) for X € L(¥) (e.g., [22,
Lemma 2.3]). We also define the rank rk(%) of # as the rank of the maximal element of L(%).

The characteristic polynomial x4, (t) of Z is defined by

Ko () 1= 177K X)),

where x(g)(¢) is the characteristic polynomial of the lattice L(%#’) defined in the preceding
subsection. Definition 2.1 motivates the following concept.

Definition 2.15. An arrangement # is called factorable if its intersection poset L(#’) is factorable
(Definition 2.1). In this case, we also call the roots of y 4 (t) the (combinatorial) exponents of %
and use the notation exp(#’) to denote the multiset of exponents. Denote also by FR the class of
factorable arrangements.

Notation. If an element e appears d > 0 times in a multiset M, we write e? € M.
If %# € FR, then

exp(%) = {07 KT} U exp(L(%)).

The empty arrangement @, (or simply @) is the arrangement in T consisting of no elements. In
particular, @, € FR with exp(@,) = {07}.

Let {x,, ..., x,} be a basis for the dual space T* and let S : = K[x, ..., x,]. For each H € Z, fix
a defining polynomial oy = a;x; + -+ + a,x, € T* (a; € K) of H, thatis, H = ker ay;.

A K-linear map 6 : S — S is called a derivation if 6(fg) = 6(f)g + fO6(g) for all f,g € S. Let
Der(S) be the set of all derivations of S. It is a free S-module with a basis {9/0x,,...,0/9x,}
consisting of the usual partial derivatives. We say that a nonzero derivation 8 = Zile fi9/9x; is
homogeneous of degree p if each nonzero coefficient f; is a homogeneous polynomial of degree p
[22, Definition 4.2].
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The concept of free arrangements was defined by Terao [22, 30].

Definition 2.16 ([22, Definitions 4.5 and 4.15]). The module D(’) of logarithmic derivations is
defined by

D() :={6 € Der(S) | 6(ay) € ayS forall H € 7}.

We say that & is free if the module D(#’) is a free S-module. Denote by F the class of
free arrangements.

If % € F, we may choose a basis {6, ..., 6} consisting of homogeneous derivations for D(#)
[22, Proposition 4.18]. Although a basis is not unique, the degrees of the derivations in a basis are
uniquely determined by % [22, Proposition A.24].

The following theorem of Terao connects algebraic and combinatorial properties of an
arrangement.

Theorem 2.17 ([31, Main Theorem]; [22, Theorem 4.137]). If # is free, then  is factorable with
combinatorial exponents given by the degrees of the elements in any basis for D(F).

Based on this, Terao conjectured that freeness is a combinatorial property [22, Conjecture 4.138].
Although Terao’s conjecture is still open, there are some subclasses of free arrangements that are
known to be combinatorially determined.

Definition 2.18. An arrangement # is called supersolvable ifits intersection lattice L(%) is super-
solvable (Definition 2.9). Denote also by SS the class of supersolvable (= strictly supersolvable)
central hyperplane arrangements.

Fix H € #, define the deletion #’ := % \ {H}and restriction " :={HNK | K € #'}. Then
' is an arrangement in V, and %' is an arrangement in H ~ K~

Definition 2.19 ([22, Definition 4.53]). The class IF of inductively free arrangements is the smallest
class of arrangements that satisfies

(1) @, elFfort > 1,
(2) # € IF if there exists H € # such that #"" € IF, %’ € IF, and y g (t) divides y 5/ (t).

Definition 2.20 ([1, Theorem-Definition 4.3]). The class DF of divisionally free arrangements is
the smallest class of arrangements that satisfies

(1) @, € DFforz > 1,
(2) # € DF if there exists H € # such that 7' € DF and y () divides y ().

Remark 2.21. Supersolvability, inductive and divisional freeness of central hyperplane arrange-
ments all are combinatorial properties. We give below the relation between the concepts we have
defined so far:

SSS =SS C IF ¢ DF C F ¢ FR.
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The first containment is proved by Jambu and Terao [16, Theorem 4.2]. The arrangement of a
root system of type D, for £ > 4 belongs to IF \ SS (e.g., [15, Theorem 6.6]). The second contain-
ment follows from the deletion-restriction formula y g, (¢) = y g/ (t) — x5 (t) (e.g., [22, Theorem
2.56]). The arrangement defined by the exceptional complex reflection group of type G5, is known
to be divisionally free [1, Theorem 1.6] but not inductively free [13, Theorem 1.1]. The third con-
tainment is proved by Abe [1, Theorem 1.1]. The intermediate arrangement Ag(r) for >3,r>3
in [1, Theorem 5.6] is an example of an arrangement in F \ DF. The fourth containment is Theo-
rem 2.17 by Terao. There are many examples of factorable but not free arrangement, for example,
[11, 3.6].

3 | INDUCTIVE AND DIVISIONAL POSETS

From now on unless otherwise stated, we will assume that P is a locally geometric poset, and set
A = A(P)and r = rk(P).

Definition 3.1. Fix an atom a € A. Let P/ := P(A \ {a}) be the subposet of P generated by A \
{a} and define P” := P, ,. We call (P, P/, P"') the triple of posets with distinguished atom a.

Remark 3.2. Note that for each a € A, we have rk(P) = rk(P’) + ¢(a), where e(a) is either 0 or
1. Indeed, let x € max(P) so that rk(x) = r. If a £ x then rk(P’) = r. Otherwise, set Q := P,
then a € A(Q). Let (Q,Q’, Q") the triple of posets with distinguished atom a. As Q is a geometric
lattice with rk(Q) = r, it follows that rk(Q’) < r < rk(Q’) + 1. Note that Q' is a subposet of P’.
Then r > tk(P’) > rk(Q') > r — 1, as desired.

We call a € A a separator of P if e(a) = 1.

For each x € P, define
A, ={a€Ala<x}

Lemma 3.3 ([22, Lemma 2.35]). Let P be a geometric lattice. For x,y € P with x < y, let S(x,y) be
the set of all subsets B C A such that A, C B and max(P(B)) = y. Then

peey) = Y (DAL

BeS(x,y)

Lemma 3.4. Let P be a locally geometric poset. Then the characteristic polynomial yp(t) strictly
alternates in sign, that is, if

xp®) =t +etT s 4,
then (—1)ic; > 0for0<i <r.
Proof. By definition, for each 0 < i < r we have

D= Y (=1 (0, %).

rk(x) =r—i
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10 of 32 | PAGARIA ET AL.

Note that the characteristic polynomial of a geometric lattice strictly alternates in sign (e.g., [27,
Corollary 3.5]). Thus, (—=1)*®) (0, x) > 0 because P, is a geometric lattice for every x € P.
Hence, (—1)"~'c; > O foreach0 <i <r. 0

‘We show below that the characteristic polynomials of locally geometric posets satisfy a deletion-
restriction recurrence, which is crucial for our subsequent discussion. This formula is already
proved for geometric lattices, for example, see [7, Theorem 1.2.20]. The method therein can be
readily extended to locally geometric posets, we include here a proof for the sake of completeness.
Theorem 3.5. Let P be a locally geometric poset and fix a € A. Then

Xp(t) = 59D xp(t) = xpn ().

Here e(a) = rk(P) — rk(P') is either O or 1 by Remark 3.2.

Proof. As P, is a geometric lattice for every x € P, by Lemma 3.3 we have

0= ¥ ()P

xEP  BCA,
x =max(P(B))

Z Z (_1)|B|tr—rk(x) + Z Z (_1)|B|tr—rk(x)

XEP a¢BCA, X€P a€BCA,
x =max(P(B)) x =max(P(B))
— Z z (_1)|B| k(P +e(@)—1k(x) _ Z Z (_1)|B\Aa|tr—rk(x)
xeP’! BCA, X€Ps, BeS(a,x)

x =max(P(B))

— te(a) . XP’(t) _ Z ;,L(a,x)trk”(P”)—rk”(x)

xep!

= t5D .y (t) — xpu(t). 0
Now we introduce the protagonists of the paper.

Definition 3.6. The class IP of inductive posets is the smallest class of locally geometric posets
that satisfies

@ {0} e 1P,

(2) P € IP if there exists an atom a € A such that P”” € IP, P’ € IP, and ypn(t) divides yp ().
Definition 3.7. The class DP of divisional posets is the smallest class of locally geometric posets
that satisfies

1) {0} € DP,

(2) P € DP if there exists an atom a € A such that P € DP and y,n () divides yp(t).

Here are the first two important properties of the inductive and divisional posets.

Proposition 3.8. If P € IP then P € DP.
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Proof. We argue by induction on r = rk(P) > 0. The assertion clearly holds true when r = 0. Sup-
pose r > 0. As P € IP, there exists an atom a € A such that P”” € IP and ypn () divides yp:(t).
By the induction hypothesis, P”/ € DP. Furthermore, by Theorem 3.5, yp (t) divides y(t). (Note
that t 4 ypn(t) by Lemma 3.4.) Thus, P € DP as desired. O

Proposition 3.9. Let P, Q be two isomorphic locally geometric posets. Then P € IP (resp., P € DP)
ifand only if Q € IP (resp., Q € DP).

Proof. We show the assertion for IP by double induction on the rank r and number |A| of atoms.
The assertion for DP can be proved by induction on the rank r by a similar (and easier) argument.

The assertion is clearly true when r =0 or |A| =0. Suppose r > 1 and |A| > 1. Let f :
P — Q be a poset isomorphism. Suppose P € IP. Then there exists an atom a € A such that
P" € IP, P! € IP, and ypn(t) divides y/(t). Define Q' := Q(A(Q) \ {f(a)}) and Q" := Q. 4 (o).
Hence, P’ ~ Q' and P ~ Q. Note that |[A(P’)| < |A(P)| and rk”/(P"") < rk(P). By the induc-
tion hypothesis, Q” € IP and Q" € IP. It is also clear that y,.(t) divides yo(t) because the
characteristic polynomial is preserved under isomorphism. O

Remark 3.10. We address here some remarks about the relation of our inductive and divisional
posets with some known concepts in literature.

(1) Brandt [7, Definition 1.2.21] defined the class IL of inductive lattices to be the smallest class of
geometric lattices that satisfies: (1) {0} € IL and (2) P € IL if there exists an atom a € A such
that P € IL, P! € IL, and ypn(¢t) divides yz(t). Thus, for a geometric lattice P, we have
that P € IL if and only if P € IP.

(2) A central hyperplane arrangement % in V = K’ is inductively free (resp., divisionally free)
in Definition 2.19 (resp., 2.20) if and only if the (geometric) intersection lattice L(#’) of # is
inductive (resp., divisional). In particular, IP C DP that follows from Remark 2.21.

Now we give a proof of the first main result of the paper.

Proof of Theorem 1.2. We need to show that if 7 € DP with r = rk(P) > 1, then there are positive
integers dy, ..., d, € Z, such that

xp®) =[] - dy.
i=1

We argue by induction on 7. If r = 1 then y(t) = t — |A|. The assertion clearly holds. Suppose
r > 1. As P € DP, there exists an atom a € A such that P”” € DP and )y~ (t) divides y»(t). By the
induction hypothesis, there exist positive integers d;, ...,d,_; € Z. and an integer d, € Z such
that

r—1

xpn(@) =[] = dp,
i=1

xp() = (£ = d)xpn (D).

Moreover, d,d, --- d, > 0 by Lemma 3.4. Thus, d, > 0. O
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12 of 32 PAGARIA ET AL.

FIGURE 1 The weighted partition poset IT} .

Thus, the divisionality of a poset is a sufficient condition for its factorability. The following
necessary and sufficient condition for a poset to be divisional is immediate from Definition 3.7.
Note that the sum of all exponents of a divisional poset equals the number of atoms.

Theorem 3.11. A locally geometric poset P of rank r is divisional if and only if there exists a chain,
called a divisional chain

0=xy<x; < <X,

such that rk(x;) = i and XQi(t) divides XQ[—I(t) where Q; 1=P, foreach 1 < i< r. In this case,
exp(P) ={d,,...,d,} whered; :=|A(Q;_;)| — |A(Q))|.

Remark 3.12. The converse of Theorem 1.2 is not true in general. Namely, there exists a factorable
poset that is not divisional. An example from hyperplane arrangements is already mentioned in
Remark 2.21. We give here an example of a poset that is not a lattice. In [12, Example 4.6], the
weighted partition poset P := II; of rank 3 is given with the characteristic polynomial y,(t) =
(t — 3)? (see Figure 1). However, P is not divisional because Xp., (t) =t — 2 does not divide yp(t)
for any atom x. :

By Proposition 3.8, the exponents of an inductive poset are defined naturally. The following
“addition” theorem for inductive posets follows readily from Definition 3.6 and Theorem 3.5.

Theorem 3.13. Let P be a locally geometric poset with A # @ and let a € A.

(a) Suppose that a is not a separator of P. If P’ € IP with exp(P") ={d,, ...,d,_;} and P’ € IP
with exp(P') ={d;, ...,d,_,,d,}, then P € IP with exp(P) = {d,, ...,d,_;,d, + 1}.

(b) Suppose that a is a separator of P. If P €IP, P’ € IP with exp(P") = exp(P’) =
{dy,...,dy_}, then P € TP with exp(P) = {1,d;, ..., d,_1}.

The process of constructing an inductive poset P from the trivial lattice (or more generally,
from an inductive subposet generated by some atoms) by adding an atom one at a time with
the aid of Theorem 3.13 is called an induction table. Each row of the table records the expo-
nents of P’ and P and the atom a added at each step. The last row displays the exponents
of P.

We will see in Section 7 many examples of posets that are both inductive and geometric aris-
ing from abelian arrangements. Figure 2 depicts an inductive poset that is not geometric. (In
particular, it is not the poset of layers of an abelian arrangement by Theorem 5.2.)
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y exp(P') a exp(P")
0 T 0
T Qs as ay 1 as @
2 Qay 2
\\ . // 1,2 as 1
0 1,3

FIGURE 2 Aninductive poset that is not geometric (left) and an induction table for its inductiveness
(right). The elements labeled by x and y do not satisfy the requirement of Definition 2.13.

4 | STRICTLY SUPERSOLVABLE IMPLIES INDUCTIVE

In this section, we prove the second main result of the paper (Theorem 1.3). First we need some
basic facts of M-ideals. All posets in this section are locally geometric.

Lemma 4.1. Ifa poset P has an M-ideal Q with tk(Q) = rk(P) — 1, then P is necessarily pure.

Proof. First note that A(P) \ A(Q) # @ because Q is join-closed. Fix an arbitrary x € max(P). If
x € Q, then by Condition 2.8 (1) for any a € A(P) \ A(Q) there exists b € a V x such that x < b,
a contradiction. We may assume x € P \ Q. Then by Condition 2.8 (2), there exists y € max(Q)
such that y < x. Thus, rk(x) > rk(Q) and hence rk(x) = rk(P). O

Lemma 4.2 ([5, Lemma 2.4.6]). Let Q be an M-ideal of a poset P with tk(Q) = rk(P) — 1 and let
a € P. Thena € A(P)\ A(Q) ifand only if y A a = 0 for all y € max(Q).

Proposition 4.3 ([5, Proposition 2.4.7]). Let Q be an M-ideal of a poset P with tk(Q) = rk(P) — 1.
Fix x € P\ Q and let y be an element in max(P) such that x < y. Let y' be the unique element in
max(Q) such that (y covers y' and) y' is a modular element in the geometric lattice P, (Defini-
tion 2.8). Then x' :=y' A x is the unique element in Q such that x covers x' and x’ is modular in
Py

Now we prove a new property of a TM-ideal, extending a well-known property [28, Lemma 1]
of a modular element in a finite geometric lattice.

Lemma4.4. I[fQ is a TM-ideal of a poset P with tk(Q) = rk(P) — 1, then forany a € A(P) \ A(Q)
there is a poset isomorphism Q ~ P, .

Proof. Fix a € A(P) \ A(Q) and denote R := P,,. Owing to Definition 2.8 (1*), for each x € Q
the join x V a is a singleton. We may define a poset map

g.:0Q— Rviaxm— xVa.
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14 of 32 | PAGARIA ET AL.

For each x € R, let x’ € Q be the element uniquely determined by x from Proposition 4.3. We
may define a poset map

7T: R — Qviax— x'.

We show that o is a poset isomorphism whose inverse is exactly 7. First we show that both
maps are order-preserving. The assertion for o is easy. To show the assertion for 7 note that for
X, € X,,ify € max(P)and x, <z y, then by Proposition 4.3, 7(x;) =y’ A x; and7(x,) =y’ A X,
where y’ is the unique element in max(Q) such that y’ is modular in P, Thus, 7(x;) <g 7(x;)
follows easily.

Next we show o7 = id. If x € R, then (go7)(x) = o(x') = X’ V a = x where the last equality
follows from Definition 2.8 (1*) because x € x’ v a.

Now we show oo =idy. Let x € Q, then (too)(x) = 7(x V a) = (x V a)’. It remains to show
(xva) =x.If x and (x v a)’ are incomparable, then x vV a € (x vV a)’ Vv x that contradicts the
join-closedness of Q. Note that rk(x V a) > rk(x) hence it cannot happen that x > (x v a)’. Thus,
we may assume x < (x vV a)'. Let y € max(P) so that x V a < y. Let y’ be the unique element in
max(Q) such that y’ is modular in Py. Then

xva) =y Axva)=xv@ Aa)=xv0i=x,

where the second equality follows from the modularity 2.7 of y’ in P, with x < y', and the third
equality follows from Lemma 4.2. O

Using the lemma above, we show the following stronger version of Theorem 1.3.

Lemma 4.5. Let Q be a TM-ideal of a poset P with rk(Q) = rk(P) — 1. If Q € IP (resp., Q € DP),
then P € IP (resp., P € DP) with

exp(P) = exp(Q) U{|A(P) \ A(Q)[}.

Proof. First we show the assertion for divisionality. Fix a € A(P) \ A(Q). By Lemma 4.4, Q ~
P" = P,,.Suppose Q € DP. Then P”" € DP by Proposition 3.9. Moreover, by Theorem 2.10,

xp(t) = (£ —m)xo (),

where m := |A(P) \ A(Q)|. Therefore, ypn(t) divides yp(t). Hence, P € DP with exp(P) =
exp(Q) U {m} as desired.

Now we show the assertion for inductiveness by adding the atoms from A(P) \ A(Q) to A(Q) in
any order successively with the aid of Theorem 3.13. Write A(P) \ A(Q) = {a;,...,a,,}. Let 4; :=
A(Q)u{ay,..,a;}and P; 1= P(A;) foreach1 < i< m.

First note that by Lemma 4.1, the poset P is pure. We observe that rk(P;) = rk(P) = r for every
1<i<m.Itisbecause |q; Vy| =1andrk(a; Vy) =rforanyy € max(Q)and a; € A; \ A(Q) C
A\ A(Q).

We claim that Q is a TM-ideal of rank r —1 of P; for every 1 <i < m. (The case i = m is
obviously true.) Condition 2.8 (1*) is clear. It suffices to show Condition 2.8 (2). First consider
i =m— 1. Fix x € max(P,,_;) € max(P). Denote L := P, and L,,_; := (P,,_1)<,. Therefore,
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(1,1) _1,-1) exp(P’) a exp(P")
AN o
1 ty =1 1

t1 =1 to =1 tita = 1 flf
\\ / 1, 1 tito =1
/ L2  tityt=1

gl 2
) 2,2

[NCRE

FIGURE 3 The toric arrangement of a type B, root system with its poset P of layers (left) and an induction
table for inductiveness (right). The induction table is derived thanks to Theorem 3.13 which deduces that P is
inductive with exponents exp(P) = {2, 2}. In addition, P is supersolvable with the elements of a rank-1 M-ideal
colored in blue. However, P is not strictly supersolvable because it has no TM-ideal of rank 1.

L and L,,_; are geometric lattices sharing top element x. We need to show that there is some
¥y € max(Q) such that y is a modular element in L,, ;. As Q is a TM-ideal of P, there exists
¥y’ € max(Q) such thaty’ isa modular elementin L. If x # a,, thenL = L,,_,. We may takey = y’.
If x > a,, thenL,_, = L(A(L) \ {a,,,})- Asy" # a,,, we must have that)y’ € L,,_; and y’ isalso a
modular element in L,,,_; by [16, Lemma 4.6]. Again take y = y’. Use this argument repeatedly,
we may show the claim holds true for every 1 < i -1

Now we show that P; € IP with exp(P;) = exp(Q) U {i} for every 1 <i < m. Note that by
Lemma 4.4, Q ~ P, for any a € A(P) \ A(Q). It is not hard to check that (Pl, 731 =0, P{’ ~
Q) is the triple of posets with distinguished atom a;, and that a, is a separator of P;.
Hence, P; € IP with exp(P;) = exp(Q) U {1} by Theorem 3.13. Similarly, (PZ,Pé =P, Pé’ ~
Q) is the triple with distinguished atom a,, and that a, is not a separator of P,. Hence,
P, € IP with exp(P,) = exp(Q) U {2}. Use this argument repeatedly, we may show the claim
holds true for every 1 <i < m. The case i = m yields P € IP with exp(P) = exp(Q) U {m} as
desired. O

Proof of Theorem 1.3. Note that the trivial lattice is inductive. Apply Lemma 4.5 repeatedly to the
elements in any TM-chain of a strictly supersolvable poset P. O

Example 4.6. The Dowling posets are proved to be strictly supersolvable [5, Example 5.1.8]. The
poset of layers of the toric arrangement of an arbitrary ideal of a type C root system with respect
to the integer lattice is also strictly supersolvable (Theorem 7.9). Hence, these posets are inductive
by Theorem 1.3.

Remark 4.7. The main result of [16] by Jambu and Terao mentioned in Remark 2.21 is a special
case of our Theorem 1.3 when the poset is a geometric lattice. An induction table for a strictly
supersolvable poset can easily be constructed using the argument in the proof of Lemma 4.5.

The converse of Theorem 1.3 is not true in general. There are many known examples of central
hyperplane arrangements whose intersection lattices are inductive but not (strictly) supersolvable
(see, e.g., Theorem 7.2). We will see in Corollary 7.15 and Theorem 7.17 new examples from toric
arrangements: The poset of layers of the toric arrangement of a type B, root system for £ > 3 is
inductive, but not supersolvable. That arises from type B, depicted in Figure 3 is inductive and
supersolvable, but not strictly supersolvable.
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Thus, for locally geometric posets, we have proved the following:
SSS ¢ IP C DP ¢ FR.

Compared with the relation described in Remark 2.21, supersolvable posets do not form a
subclass of inductive posets. The poset of layers of the toric arrangement of a type D, root sys-
tem (the subposet of the poset in Figure 3 generated by {t,¢, = 1,,¢5 1 = 1}) is supersolvable but
not inductive.

The containment IP C DP is strict by an example from Remark 2.21. It remains unknown
to us whether or not there exists a divisional but not inductive poset among nonlattice, locally
geometric posets.

5 | INDUCTIVE AND DIVISIONAL ABELIAN ARRANGEMENTS

We first recall preliminary concepts and results of abelian Lie group arrangements, or abelian
arrangements for short, following [4, 19, 33].

Let G be a finite-dimensional connected abelian Lie group, that is, G ~ (shHe x R? for some
nonnegative integers a,b > 0. Denote ¢ := dimz(G) = a+b. Let T' = Z¢ be a finite-rank free
abelian group. We regard T = Hom(T',G) ~ G’ with dimg(T) = ¢g¢ as our ambient group. For
a € T'\ {0}and c € G, the abelian hyperplaneH,, . := H,, . ; associated to the pair (a, c) is defined
by

Hy. := {peT|pla)=c}

LetA :={(ay,¢1), ..., (a,,¢,)} € (T \ {0}) X G be afinite set. We define the abelian arrangement
g = 9(A,G) as the collection of connected components of the abelian hyperplanes defined
by A

4 .= {connected components of H, . | (a,c) € A}

We continue to use the notation @, to denote the empty abelian arrangement in T ~ G*. The
arrangement < is called central if c; = 0 forall1 <i < n.

When G = R? and T = 77, we obtain & as an arrangement of affine subspaces in T ~ R"?, and
in particular a real (or complex) affine hyperplane arrangement when b =1 (b = 2, resp.). We
sometimes call these hyperplane arrangements integral arrangements as the coefficients of the
defining equation of any hyperplane are integer. When G = S! (or G = CX ~ S' x R)and I = 77,
we obtain an arrangement of real (complex, resp.) translated hypertori or toric arrangement.

For each % C o, denote

Hg := () H.
He%

We agree that Hy :=T.
The intersection poset L := L(&/) of &/ is defined by

L := {connected components of nonempty H | & C o/},
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whose elements, called layers, are ordered by reverse inclusion (X <; Y if X D Y). Thus, L is
a pure, ranked poset with a rank function rk(X) = codim(X)/g for every X € L. The minimal
element of L is 0 = T, and the atoms of L are the elements of </.

Definition 5.1. Similar to the case of a hyperplane arrangement in an arbitrary vector space, we
also refer to the poset L of layers as the combinatorics of the abelian arrangement /. Likewise, a
combinatorial property of abelian arrangements is defined analogously to Definition 1.1.

Define rk(&/) to be the rank of L, that is, the rank of a maximal element in L. The arrangement
o is called essential if rk(of) = 7.

Theorem 5.2 ([4, Corollary 13.11]; [5, Corollary 4.4.6]). Let & be an abelian arrangement. Then
L(f) is a geometric poset.

The characteristic polynomial y ,(t) of o/ is defined by

X (©) 1= ) (T, Xm0,
X€eL

Here u := u; is the Mobius function of L.

Remark 5.3. Note that y(t) = t9¢ k). v, (t9) that has degree g¢. In particular, if of is
essential and g = 1, then y,(t) = x..(t).

Definition 5.4. Similar to Definition 2.18, we call an abelian arrangement <f supersolvable
(resp., strictly supersolvable) if its intersection poset L(&/) is supersolvable (resp., strictly supersolv-
able). Denote also by SS and SSS the classes of supersolvable and strictly supersolvable abelian
arrangements, respectively.

Definition 5.5. Similar to Definition 2.15, we call an abelian arrangement </ factorable if its
intersection poset L(&/) is factorable. In this case, we call the roots of )(M(tl/ 9) the (combinatorial)
exponents of &/ and use the notation exp(¢f) to denote the multiset of exponents. Denote also by
FR the class of factorable abelian arrangements.

By Remark 5.3, &/ € FRif and only if there are positive integers d, ..., dyy() € Z( such that

rk(of)

X (@) = 9T TT (19 - ).
i=1

In this case,

exp() = {0° "™}y exp(L()).
Definition 5.6 ([4, Definitions 13.5 and 13.7]). For each X € L, define
Ay :={a €Tl |(a,c) € Aand H, . 2 X for some ¢ € G}.

The localization oy of of at X is defined as the collection of linear subspaces H, , C Hom(T', RY)
witha € Ay.
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For H € 4/, the restriction o/ of of to H is defined by
oM := {connected components of nonempty K N H | K € o/ \ {H}}.
Thus, o is an arrangement in H ~ G* 1.
The following is well-known, for example, used in the proof of [4, Theorem 13.10].

Lemma 5.7. Let o/ be an abelian arrangement. Let X € L(/) and H € o. Then L(dx) ~ L(A)<x
and L(4™) = (o), .

Fix H € o, define the deletion &/’ := o \ {H}as an arrangementin T,and &/" := o/". We call
(oA, ', ") the triple of arrangements associated to H. From Definition 3.1 and Lemma 5.7, we
have that L(«##') = L' and L(«") = L".

Theorem 5.8. Let o/ be a nonempty abelian arrangement and H € . The following deletion-
restriction formula holds

X (O) = X (8) = X g (0).
Proof. Apply Theorems 3.5, 5.2, and Remark 5.3. O
We are ready to introduce the concepts of inductive and divisional abelian arrangements.

Definition 5.9. The class IA of inductive (abelian) arrangements is the smallest class of abelian
arrangements that satisfies

1) @, €IlAfor? > 1,
(2) o € IAifthereexists H € o suchthat /" € IA, of’ € 1A, and y(t) = (t9 — d) - y 4 (t) for
somed € Z.

Definition 5.10. The class DA of divisional (abelian) arrangements is the smallest class of abelian
arrangements that satisfies

1) @, €DAfors > 1,
(2) o € DA if there exists H € & such that &/”” € DA and y,(t) = (t9 —d) - y»(t) for some
deZ.

We now show that inductiveness and divisionality depend only on the combinatorics of
arrangements.

Theorem 5.11. Let &/ be an abelian arrangement. Then o/ € 1A (resp., DA) ifand only if L(&/) € IP
(resp., DP).

Proof. We show the assertion for inductiveness by double induction on rk(&/) and |&/|. The
assertion for divisionality can be proved by induction on rk(&/) by a similar (and easier) argument.
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INDUCTIVE AND DIVISIONAL POSETS | 19 of 32

The assertion is clearly true when rk(¢f/) = 0 or |¢/| = 0 (i.e., o = &). Suppose rk(&/) > 1 and
|&/| > 1. Suppose of € IA. Then there exists H € & such that /" € 1A, o’ € IA, and y/(t) =
(t9 —d) - yyn(t) for some d € Z. Note that |&/'| < |&/| and rk(s/"") < rk(&/). By the induction
hypothesis, L” = L(«#'") € IP and L' = L(«/") € IP. Moreover, if rk(«/) = rk(&/’) + 1, then by
Remark 5.3,

t9 - XL’(tg) =7 - d) : }{L//(t‘q).

Hence, y/(t) = y;»(t) because t 4 y;»(t). Similarly, if rk(&/) = rk(«/’), then y.(t) = (t—
d)x»(t). In either case, y;»(t) divides y;,(t). Thus, L(&/) € IP. A similar argument shows that if
L € IP then o € IA, which completes the proof. O

Corollary 5.12. The property of being inductive or divisional of an abelian arrangement is a
combinatorial property.

Proof. 1t follows from Proposition 3.9 and Theorem 5.11. O
Remark 5.13. By Remark 4.7 and Theorem 5.11, we have the following:
SSS C IA C DA € FR.

It is an open question to us whether or not the containment IA C DA is strict. This is related to
the question in the last paragraph in Remark 4.7. The example of a hyperplane arrangement that
is divisionally free but not inductively free in Remark 2.21 is not an integral arrangement.

An abelian arrangement is inductive if it can be constructed from the empty arrangement
by adding an element (= a connected component of a hyperplane) one at a time with the aid
of the following “addition” theorem at each addition step. It thus also makes sense to speak
of an induction table for an inductive arrangement in a similar way as of inductive posets in
Section 3.

Theorem 5.14. Let of # @ be an abelian arrangement in T ~ G’ and let H € of. If o' € IA
with exp("') ={d,,...,d,_1} and o' € 1A with exp(&/') ={d,,...,d,_;,d,}, then o € IA with
exp(¢f) =1{d;,....d,_q,d, + 1}

Proof. 1t follows directly from Definition 5.9 and Theorem 5.8. O

We complete this section by describing an arrangement theoretic characterization for (strict)
supersolvability.

Definition 5.15. Given a subarrangement 98 of an abelian arrangement </, we say 9 is an M-
ideal of o if L(2B) is a proper order ideal of L(&/), and for any two distinct H,, H, € & \ % and
every connected component C of the intersection H; N H, there exists H; € 9 such that C C H;.
More strongly, an M-ideal & is called a TM-ideal of of if

(*) forany X € L(%) and H € o \ & the intersection X N H is connected.
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Theorem 5.16. Let of be an arrangement of rankrin T ~ G*. Then o is supersolvable (resp., strictly
supersolvable) (Definition 5.4) if and only if there is a chain, called an M-chain (resp., a TM-chain)

@zdogdlg'”gdr:d,
such that each of; is an M-ideal (vesp., a TM-ideal) of o/, , ;.

Proof. Observe that if % C &, then L(X) is a pure, join-closed ideal of L(</). Note also that
the poset of layers of an abelian arrangement is a geometric poset by Theorem 5.2. Thus, by
Lemma 2.14, if % is an M-ideal (resp., a TM-ideal) of &/, then L(%) is an M-ideal (resp., a TM-ideal)
of L(&f) with rk(%) = rk(&f) — 1. Therefore, if there exists an M-chain (resp., a TM-chain)

®=ﬂo§ﬂ1g“'gﬂr=ﬂ’
then L(&/) is supersolvable (resp., strictly supersolvable) with an M-chain (resp., a TM-chain)
{0} = L(@) C L(e) C - C L(o,) = L(<),

Conversely, if Q is an M-ideal (resp., a TM-ideal) of L(&/) with rk(Q) = rk(¢/) — 1, then again
by Lemma 2.14, the set A(Q) of atoms is an M-ideal (resp., a TM-ideal) of &/. Thus, if L(&) is
supersolvable (resp., strictly supersolvable), then any M-chain (resp., TM-chain) of L(¢/) induces
an M-chain (resp., a TM-chain) for <. O

6 | LOCALIZATION OF HYPERPLANE AND TORIC
ARRANGEMENTS

In this section, we discuss the operation of localizing at a layer of an abelian arrangement in the
sense of Definition 5.6. Note from Remark 2.12 that (strict) supersolvability is closed under taking
localization: If of € SS (resp., &/ € SSS), then oy € SS (resp., Z/x € SSS) for every X € L(</). We
will see that in general it is not the case for inductiveness or divisionality. More explicitly, we give
an example of an inductive toric arrangement with a nonfactorable localization.

First let us recall from the previous section the definition of central (real) hyperplane and toric
arrangements as abelian arrangements when the Lie group G is R and S!, respectively. Let A
be a finite set of integral vectors in 7%, Given a vector a = (ay,...,a,) € A, we may define the
hyperplane

H,p :={x € R | a\x, + -+ +ayx, =0},
and the hypertorus
ag

Hyq i={te (S |t =1}

The set A C 77 defines the central hyperplane arrangement

H ={H,p|a€ A}
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(1,1,1) exp(«/') H exp(d”)
0,0,0 H, 0,0
0,0,1  Hy 0,1
0,1,1 Hy; 0,1
01,2 H, 1,2
1,1,2  Hg 1,2
1,2,2 Hs 2.2
2,2,2

Hy Hy Hs Hs Hs Hg

FIGURE 4 The poset of layers of the toric arrangement &/ defined by matrix S in (6.1) and an induction
table for its inductiveness.

and the central toric arrangement
4 .= {connected components of H, 1 | @ € A}.

Alternatively, given an integral matrix S € Mat,,,,(Z), we may view each column as a vector
in 7 so that we may define the central hyperplane and toric arrangements from S as above.

Example 6.1. Let S € Mat;,(Z) be an integral matrix defined as below:

10 1 0
10 0 1/ (6.1)
0 1

1
S=10
0 -1 -1

S = O

Let 7 and &/ be the central hyperplane and toric arrangements defined by S, respectively.
Note that by definition of localization (Definition 5.6) we may write #s = (&/)x where X denotes
the layer (1,1,1) € L(s).

In fact, # is linearly isomorphic to the essentialization of the cone of the digraphic Shi arrange-
ment defined by the path 3 — 2 — 1in [3, figure 3]. The characteristic polynomial of 5 is given

by
X (8) = (t =1)(&* = 5t +7),

which implies that 7 is not divisional hence not inductive.

However, we may show that &/ is inductive with exponents {2, 2, 2}. Let H; denote the (con-
nected) hypertorus defined by the ith column of the matrix S. The poset of layers of o/ and an
induction table are given in Figure 4. (Observe also that o/ is not locally supersolvable because
the localization % is not supersolvable by the preceding discussion.)

It happens quite often that the hyperplane arrangement defined by a matrix is inductive, but the
toric arrangement defined by the same matrix is not (see the next section). Example 6.1 deduces
that the converse is also possible. This is a rare, perhaps counterintuitive example that toric
arrangement could be inductive, while hyperplane arrangement cannot be.
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7 | APPLICATION TO TORIC ARRANGEMENTS OF IDEALS OF
ROOT SYSTEMS

Our standard reference for root systems is [6]. Let ® be an irreducible (crystallographic) root
system in V = R”. Fix a positive system ®+ C ® and the associated set of simple roots (base)
A:={ay,..,a,} C DT,

Define the partial order > on ®* such that 3, > 8, if and only if 3; — 8, = Zle n;o; with all
n; € Z,. Asubset T C ®* is called an ideal if, for 8,, 8, € ®*, 8, > ,,8, € L then 3, € I.

For 8 = Zle n;a; € ®*, the height of 8 is defined by ht(8) : = Zle n;. Let T be an ideal of ®*
and set M := max{ht(8) | 8 € I}. Let t; :=|{f € I | ht(B) = k}| for 1 < k < M. The sequence
(tq, sty -, tyy) s called the height distribution of I. The dual partition DP(I) of the height
distribution of 7 is defined as the multiset of nonnegative integers

DP(Z) :={0"""1,117 %, .. MM},

For each ¥ C @™, let Sy denote the coefficient matrix of ¥ with respect to the base A, that is,
Sy = [s;;]is the £ X [¥] integral matrix that satisfies

14
i=1

Note that the matrix Sy depends only upon ®.

Definition 7.1. Following the previous section, we define oy := &ism(fb) and #y 1= X5, (@)
as the central toric and hyperplane arrangements defined by Sy, respectively. We call these
arrangements the arrangements with respect to the root lattice.

Theorem 7.2 ([2, 9, 15, 24, 25]). If 1 is an ideal of an irreducible root system ®, then 7 is inductive
with exponents DP(I). Moreover, 'y is supersolvable if ® is A,, B,, Cy, or G,.

In contrast to the hyperplane arrangement case, the toric arrangement ¢/; is not factorable
for most cases even when 7 = ®*. It is known that the characteristic polynomial of the cen-
tral toric arrangement defined by an arbitrary matrix S coincides with the last constituent of the
characteristic quasi-polynomial y3"**(q) defined by S [19, Corollary 5.6]. Furthermore, an explicit

S .
computation shows that the last constituent of y¢"**'(g) factors with all integer roots if and only
[}

if ® is A,, B, or C, [18, 29]. Thus, &+ is factorable if and only if ® is of one of these three
types.

Even more is true: If 7 is an ideal of an irreducible root system of type A, B or C, then o/; is
factorable whose combinatorial exponents can be described by the signed graph associated to 7
[32]. Our third main result Theorem 1.4 strengthens this result. Furthermore, we give an explicit
description of the exponents of o/; derived from an explicit induction table. This description turns
out to be equivalent to the ones in [32]. We also give a characterization for supersolvability of o+
when @ is of type B (Theorem 7.17).

Proof of Theorem 1.4. 1t follows from Corollary 7.3, Theorem 7.10, and Corollary 7.15. O
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The proof for the type A case in Theorem 1.4 is a simple consequence of Theorem 7.2, which
we give below.

Corollary 7.3. If T is an ideal of a root system of type A, then the toric arrangement </; with respect
to the root lattice is strictly supersolvable (equivalently, supersolvable) hence inductive with exponents
DP(1).

Proof. 1t is not hard to see that for any ¥ C ®*(A,), each layer in L(s/y(A,)) is connected. Thus,
L(gy(Ap)) ~ L(#y(A,)) which is a geometric lattice. By Remark 2.12, its supersolvability and
strict supersolvability are equivalent. Moreover, &/ is indeed supersolvable with exponents DP(T)
by Theorem 7.2. O

Hence, we are left with the computation on types B and C. First we need a construction of root
systems of these types via a choice of basis for V following [6, chapter VI, section 4].

Let & :={¢, ..., €.} be an orthonormal basis for V. For £ > 1,

D(B,) ={t;(1<i<?),4(+€)(A<i<j<O)}

is an irreducible root system of type B,. We may choose a positive system

OB, ={;A<i<),exe;(1<i<j<O)

Define o; :=¢; —¢;,; for 1<i<Z—1, and a, :=¢,. Then A(B,) ={ay,..,a,} is the base
associated to ®*(B,). We may express

<I>+(Bf)={ei= Z a(1<i<?)e—¢ = Z a,(1Ki<jg?),
i<k<t i<k<j
€+e = Z a +2 Z ak(1<i<j<f)}.

i<k<j j<kge

For ¥ C ®*(B,), write Ty = [; j] for the coefficient matrix of ¥ with respect to the basis €. The
matrices Ty and Sy are related by Ty, = P(B,) - Sy, Where P(B,) is an unimodular matrix of size
¢ X ¢ given by

P(Bf) =

i -1 1]
Similarly, an irreducible root system of type C, for ¢ > 1 is given by
D(Cp) ={x2;(1<i< ) 4(g; ) AKI< <O,
DH(Cp) ={2,(1<i<)exe;AI<i<j<O,

ACy) ={a;=¢—€,, A<Ki<E—1), ay, =2¢,},
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24 of 32 | PAGARIA ET AL.

OH(CH={26,=2 ) aq+a,(A<i<)g—¢= ) aq1<i<j<o),

i<k<? i<k<j

€i+€j= Z O(k+2 Z ock+oc,g(1<i<j<f)}-
i<k<j Jj<k<t

1

-1 1

P(Cy) = -

Example 7.4. Let ® = B, with &t ={a; =€, —¢,,a, = €,,a; + @, = €;,a; + 20, = €] + €,}
where A = {a;,a,} and € = {e,¢,}. The coefficient matrices of ®* with respect to A and & are

given by
1011 1 011
Sor <0 11 2)’ e (—1 10 1>

Let ® = C,. The coefficient matrix of ®* with respect to A is Sg+ above with rows switched (this
is not the case when £ > 3). The coefficient matrix of ®* with respect to € = {¢;, €,} is given by

1 01 2
T+ = .
e <—1 21 0>
Definition 7.5. Let ® = B, or C,. For ¥ C @, denote by o/, and %, the central toric and

hyperplane arrangements defined by the matrix Ty, respectively. We call these arrangements the
arrangements with respect to the integer lattice.

Remark 7.6. As the matrix P(B,) is unimodular, for every ¥ C ®*(B,) we have an isomorphism of
posets of layers: L(ofy) ~ L(SZYTLP) (see, e.g., [23, §5]). However, det P(C,) = 2. In general, L(y) %
L(dly,,) for ¥ C ®*(Cy,) (although L(#y) ~ L(Zr,))-

A positive system ®1(A,_;) of an irreducible root system @ of type A,_; for £ > 2 can be
defined as the ideal of ®*(B,) (or ®(C,)) generated by ¢; —¢, = Zi;i ay. Thus, L(dy) =~
L(dr,,) for every ¥ C DT(Ay_y).

To describe the exponents of ¢/; when ® is B, or C,, we need information from the signed
graph associated to 7.

Definition 7.7. Let ® = B, or C,. For ¥ C ®* and 1 < i < ¢, define the subset E; = E;(¥) C ¥
by
E; :=E UE;, whereE" :={¢;+¢; €V [i<jiC V.

For a € E;, let H, denote the hypertorus defined by a. For example, a = ¢; +¢; defines the
hypertorus H,, = {t;t; = 1}. We then define the subarrangement %; = %,(¥) C oy by

B; =B LB, where B :={H, | a € E'} C dy.
Finally, define by" := |%;"| and b; := |%;| = b +b].

A 'T 'v202 '05.L697T

Jwouy

100 PUe SIS | 3 385 *[202/50/82] U ArRIqIT BUIUO 311 ‘04 1By 8010AU 1[ESH 211N JO @INsu| UeIBIMION AQ 6282T SWII/ZTTT 0T/10p/W00’

o Im

35UB0 17 SUOLULLIOD) dAEID) 3ol |dde au Aq pauseAoh ae sapie YO ‘88N JO Sajni 1oy Ariq 1 auluo A3|1IMm uo



INDUCTIVE AND DIVISIONAL POSETS | 25 0f 32

In the language of signed graphs (e.g., following [34, section 5]), the elements in E;"(¥) and
E7(¥) correspond to the negative and positive edges of the signed graph defined by ¥, respectively.

Itis not hard to see that for each ideal 7 of ®*(B,) or ®*(C,), the elements of the dual partition
DP(T) can be expressed in terms of b;(I)’s and vice versa. However, the numbers b;’s are a bit more
convenient for our subsequent discussion.

71 | TypeC

We first present the results on type C as the proofs are simpler than those on type B. We begin by
proving a lemma that serves as a template for some arguments later.

Lemma 7.8. Let T C ®*(C,) be an ideal such that E,(I) # @. Define

D= J INE@DUR2a) if2e, €1,
I\E(I) otherwise.

Then D can be regarded as an ideal of ®*(C,_,) and gy is a TM-ideal of o/r,.

Proof. The first assertion is clear via the transformation x; — x;_, for2 <i < #.Denote &/ := d/r,
and 9 := A, There do not exist X € L(2) and Y € L(&/) \ L(2) such that X C Y because the
defining equations of any X € L(9) do not involve ¢,. Therefore, L(9) is a proper order ideal of
L(4). Note also that the power of variable ¢; in the defining equation of any H € of \ 9 is equal
to 1. This shows Condition 5.15 (*).

It remains to show that for any two distinct H;, H, € & \ 2 and every connected component C
of the intersection H; N H,, there exists H; € & such that C C H;. We consider three main cases,
the remaining cases are similar to one of these.

(a) Assume H, = {t;t; =1} (i.e.,e; +¢; € I)and H, = {tlt;1 =1}for j > 1,k > 1, j # k. Then
by the definition of an ideal we must have €; + ¢, € D (as¢; +¢; > ¢; + ¢). Hence, H; :=
{tjti =1} € 9. Moreover, H; N H, is connected and H; N H, C Hj;.

(b) Assume H; = {t;t; = 1}and H, = {tltj_1 =1}forj>1.ThenH; :={t; =1} € D anng 1=
{tj = -1} € D (as €, +€; > 2¢;). Moreover, H,; N H, has two connected components; one is
contained in Hj, the other is contained in Hj.

(c) Assume H; = {t; = 1} (i.e,, 2¢; € I)and H, = {t;t; = 1}for j > 1. Then H; :={t; =1} €D
(as 2¢; > 2¢;). Moreover, H, N H, is connected and H; N H, C H.

This concludes that & is a TM-ideal of &/ as desired. O

Theorem 7.9. Let T C ®*(C,) be an ideal. Define

. min{l <i<Z|E(I)#0} ifT#0,
o +1 otherwise,

min{l <i<? |2 €1} ifthereexists2e; € 1 forsomel <i<?,
5=
+1 otherwise.
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Then the toric arrangement gy with respect to the integer lattice is strictly supersolvable with
exponents

exp(y,) ={0" U ib BT Uf2(f — i+ DY
(See Definition 7.7 for the definition of b;’s.)
Proof. Denote o := sziTl.Note thatn < sandb; =0for1 <i<n.If2¢ & Iforalll <i<?Z,then
7T can be regarded as an ideal of ®*(A,_;) by Remark 7.6. Thus, L(#/;) =~ L(.sziTZ ). By Corollary 7.3,

o € SSS with exponents DP(T) = {b;, ..., b,}.
Now we may assume 1 < n < s < 7. Then 2¢; € T and E{(T) # @ for all s < i < £. Define

4 . .
U (2018 =1) its<i<e,

;=
Uiz %5 u 4, ifn<i<s.

1

In particular, o/ can be identified with o/, (C,_s,1) (via x; = X; ¢, for s <i<£). Then b; =
2(¢ —i)fors<gig?.
By Theorem 5.16, it suffices to show that the chain

DA G Gy =d

isa TM-chain of &. A similar argument as in the proof of Lemma 7.8 shows that & ; isa TM-ideal
of o, foreachn <i<?¢ —1.
Thus, o € SSS with the desired exponents. O

Recall the definitions of the parameters n < s in Theorem 7.9.
Theorem 7.10. Let T C ®*(C,) be an ideal. Then the toric arrangement o7 with respect to the root
lattice is inductive with exponents
exp(ely) ={0"Huib Bl ufa(f — DY ufe —s+ 1}
Proof. Denote o := ;.
Case 1. First we prove the assertion when s = 1. In this case, I = ®*. We show that of € IA

with the desired exponents by induction on #. The case £ = 1 is clear.
Suppose £ > 2. Let § :=2¢; =2}, ., & + a, denote the highest root of ®*. Define

D :=0"\ (E,(@)U{S), and D 1=
Then D = ®*(C,_;) (via x; — x;_;). By the induction hypothesis, & € IA with exponents
exp(2) = {2(£ — DY} ufr — 1},

Denote o' := of \ {Hs}. Note that of’ \ & consists of the hypertori defined by the roots in
E,(®%). These roots are given by

€ —€ = 2 a, A<j<g?),
1<k<j

€ +¢ = 2 a +2 2 ag+a, (1<j<o).
1<k<j Jj<k<t
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TABLE 1 Anideal T in ®*(Cs).

Height

9 2¢,

8 € t¢€

7 € +¢€; 2¢,

6 € +¢€, €, +¢€;

5 € +¢€s € te€, 2¢;4

4 € —€s €, + €5 €;+¢€y

3 €1 — € €, — €5 €; + €5 2¢,

2 € — €& €, — €4 €3 — €5 €, +€s

1 € —6€ €, — €3 €3 — €4 €4 — €5 2€;
E; E, E, E, E;=0

Using a similar argument as in the proof of Lemma 7.8, we may show that & is an M-ideal of
d'. Moreover, it is indeed a TM-ideal because Condition 5.15 (*) is satisfied because the coefficient
at the simple «; of all roots in E;(®") is 1, while that of the roots in D is 0. Apply Lemma 4.5 for
L(2) and L(«") we have that o/’ € 1A with exponents

exp(') = exp(2) U{2(¢ — 1)} = {2(£ — DY ufr — 1},

Furthermore, one may check that the restriction o5 can be identified with dr, . (Cp_y)-
(To see this just set t, = t] 2. t;fl in the equations involving f,. For example, the equa-
tiont; - t2_ t, = 1becomes ¢; = 1.) Thus, by Theorem 7.9, &/"s € IA with exponents

exp(s) = {2(¢ — DY
Apply Theorem 5.14, we know that &/ € IA with the desired exponents
exp() = {2(¢ — DY vt

Case 2. Now we prove the assertion when s > 1. The set

s—1

J =1\ JE®D
i=n
can be identified with ®*(C,_, ). By Case 1 above, ¥ := o/; € IA with exponents

exp(P) ={2(¢ — i)}if:_s1 u{f —s+1}

Using a similar argument as in Case 1, we may show that the sets E;(T) forn < i < s — 1 giverise
to a chain of TM-ideals for & starting from 9. Applying Lemma 4.5 repeatedly, we may conclude
that o/ € IA with the desired exponents. O

Example 7.11. Table 1 shows an ideal T ¢ ®*(C;) (in enclosed region) with n =1, s = 3. By
Theorem 7.9, 'Q{TZ € SSS with exponents {4, 6, 6,4, 2}. By Theorem 7.10, &/; € IA with exponents
{4,6,4,2,3}.
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7.2 | TypeB

The restriction of an ideal toric arrangement of type B is in general not an ideal toric arrange-
ment. We need an extension of the ideals so that the corresponding arrangements contain
sufficient deletions and restrictions in order to apply the addition theorem 5.14 to guarantee the
inductiveness.

Lemma 7.12. Let T C ®*(B,) be an ideal such thatEf(l) # @. Let m = m(T) be the integer so that
€, + €, is the highest root in Ef(I). (Inparticulan,2 < m<fand2f —m=>b;. )Let1 < p<¢+1.
Define the extension I(p) of T with parameter p as follows:

I(p) ;=X \{e; | p<i<?fHUf2¢ | p<ig?}.

If m < p, then or, » is inductive with exponents
exp(dly, ) ={2¢—p+1 Ui}
Proof. Denote of := dr, " ‘We may write
d=dr, Vit;=-1|p<i<?}

We show that &/ € IA with the desired exponents by induction on . If # < 2, then &/ is always
strictly supersolvable except when p =3 and 7 = I(3) = ®*(B,). In which case, & is indeed
inductive with exponents {2, 2} by Figure 3.

Now suppose £ > 3. As €, + ¢, € I, we must have ¢, + ¢,,, € I. Define

J =TI\ (E@)V{e).

Then J can be regarded as an ideal of ®*(B,_;) (via x; — x;_;) with m(J) < m(I) — 1. Also,
EFJ) = ii_+1(l) hence b;(J) = b;;;(I)forall1 i< £ —1.

Moreover, Z(p) \ (E;(T) U {€;}) can be identified with the extension J(p — 1) because 2 < m <
p- By the induction hypothesis, % := .QYTJ o € IA with exponents

exp(P) = {27 — pyu b (DY) (7.1)
Define
D:=1(p)\{fe,+¢|Im<i<p-1} and D 1=y .

As 2¢; € Dforall p < i < #, using a similar argument as in the proof of Lemma 7.8 we may show
that & is a TM-ideal of &. Apply Lemma 4.5 for L(2) and L(%®) we have that & € IA with
exponents

exp(P) =exp(P)U{2f —p+1}={20 —p+1,2¢ — p}U {bi(I)}f:_zl.

Now we show that adding the p — m hypertori ¢, ; = 1,t;t, =1,...,t;t,, =1 to @ in any
order and applying Theorem 5.14 to each addition step, we are able to conclude that &/ € IA with
the desired exponents. As 22 — m = by, it suffices to show that the restriction at each addition
step is inductive with exponents {2 — p + 1} U {bi(l)}fz‘;.
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Indeed, the restriction at each step has the form & U {H, } where H, denotes the hypertorus ¢, =
—1forsomem < k< p—1.Fixm<k<p—1.Notethate; +¢, €T C J(p—1Dforalll <i#k
because ¢; + ¢, € I. Thus, the restriction (% U {H,})x can be identified with the arrangement
dr,, W’ where R(1) is the extension with parameter p = 1 of an ideal R of <I)+(B/ ») (via x;

X1 (2<i<k)andx; ~ x;_, (k < i< ?£))with b+(R) b S (D —1for1<i< s~ 2 (Note that

the equations b;—'(R) ; +1(Z )—1fork—1<ig?¢ -2 follow from the fact that U ik 1(E R)u
{2¢;}) is a root system of type C.)

Now using a similar argument as in the proof of Theorem 7.9, we know that (% U {H,; })"k is
strictly supersolvable hence inductive with exponents

exp((P U{HD™) = {b:(R) + 2§ = {bi(D},)

By Theorem 5.14 and Equation (7.1), we know that 2 U {H, } € IA forevery m < k < p — 1 with
the desired exponents

exp(# U{H D = {2¢ — p + 13U {b(D})
This completes the proof. O
Theorem 7.13. Let T C ®*(B,) be an ideal such that ¢, € T for some 1 £ k < £. Define
n:=min{l <i<? | E/(I) # @},
a:=minfn<i<?|¢ €Tand Ef(T) = @},
s :=minfa <i< 7| E(I) # 0}

For each s < i < ¢, let m(i) be the integer so that €; + €,,;) is the highest root in E;(I). (In partic-
ular, m(j) < m(l) ifi <j.)Lets< p<?¢+1, recall the definition of the extension I(p) of T with
parameter p in Lemma 7.12. Define

t :=min{s <i<?|m() < p}
Then gy, » is inductive with exponents
exp(dTI(p)) ={0" 20 —p—t+2}uib;+1]i€(a,t—1)}uib; |i€[n,—1]\[a,t—1]}

Proof. Denote & := de(py The set

a—1 t—1
T\ JE@\ JE@D) uied

can be identified with the extension J(p — t + 1), where J is an ideal of ®*(B,_, ) with m(i) <
p—t+1lforalll1<i<#—t+1.ByLemma7.12, P := ”Q{Tg(p_m) € IA with exponents

exp(P) ={2¢ — p—t + 23U {b (DI

Using a similar argument as in the proof of Lemma 7.8, we may show that the sets E;(T) for
n<i<a-—1andE;(I)U{e}fora <i<t—1giverise a chain of TM-ideals for &/ starting from
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TABLE 2 Extension of an ideal T in ®*(B;) with parameter p = 4.

Height

9 [

8 € +¢€

7 € +¢€, € +¢€;

6 €+ €5 € +¢,

5 € € + €5 €3 t+¢€,

4 € —€s € €3+ €5

3 € — €, €, — €5 €3 €, + €5

2 € —€; €, — €, €3 — €5 2¢,

1 €, —6€ €, — €3 €3 — €, €4 — €5 2€;

&P . (Note that by definition m(i) > p foralls < i < t — 1.) Applying Lemma 4.5 repeatedly, we may
conclude that of € IA with the desired exponents. Indeed, the sets above contribute to exp(&/) the
exponents b, forn <i<a—1landb;+1fora<i<t—1. O

Example 7.14. Table 2 shows the extension 7(4) of an ideal 7 ¢ ®*(Bs) with parameter p =
4. In this case, n = a = s =1 and ¢t = 2 with m(t) = 3 < p. By Theorem 7.13, .QYTI(4) € IA with
exponents {6, 7, 6,4, 2}.

Recall from Remark 7.6 that oy and o/p, have isomorphic poset of layers for every ¥ C @t(By).

Corollary 7.15. If T C ®*(B,), then the toric arrangement gf; with respect to the root lattice
is inductive.

Proof. Ife; ¢ T for all 1 <i <, then T can be regarded as an ideal of ®*t(A,_;). Thus, &; is
indeed strictly supersolvable hence inductive by Corollary 7.3. Otherwise, we know that o/ is
inductive which follows from Theorem 7.13 by letting p = £ + 1. 1

Example 7.16. From Theorems 7.10, 7.13, and Corollary 7.15, we deduce that both %/4+(B,)
and o4+ (C,) are inductive with the same multiset of exponents {¢, 2,4, ..., 2(£ — 1)}. This fact
is similar to the hyperplane arrangement case.

In contrast to the inductiveness, the toric arrangement of a root system of type B, is not
supersolvable for most cases.

Theorem 7.17. Suppose ® = B, for ¢ > 1. Then dr, , is supersolvable if and only if £ < 2.

Proof. Let ol := ﬂT¢+. Denote L = L(#/) and x = (-1,—1,...,—1) € L. By Lemma 5.7, L, is iso-
morphic to the intersection lattice L(%Tq) . (Dy)) of the hyperplane arrangement of a root system
of type D,,.

If £ > 4, then L, is not supersolvable by Remark 2.21. Therefore, L is not locally supersolvable
hence not supersolvable.

When 7 < 3, however, L, is always supersolvable. We need a direct examination for the
supersolvability of L. The assertion is clear when # = 1. The case £ = 2 is shown in Figure 3.
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Now we show that L is not supersolvable (though locally supersolvable) when ¢ = 3 by showing
that L does not have an M-ideal of rank 2.

Suppose to the contrary that such an M-ideal exists and call it Q. Denote Hlf; :={t;t; =1} and
Hi; 1= {tl-tj_1 = 1}. First, notice that a rank-2 element of the form ¢; = ¢; = —1 covers exactly two
atoms, namely H;; and Hl; If these atoms are not in Q, then Lemma 2.14 fails. Hence, at least
one of them belongs to Q for every pair of indices i # j € {1, 2, 3}. Moreover, we may deduce that
exactly one of Hl.j and H; belongs to Q. Otherwise, the join H;; V H; v H where H is either Hj.*k
or Hj‘k for k ¢ {i, j} contains an element of rank 3, which contradicts the join-closedness of Q.

‘We consider two main cases, the remaining cases are similar to one of these.

(a) IfH,, H},, HJ, all belong to Q, then their join consists of rank-3 elements, a contradiction.

120 130
(b) IfH 1+2, H 1+3, H3, all belong to Q, then Q hasno atom of the form ¢; = 1, otherwise joining it with

H 1+2 VH 1+3 VH 3 would give a rank-3 element inside Q. Hence, the only rank-2 element in O
would be H{, v H, vV Hy, = {t, = t; = t]'}. However, this is not an element of L _; ),

which contradicts Condition 2.8 (2).

This completes the proof. O
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