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We show that the integral cohomology algebra of the comple-
ment of a toric arrangement is not determined by the poset 
of layers. Moreover, the rational cohomology algebra is not 
determine by the arithmetic matroid (however it is determine 
by the poset of layers).
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0. Introduction

A toric arrangement is a finite collection of hypertori lying in an algebraic torus. 
The complement of a toric arrangement is an open set: we are interested in studying its 
cohomology ring. The combinatorics of an arrangement is encoded in its poset of layers, 
i.e. the poset of connected components of the intersections of some hypertori. In the case 
of hyperplane arrangements, the associated poset we consider is the poset of intersections, 
which turns out to be a geometric lattice. The combinatorial data of a central hyperplane 
arrangement can be stored equivalently in an another structure: a matroid. There are 
several equivalent definitions of matroid, we point to [1] for a general reference. Matroids 
can be generalized to the toric case in different ways: arithmetic matroids (see [2] and 
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[3]), matroids over rings (see [4]) and G-semimatroids (see [5]). All these combinatorial 
data permit us to define the arithmetic Tutte polynomial (introduced first in [6]), that 
is the analogous of the Tutte polynomial of a hyperplane arrangement.

The study of interplay between the cohomology of the complement of a toric arrange-
ment and its combinatorics started in [7], where the Betti numbers of the complement 
were computed: it follows that the Poincaré polynomial is a specialization of the arith-
metic Tutte polynomial (see [6]). The cohomology algebra of the complement of a 
hyperplane arrangement is the cohomology of the algebraic de Rham complex (see [8]) 
that was combinatorially described in [9]. An analogous approach in the toric case started 
with [10] (see also [11]), where a description of the associated graded cohomology algebra 
with complex coefficients GrH(M(A), C) was given. The filtration used in [10] coincides 
with the Leray filtration for the inclusion of the complement in the ambient torus. The 
graded algebra with rational coefficients GrH(M(A), Q) can be obtained from the Leray 
spectral sequence as shown in [12] and [13]. The graded algebra with integer coefficients 
GrH(M(A), Z) was studied in [14] and from the combinatorial point of view, in [15]. 
Recently, presentations of the cohomology algebras H(M(A), Q) and H(M(A), Z) in 
the spirit of [9] was obtained in [16], generalizing [10]. The description of the rational 
cohomology ring H(M(A), Q) depends only on the poset of layers.

In Section 2 we show that the integral cohomology algebra H(M(A), Z) of the com-
plement of a (central) toric arrangement is not combinatorial, i.e. it does not depend 
only on the poset of layers (Theorem 2.1). This example gives a negative answer to 
Question 7.3.1 of [14].

In section 3, we show that arithmetic matroids and matroids over Z contain less 
information than the poset of layers. Indeed, we build two central toric arrangements 
with the same arithmetic matroid, the same matroid over Z, but with non-isomorphic 
posets of layers (Theorem 3.1) and non-isomorphic cohomology algebra with rational 
coefficients. As consequence, there cannot exist a “cryptomorphism” between arithmetic 
matroids (respectively, matroids over Z) and any class of posets such that – in the 
representable cases – the poset associated with the matroid coincides with the poset of 
layers of any representation.

The following question about central toric arrangements remains open.

Question. Does the integral cohomology algebra of the complement of a central toric 
arrangement determine the toric arrangement?

1. Definitions

Let N = (ni,j) be a matrix with integer coefficients of size r × n.

Definition 1.1. The central toric arrangement A defined by N is the collection of n
hypertori H1, . . . , Hn in T = (C∗)r, where
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Hj
def=

{
(x1, . . . xr) ∈ (C∗)r | xn1,j

1 x
n2,j
2 · · ·xnr,j

r = 1
}
.

We are interested in studying the topological invariants of the complement

M(A) def= T \
⋃

H∈A
H

of a toric arrangement A.
We work only with central toric arrangements. The centrality of the arrangements 

will be understood.

Definition 1.2. Let A = {H1, . . . , Hn} be a toric arrangement. A layer W of A is a 
connected component of the intersection of some hypertori in A. The poset of layers
S(A) of the toric arrangement A is the partially ordered set whose elements are all the 
layers of A ordered by reverse inclusions. The poset of layers is ranked by the codimension 
in T

rkW = codimT W.

For each pair of layers (W1, W2) there exists a unique meet W1∧W2 of the two layers, 
i.e. the minimal layers containing both W1 and W2. However, a join of two elements may 
not be unique (e.g. if the intersection of the two tori is not connected).

In the final part of this paper we will need the notions of arithmetic matroids and of 
matroids over Z (also known as Z-matroids). A matroid is a pair (E, rk) where E is a 
finite set and rk : P(E) → N is a rank function that satisfies:

1. rk(S) ≤ |S| for all S ⊆ E,
2. rk(S) ≤ rk(T ) for all S ⊆ T ⊆ E,
3. rk(S ∩ T ) + rk(S ∪ T ) ≤ rk(S) + rk(T ) for all S, T ⊆ E.

An arithmetic matroid is a matroid (E, rk) with a multiplicity function m : P(E) →
N \ {0} that satisfies five properties (listed for instance in [2] or [3] for the definition).

A matroid over Z is a ground set E together with a Z-module M(S) for each subset 
S of E such that these modules satisfy some specific relations (see [4] for the definition).

We will give the definition of arithmetic matroids and matroids over Z only in the 
representable cases, since we deal only with the representable ones.

Let N ∈ M(r, n; Z) be an integer matrix. We denote with N [S], for S ⊆ [n], the sub-
matrix of N made up with the columns indexed with S. The representable matroid over
Z described by N is the function M that associate to every subset S ⊆ [n] the module 
Zn/〈N [S]〉, where 〈N [S]〉 is the sub-module generated by the columns of N [S]. The rep-
resentable arithmetic matroid described by N is ([n], rk, m), where rk(S) = rank〈N [S]〉
and m(S) = | tor(Zn/〈N [S]〉)| is the cardinality of the torsions of the quotient.
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In general matroids over Z contain more information than the corresponding arith-
metic matroid. However, representable matroids with m(E) = m(∅) = 1 determine the 
isomorphisms classes of the torsion subgroups tor(Zn/〈N [S]〉) for all S ⊂ E. In this case 
the arithmetic matroid determines the matroid over Z.

Definition 1.3. A toric arrangement is totally unimodular if all intersections of some 
hypertori are connected.

We recall the presentation of the cohomology ring M(A), it will be useful later. For 
each hypertorus Hi ∈ A with equation tn

i = 1 we define the differential forms ωi =
1

2π
√
−1d log(1 − tn

i) and ψi = 1
2π

√
−1d log(tni). For the sake of notation we assume a 

total order on A and a defining matrix N = (ni)i=1,...,n ∈ M(r, n; Z).

Theorem 1.4. Let A = {H1, . . . , Hn} be a totally unimodular toric arrangement. The 
cohomology H •(M(A); Z) is generated in degree one by the differential forms ωi, ψi. 
The relations are:

• ωiψi = 0 for every Hi ∈ A,
• for every I ⊆ A and ci ∈ {±1} such that 

∑
Hi∈I cin

i = 0, a relation

∑
Hi∈I

ciψi = 0,

• for every I ⊆ A and ci ∈ {±1} such that 
∑

Hi∈I cin
i = 0, a relation

∏
Hi∈I

(ωi − ωi−1 + ciψi−1) = 0.

The previous theorem follows from [10, Theorem 5.2] and [16, Lemma 3.2]. The fol-
lowing theorem is [16, Theorem 6.13].

For each ordered subset S ⊆ A and each connected component W of ∩H∈SH such 
that |S| = rkW , there exists a differential form ωW,S of degree |S| defined in [16]. If 
S = {Hi} then the form ωHi,S coincides with 2ωi − ψi.

Theorem 1.5. Let A be a central toric arrangement. The rational cohomology algebra 
H∗(M(A), Q) is generated by ωW,S, ψi with relations:

• ωW,Sψi = 0 for every Hi ∈ S ⊆ A,
• ωW,SωV,T = 0 if rkW + rk V > rkW ∩ V and if rkW + rk V = rkW ∩ V a relation

ωW,SωV,T = (−1)l(S,T )
∑

U c.c. of W∩V

ωU,S∪T ,

where l(S, T ) is the parity of the permutation that reorder S ∪ T .
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• for every I ⊆ A and ki ∈ Z such that 
∑

Hi∈I kin
i = 0, a relation

∑
Hi∈I

kiψi = 0,

• for every I ⊆ A, connected component L of ∩Hi∈IHi and ki ∈ Z such that ∑
Hi∈I kin

i = 0, a relation

∑
Hi∈I

∑
S,T

(−1)|S≤i|+l(S,T )cT
m(S)

m(S ∪ T )ωW,S

∏
Hi∈T

ψi = 0,

where S 
 T = I \ {Hi}, |T | is even and W is the connected component of ∩Hi∈SHi

containing L. The integer m(J) is the number of connected components of ∩Hi∈JHi, 
cT is the sign 

∏
Hi∈T sgn ki and |S≤i| is the number of elements of S that precede 

Hi in the chosen total order of A.

Let A =
⊕

n∈N An be a graded-commutative R-algebra and consider for each α ∈ A1

the left multiplication δiα : Ai → Ai+1. The pair (A; δα) is a complex for each α ∈ A1.

Definition 1.6. The kth resonance variety of A is

Rk(A) def= {α ∈ A1 | Hk(A, δα) �= 0}.

The kth resonance varieties (with coefficients in the domain R) for a toric arrangement 
A is

Rk(A;R) def= Rk(H •(M(A);R)).

We will use only the first resonance variety R1(A, R) of a toric arrangement A, where 
R is the ring Z or Q.

2. First example

The example that we will expose in this section was already appeared in [15, Exam-
ple 7.1] as a generalization of [14, Example 7.3.2]. Without a complete description of the 
cohomology ring, it was not possible to complete the calculation. Now, using Theorem 1.5
and Theorem 1.4 we can perform that computation.

In this section we set T = (C∗)2. Consider the arrangements A and Aa
n in T defined 

respectively by the matrices

N =
(

1 0 1
0 1 1

)
and Na

n =
(

1 a a + 1
0 n n

)
,

where n is a positive integer and a, a + 1 are relatively prime to n.
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We use [7, subsection 2.4.3] or [6, Corollary 5.12] to calculate the Poincaré polynomials 
of these arrangements. The Poincaré polynomial of M(A) is 1 +5t +6t2 and that of M(Aa

n)
is 1 + 5t + (2n + 4)t2. The Tutte polynomial of the arithmetic matroid associated with 
N is x2 + x + y, the one associated with Na

n is x2 + x + ny + 2n − 2.

Theorem 2.1. Let n > 5 be a natural number relatively prime to 6, the arrangements A1
n

and A2
n have isomorphic posets of layers but non isomorphic cohomology algebras with 

integer coefficients.

From Theorem 1.5 the two arrangements A1
n and A2

n have isomorphic cohomology 
algebras with rational coefficients. We need a couple of lemmas to prove Theorem 2.1.

Lemma 2.2. Let A be a graded-commutative algebra over Q. The first resonance variety 
R1(A) is a union (possibly infinite) of planes in A1.

Proof. If α ∈ R1(A), then there exists β ∈ A1 \ αQ such that αβ = 0. Thus, the plane 
generated by α and β is contained in R1(A). We obtain the desired result from the 
arbitrariness of α ∈ R1(A). �

We use coordinates t1, t2 on T and we apply Theorem 1.4. The cohomology ring of 
M(A) is generated by the closed forms

ω1 = 1
2π

√
−1

d log(1 − t1),

ω2 = 1
2π

√
−1

d log(1 − t2),

ω3 = 1
2π

√
−1

d log(1 − t1t2),

associated with the hypertori H1, H2, H3 respectively, together with the forms ψ1 =
1

2π
√
−1d log(t1) and ψ2 = 1

2π
√
−1d log(t2) (ψ3 is equal to ψ1 + ψ2). The relations are:

ω1ω2 − ω1ω3 + ω2ω3 − ω3ψ1 = 0,

ω1ψ1 = 0,

ω2ψ2 = 0,

ω3ψ1 + ω3ψ2 = 0.

(1)

Lemma 2.3. The first resonance variety R1(A; Q) of the complement of A is the union 
of the following five planes of H1(M(A); Q);

P1 = 〈ω1, ψ1〉,
P2 = 〈ω2, ψ2〉,
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P3 = 〈ω3, ψ1 + ψ2〉,
P4 = 〈ω1 − ω3, ω1 − ω2 − ψ1〉,
P5 = 〈ω2 − ω3, ω1 − ω2 + ψ2〉.

Proof. The multiplication map f : H1(M(A)) ⊗H1(M(A)) → H2(M(A)) is surjective 
and factors through 

∧2
H1(M(A)). The kernel of

f̃ :
2∧
H1(M(A)) −→ H2(M(A))

α ∧ β �−→ αβ

has dimension 4 =
(5
2
)
− 6, hence L 

def= P (ker f̃) � P 3 is a linear subspace of 
P (

∧2
H1(M(A))) � P 9.

An element α ∈ H1(M(A)) belongs to the first resonance varieties if and only if there 
exists β ∈ H1(M(A)) such that αβ = 0 in H2(M(A)) and β /∈ Cα. This implies that 
α ∧ β is in ker f̃ and so [α ∧ β] is in the linear subspace L. Viceversa if [γ] belongs to L
and is a decomposable tensor (i.e. belongs to Gr(2, H1(M(A)))) then [γ] = [α ∧ β] and 
the plane 〈α, β〉 is contained in the first resonance variety.

Now we prove that the intersection L ∩Gr(2, H1(M(A))) is the disjoint union of five 
points. The relations in eq. (1) implies the following factorized equations

(ω1 − ω3)(ω1 − ω2 − ψ1) = 0,

(ω2 − ω3)(ω1 − ω2 + ψ2) = 0.

These equations ensure that the five different points [Pi], i = 1, . . . , 5 lie in this inter-
section. The dimension of the Grassmannian Gr(k, V ) is k(dimV − k), which in our 
case is equal to 6. Moreover, when k = 2 its degree coincides with the Catalan number 
Cdim V−2. The formula for the degree of the Plücker embedding of the Grassmannian 
is due to Schubert in 1886, we refer to [17]. Hence Gr(2, H1(M(A))) has degree 5 and 
every P 3 ⊂ P 9 intersects Gr(2, 5) scheme-theoretically in five points (this is the general 
case) or in a sub-variety of positive dimension.

We exclude the latter case by explicit computation. Fix the Plücker coordinates 
[xij ]1≤i<j≤5 of P 9, where {ω1, ω2, ω3, ψ1, ψ2} is the chosen basis of H1(M(A)). The 
coordinates of the five planes – written in lexicographical order [x1,2, x1,3, x1,4, . . . , x4,5]
– are:

P1 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

P2 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

P3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 0],

P4 = [1,−1, 1, 0, 1, 0, 0,−1, 0, 0],
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P5 = [1,−1, 0, 0, 1, 0,−1, 0, 1, 0].

Thus the linear subspace L has equation given by the ideal

I
def= (x15, x24, x45, x12 + x13, x13 + x23, x13 − x34 + x35).

The equation of the Grassmannian are given by the Pfaffian of principal minors of size 
four of a skew-symmetric matrix. Thus the defining ideal is

J
def= (x12x34 − x13x24 + x14x23, x12x35 − x13x25 + x15x23,

x12x45 − x14x25 + x15x24, x13x45 − x14x35 + x15x34,

x23x45 − x24x35 + x25x34)

and the sum of the two ideals is

I + J = (x15, x24, x45, x14x25, x14x35, x25x34, x12 + x13, x13 + x23,

x13 − x34 + x35, x12x34 + x14x23, x12x35 − x13x25).

This last ideal is zero dimensional; this computation was done in Sage [18] and by 
hand. Therefore, the intersection of the subspace P (ker f̃) with the Grassmannian 
Gr(2, H1(M(A))) is (scheme theoretically) the union of five points. Since we have exhibit 
five distinct rational points, we obtain that the first resonance variety R1(A; Q) is the 
union of the five corresponding planes. �

The map T → T defined by (t1, t2) �→ (t1, ta1tn2 ) is a cyclic Galois covering. For every 
n and a the above map restricts to a Galois covering πa : M(Aa

n) → M(A) with Galois 
group Z/nZ. The map πa induces an inclusion

π∗
a : H •(M(A);Z) ↪→ H •(M(Aa

n);Z)

of cohomology rings with integer coefficients.
Since n is coprime with 2 and 3, H1(M(Aa

n); Z) has rank five, equal to that of 
H1(M(A); Z). Let α = 1

2π
√
−1d log t1 and β = 1

2π
√
−1d log t2 be the two canonical gen-

erators of H1(T ; Z) as sub-lattice of H1(M(Aa
n); Z): then the morphism π∗

a is

π∗
a(ψ1) = α,

π∗
a(ψ2) = nβ + aα,

π∗
a(ωi) = ωi for i = 1, 2, 3.

Lemma 2.4. The first resonance variety R1(Aa
n; Z) is the union of the following five 

sub-lattices of H1(M(Aa
n); Z):
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Fig. 1. The Hasse diagram of the poset of layers of A1
7 which coincides with the one of A2

7.

Q1 = 〈ω1, α〉,
Q2 = 〈ω2, nβ + aα〉,
Q3 = 〈ω3, nβ + (a + 1)α〉,
Q4 = 〈ω1 − ω3, ω2 − ω1 + α〉,
Q5 = 〈ω2 − ω3, ω1 − ω2 + nβ + aα〉.

Proof. For i = 1, 2, the lattice Hi(M(Aa
n); Z) is embedded in Hi(M(A); Q) and the first 

resonance variety R1(Aa
n; Z) is the intersection

R1(Aa
n;Z) = R1(A;Q)

⋂
H1(M(Aa

n);Z). �
Now we can complete the proof of Theorem 2.1.

Proof of Theorem 2.1. The posets of layers S(A1
n) and S(A2

n) are isomorphic because 
they have 3 connected hypertori that intersect in n points (1, ζin) for i = 0, . . . , n − 1
(where ζn is a nth primitive root of unity). The Hasse diagram of the posets of 
layers in the case n = 7 is represented in Fig. 1. Suppose that there exists an 
isomorphism ϕ : H •(M(A1

n); Z) → H •(M(A2
n); Z); then ϕ must map R1(A1

n; Z)
isomorphically into R1(A2

n; Z). Furthermore, ϕ sends each component Q1
i into an-

other component Q2
f(i). For each (i, j), consider the cardinality ca(i, j) of the torsion 

subgroup of H1(M(Aa
n); Z)/〈Qa

i , Q
a
j 〉 for a = 1, 2. The value of ca(i, j) is n when 

(i, j) = (1, 2), (1, 3), (2, 3), (4, 5) and 1 otherwise, both for a = 1 and a = 2. Thus, 
ϕ maps Q1

1, Q
1
2, Q

1
3 into Q2

1, Q
2
2, Q

2
3 in some order. We define, for any sub-lattice Λ of 

H1(M(Aa
n); Z), its radical Rad Λ:

Rad Λ = {x ∈ H1(M(Aa
n);Z) | ∃n ∈ N+ such that nx ∈ Λ}.

For a = 1, 2 the following equality holds

H1((C∗)2;Z) = Rad

⎛
⎝ ⋂

1≤i<j≤3
〈Qa

i , Q
a
j 〉

⎞
⎠ ,

hence ϕ preserves the sub-lattice L 
def= H1((C∗)2; Z) = 〈α, β〉. Now we claim that there 

is no linear map ϕ|L : L → L that sends the three sub-lattices
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{Q1
1 ∩ L,Q1

2 ∩ L,Q1
3 ∩ L}

into {Q2
1 ∩ L, Q2

2 ∩ L, Q2
3 ∩ L} in some order. The three one-dimensional lattices are 

Q1
1 ∩ L = 〈α〉, Q1

2 ∩ L = 〈nβ + α〉, Q1
3 ∩ L = 〈nβ + 2α〉 for the arrangement A1

n and the 
lattices Q2

1 ∩L = 〈α〉, Q2
2 ∩L = 〈nβ + 2α〉, Q2

3 ∩L = 〈nβ + 3α〉 for the arrangement A2
n. 

In the case a = 1 we can find generators for two of those lattices (e.g. −α and nβ + α) 
such that their sum belongs to the sub-lattice nL. This property does not hold for the 
arrangement A2

n: indeed ±α± (nβ + 2α), ±α± (nβ + 3α), ±(nβ + 2α) ± (nβ + 3α) are 
not in nL (here we use n �= 5). Thus, we conclude that the map ϕ cannot exist. �
3. Second example

The following example is constructed by looking for two toric arrangements with the 
following properties. The underline matroid is not a modular matroid. The two toric 
arrangements are coverings of the same toric arrangement with non cyclic Galois group. 
The smallest example of such arrangements must have rank at least three and four 
hypertori.

Consider the three matrices

N =
(1 1 1 3

0 5 0 5
0 0 5 5

)
, N ′ =

(1 4 1 6
0 5 0 5
0 0 5 5

)
, N ′′ =

(1 0 0 1
0 1 0 1
0 0 1 1

)
.

These integer matrices describe three central toric arrangements A, A′ and A′′ in T =
(C∗)3. Both A and A′ are Galois coverings of A′′ with Galois group Z/5Z ×Z/5Z.

Let ([4], rk, m) be the arithmetic matroid defined by rk(S) = min(|S|, 3) and by

m(S) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |S| ≤ 1
5 if |S| = 2
25 if |S| ≥ 3

.

Let M be the matroid over Z defined by

M(S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z3 if |S| = 0
Z2 if |S| = 1
Z× Z/5Z if |S| = 2
Z/5Z× Z/5Z if |S| ≥ 3

.

Theorem 3.1. The matrices N and N ′ are representations of the arithmetic matroid 
([4], rk, m) and of the matroid M over Z. Moreover, the posets S(A) and S(A′) are not 
isomorphic.
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Proof. The first assertion follows from the Smith normal form of N [S] and of N ′[S], the 
matrices obtained from N and N ′ by taking only the columns indexed by S. The second 
one follows from Lemma 3.2 below. �

The Poincaré polynomials of the complements M(A) and M(A′) coincide with

P (t) = P ′(t) = 110t3 + 41t2 + 7t + 1.

The one of M(A′′) is P ′′(t) = 14t3+17t2+7t +1. The Tutte polynomial of the arithmetic 
matroid ([4], rk, m) is x3 + x2 + 25x + 25y + 48 and the one associated with N ′′ is 
x3 + x2 + x + y.

Define a ∨ b as the set of all least upper bound of a, b in the poset of layers. Consider 
the following property

∃ {i, j} ∪ {k, l} = [4]∀ a ∈ i ∨ j, ∀ b ∈ k ∨ l (a ∨ b �= ∅). (P)

In other words, the property (P) for S(A) (or for S(A′)) says that there exists a choice of 
two hypertori Hi, Hj in A (resp. in A′) such that every connected component of Hi∩Hj

intersects every connected component of Hk ∩Hl.

Lemma 3.2. The property (P) holds for S(A) but not for S(A′).

Proof. We first discuss the poset S(A′). Consider (i, j, k, l) = (1, 2, 3, 4), there are five 
possible joins 1 ∨ 2 that correspond to the five layers

aμ :
{
x = 1
y = μ

,

where μ runs over all the fifth roots of unity. Analogously, the joins of 3 and 4 are the 
five layers

bζ :
{
x = z−5

y = ζz5
,

where ζ runs over all the fifth roots of unity. A join aμ∨bζ exists if and only if the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = 1
y = μ

z5 = 1
y = ζz5

, (2)

admits a solution. If ζ = μ, then the system has five solutions, otherwise there are no 
solutions. In particular, the property (P) does not hold for the poset S(A′).
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The following case by case analysis shows that the three systems for the arrangement 
A analogous to (2) have always a unique solution:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = 1
y = μ

xz5 = 1
xyz3 = ζ

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = 1
z = μ

xy5 = 1
x2y3z = ζ

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = 1
yz = μ

xy5 = 1
y = ζz

. �

Proposition 3.3. The spaces M(A) and M(A′) have non-isomorphic cohomology algebras 
with rational coefficients, i.e.

H •(M(A);Q) �� H •(M(A′);Q).

Proof. Suppose that an isomorphism ϕ : H •(M(A); Q) → H •(M(A′); Q) exists. We 
claim that ϕ(H •(T ; Q)) = H •(T ; Q) where T is the ambient torus. The proof of the 
claim is analogous to the one of Lemma 2.3. The first resonance variety of M(A) and 
M(A′) are the union of the four planes

Q1 = 〈ω1, α〉, Q′
1 = 〈ω1, α〉,

Q2 = 〈ω2, 4α + 5β〉, Q′
2 = 〈ω2, α + 5β〉,

Q3 = 〈ω3, α + 5γ〉, Q′
3 = 〈ω3, α + 5γ〉,

Q4 = 〈ω4, 3α + 5β + 5γ〉, Q′
4 = 〈ω4, 6α + 5β + 5γ〉,

since the unique relations in cohomology of degree two are ωiψi = 0 (see Theorem 1.5). 
Thus there exists a bijection f : [4] → [4] such that ϕ sends Qi into Q′

f(i), for i = 1, . . . , 4. 
Since H1(T ; Q) =

⋂4
i=1〈Qj〉j 	=i in H1(M(A); Q) and H1(T ; Q) =

⋂4
i=1〈Q′

j〉j 	=i in 
H1(M(A′); Q), the map ϕ preserves the subspace H •(T ; Q). Consider now the quotients 
S• = H •(M(A); Q)/(H1(T ; Q)) and S′• = H •(M(A′); Q)/(H1(T ; Q)). The multiplica-
tion map S1 × S2 → S3 has rank 51, instead the map S′1 × S′2 → S′3 has rank 43. The 
rank of the two multiplication maps can be calculated with a computer. Therefore the 
map ϕ cannot be an isomorphism. �

The difference between the rank of S1×S2 → S3 and S′1×S′2 → S′3 can be explained 
intuitively.

For every I ⊆ [4], the set of connected components of ∩i∈IHi has a natural group 
structure, induced by the ambient torus. We call this group LG(I). Moreover given 
I ⊂ J ⊆ [4], there exists a natural group homomorphism π : LG(J) → LG(I) that maps 
a connected component W to the unique connected component of 

⋂
i∈I Hi containing 

W . In our case, since 
⋂

j 	=i Hj =
⋂

j∈[4] Hj for all i ∈ [4], the map LG([4]) → LG([4] \{i})
is the identity. Call πi,j : LG([4]) → LG({i, j}) the canonical projection.
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Table 1
For every set I ⊂ [4], |I| = 2, we describe the kernel of πI and 
of π′

I .

I kerπI kerπ′
I

{1, 2} 〈e2〉 〈e2〉
{1, 3} 〈e1〉 〈e1〉
{1, 4} 〈e1 − e2〉 〈e1 − e2〉
{2, 3} 〈4e1 − e2〉 〈e1 − e2〉
{2, 4} 〈2e1 − e2〉 〈3e1 − e2〉
{3, 4} 〈3e1 − e2〉 〈e2〉

Given I and J of cardinality two, there exists an isomorphism ϕJ
I such that the 

following diagram commutes

LG([4]) LG(I)

LG(J)

πI

πJ

ϕJ
I

if and only if kerπI = kerπJ . We compute all these kernels both for A and A′ and we 
report it in Table 1, where e1 and e2 are two generators of LG([4]) � Z/5Z ×Z/5Z.

From Theorem 1.5, we have that S• is generated by the image of ωi := ωHi,{i} for 
i ∈ [4], of ωa,I for |I| = 2 and a ∈ LG(I), and of ωb,[4]\{i} for i ∈ [4] and b ∈ LG([4]). 
The linear relations are

4∑
i=1

(−1)iωb,[4]\{i} = 0

for each b ∈ LG([4]). The product S1 × S2 → S3 is defined by

ωiωa,{j,k} = (−1)l({i},{j,k})
∑

b∈π−1
j,k(a)

ωb,{i,j,k}.

The analogous definitions and formulas hold for the arrangement A′. In the algebra S′•

the following relations hold for a ∈ LG′({1, 2}) and c ∈ LG′({1, 4}):

(ω′
1 − ω′

2 + ω′
3 − ω′

4)(ω′
a,{1,2} + ω′

ϕ3,4
1,2(a),{3,4}) = 0,

(ω′
1 + ω′

2 − ω′
3 − ω′

4)(ω′
c,{1,4} + ω′

ϕ2,3
1,4(c),{2,3}

) = 0,

since kerπ′
1,2 = kerπ′

3,4 and kerπ′
1,4 = kerπ′

2,3. These equations give ten independent 
relations, the corresponding relations in the algebra S• are only two:

(ω1 − ω2 + ω3 − ω4)
( ∑

ωa,{1,2} +
∑

ωb,{3,4}

)
= 0,
a∈LG({1,2}) b∈LG({3,4})
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(ω1 + ω2 − ω3 − ω4)
( ∑

c∈LG({1,4})
ωc,{1,4} +

∑
d∈LG({2,3})

ωd,{2,3}

)
= 0,

since kerπ1,2 �= kerπ3,4 and kerπ1,4 �= kerπ2,3.
By [5, Theorem E], the G-semimatroids described by N and N ′ are different.
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