
“EXERCISES”

JUNE HUH

1. MATROID BASICS

Let E be a finite set. A matroid on E is a nonempty collection of subsets of E, called bases of
the matroid, that satisfies the exchange property:

For any bases B1, B2 and e1 P B1zB2, there is e2 P B2zB1 such that
`

B1ze1

˘

Y e2 is a basis.

An independent set is a subset of a basis, a dependent set is a subset of E that is not independent,
a circuit is a minimal dependent set, the rank of a subset of E is the cardinality of any one of its
maximal independent subsets, and a flat is a subset of E that is maximal for its rank. The rank
of a matroid is the cardinality of any one of its bases. For any unexplained matroid terms and
facts, see Oxley’s book [Oxl11].

Exercise 1.

(1) Show that the set of circuits C of a matroid satisfies the following properties:

paq For any distinct C1, C2 P C, we have C1 Ę C2.

pbq For any distinct C1, C2 P C and e P C1 X C2, there is C3 P C such that C3 Ď pC1 Y C2qze.

(2) Show that, if C is a family of subsets ofE satisfying paq and pbq, then the collection of maximal
sets not containing any member of C is the set of bases of a matroid on E.

2. CORRELATION CONSTANTS

Let M be a matroid on E, and fix a set of positive weights w “ pweq on the elements e of E.
Randomly pick a basis B of the matroid so that the probability of selecting an individual basis b
is proportional to the product of the weights of its elements:

PpB “ bq 9
ź

ePb

we.

For any matroid M, we define a nonnegative real number αpMq by

αpMq “ sup
!

Ppi P B, j P Bq Ppi R B, j R Bq {Ppi P B, j R Bq Ppi R B, j P Bq
)

,

where the supremum is over all distinct non-loop non-coloop elements i and j in M and all
sets of positive weights w on the elements of M. When every element of M is either a loop or a
coloop, we set αpMq “ 0.
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Exercise 2. Show that the following statements are equivalent:

(1) Ppi P B | j P Bq ď Ppi P Bq.

(2) Ppi R B | j R Bq ď Ppi R Bq.

(3) Ppi P B, j P Bq ď Ppi P Bq Ppj P Bq.

(4) Ppi R B, j R Bq ď Ppi R Bq Ppj R Bq.

(5) Ppi P B, j P Bq Ppi R B, j R Bq ď Ppi P B, j R Bq Ppi R B, j P Bq.

In this case, we say that the events i P B and j P B are negatively correlated.

Exercise 3. Let G1, G2 be subgroups of a finite group G, and let g be an element of G chosen
uniformly at random. Show that the events g P G1 and g P G2 are positively correlated.

Exercise 4. Let MK be the dual matroid of M. Show that

αpMq “ αpMKq.

Exercise 5. Let M be a minor of another matroid N. Show that

αpMq ď αpNq.

Exercise 6. Suppose M1 and M2 have an element that is neither a loop nor a coloop. Show that

αpM1 ‘M2q “ max
 

αpM1q, αpM2q, 1
(

.

Exercise 7. Show that either αpMq “ 0 or αpMq ě 1
4 .

Exercise 8. Classify all matroids with αpMq “ 1
4 .

Two elements x, y of a matroid are parallel if txu, tyu, and tx, yu have rank 1. A parallel ex-
tension of M is a matroid obtained by adding a new element parallel to a nonloop element of
M.

Exercise 9. Let M1 be a parallel extension of M. Show that

αpMq ě 1 ùñ αpM1q “ αpMq.

Find a matroid M and its parallel extension M1 satisfying αpM1q ą αpMq.

By definition, the correlation constant αF of a field F is the real number

αF “ sup
!

αpMq
)

,

where the supremum is over all matroids M realizable over F. The correlation constant of matroids,
denoted αMat, is defined in the same way by taking the supremum over all matroids.

Exercise 10.

(1) Show that αF is at least 1 for any field F.
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(2) How would you show that αF is finite?

(3) How would you show that αMat is finite?

Exercise 11. Show that the value of αMat remains unchanged if we take the supremum only over
matroids with constant weights.

Here are some wild guesses on the correlation constant αF. I think these statements are true,
but I wasn’t brave enough to put (2) and (3) as conjectures in [HSW].

Exercise 12. Prove or disprove:

(1) The correlation constant αF2 is 8
7 .

(2) The correlation constant αF of any field F is 8
7 .

(3) The correlation constant αMat of matroids is 8
7 .

To prove (1), it is enough to show that, for all finite projective geometry over F2,

αpPd´1
F2
q ď

8

7
.

Similarly, to prove (2), it is enough to show that, for all d and all q,

αpPd´1
Fq
q ď

8

7
.

Here is a more precise guess on finite projective geometries.

Exercise 13. Prove or disprove that

αpPd´1
Fq
q “

#

9{8 if d “ 4,
8{7 if d ě 5.

Since the automorphism group of Pd´1
Fq

is doubly transitive, Exercise 13 amounts to finding
the global maximum of a single explicit homogeneous rational function on the positive orthant.

3. CORRELATION IN SIMPLICIAL COMPLEXES

Let n be a positive integer, and let Sn be the pn ´ 1q-dimensional skeleton of the p2n ´ 1q-
dimensional simplex. Thus S2 is the complete graph K4 and S3 is a union of two copies of the
minimal triangulation of the real projective plane. A spanning tree of Sn is a maximal subset of
pn´1q-dimensional simplices in Sn that does not contain any pn´1q-dimensional cycle over F2.

Exercise 14.

(1) Show that the set of spanning trees of Sn is the set of bases of a matroid.

(2) Find a spanning tree of S3 that is not contractible.

Let in and jn be any two disjoint maximal simplices in Sn, and let Tn be a uniform random
spanning tree of Sn.
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Exercise 15.

(1) Show that the events in P Tn and jn P Tn are negatively correlated for n “ 2.

(2) Show that the events in P Tn and jn P Tn are positively correlated for n “ 3.

Prove or disprove the following statements.

(3) The events in P Tn and jn P Tn are positively correlated for n ě 4.

(4) The events in P Tn and jn P Tn are eventually independent:

lim sup
nÑ8

Ppin P Tn, jn P Tnq Ppin R Tn, jn R Tnq {Ppin P Tn, jn R Tnq Ppin R Tn, jn P Tnq “ 1.

It feels to me that everything becomes eventually negatively correlated. Can you disprove
the following statement? For any sequence of connected matroids Mn of rank and corank at
least n, any distinct elements in and jn of Mn, and uniform random basis Bn of Mn, we have

lim
nÑ8

Ppin P Bn, jn P Bnq Ppin R Bn, jn R Bnq {Ppin P Bn, jn R Bnq Ppin R Bn, jn P Bnq ď 1.

4. CORRELATION IN SPIKES

According to Jim Geelen, “it all goes wrong for spikes” [Gee08]:

There is something utopian about matroids representable over finite fields. One does not
need to go far outside the class before matroid theory reveals its true nature. In fact, all of
the horrors are inherent to spikes. From a structural point of view, it is hard to imagine
a more benign looking class.

Exercise 16. A rank d spike with tip t is a matroid on the ground set

E “ tt, x1, y1, . . . , xd, ydu.

A spike has four different types of circuits:

(1) The first collection of circuits C1 consists of all sets of the form tt, xi, yiu, 1 ď i ď d.

(2) The second collection of circuits C2 consists of all sets of the form txi, yi, xj , yju, 1 ď i ă j ď

d.

(3) The third collection of circuits C3, possibly empty, consists of sets of the form

tz1, . . . , zd | zi is either xi or yi, for all 1 ď i ď du.

It is required that no two members of C3 share d´ 1 elements.

(4) The fourth collection of circuits C4 consists of all pd ` 1q-element subsets of E that contain
no member of C1 Y C2 Y C3.

Show that C1 Y C2 Y C3 Y C4 is the set of circuits of a rank d matroid on E.

Definition.
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(1) A matroid M is negatively correlated if, for a basis B of M chosen uniformly at random and
for any distinct elements i and j of M,

Ppi P B, j R Bq Ppi R B, j P Bq ´ Ppi P B, j P Bq Ppi R B, j R Bq ě 0.

A matroid M is balanced if M and all its minors are negatively correlated.

(2) A matroid M is Rayleigh if, for any set of positive weights w “ pweq, a basis B of M chosen
randomly according to the distribution

PpB “ bq 9
ź

ePb

we,

and any distinct elements i and j of M,

Ppi P B, j R Bq Ppi R B, j P Bq ´ Ppi P B, j P Bq Ppi R B, j R Bq ě 0.

Exercise 17.

(1) Prove that a spike is negatively correlated.

(2) Prove that a spike need not be balanced.

Exercise 18. Let e be an element of a spike S, and let B be a basis of Sze chosen uniformly at
random.

(1) Show that, for any distinct elements i and j of Sze,

Ppi P B, j P Bq Ppi R B, j R Bq {Ppi P B, j R Bq Ppi R B, j P Bq ď
8

7
.

(2) Show that the equality is achieved by exactly one matroid of the form Sze, where S is a spike.

(3) Show that the spike S from (2) is binary.

Welsh conjectured that the class of balanced matroids have infinitely many excluded minors
[Oxl11, Conjecture 15.8.1].

Exercise 19. Show that there are only finitely many excluded minors for the class of balanced
matroids that are of the form Sze, where S is a spike. Can you estimate how many there are?

5. CORRELATION IN PAVING MATROIDS

Exercise 20. Let C be a collection of d-element subsets of E satisfying the following condition:

If the symmetric difference of C1, C2 P C has cardinality 2, then every d-element
subset of C1 Y C2 is in C.

Let C1 be the collection of pd` 1q-element subsets of E that contain no member of C. Show that
C Y C1 is the set of circuits of a rank d matroid on E.

Matroids of the above kind are called paving. Mayhew, Newman, Welsh, and Whittle conjec-
tured that, asymptotically, almost every matroid is paving [Oxl11, Conjecture 15.5.8].
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Definition. A Steiner system Spr, k, nq is a collection of k-element subsets of an n-element set E,
called blocks of the Steiner system, with the following property:

Every r-element subset of E is contained in exactly one block.

We fix a Steiner system Spr, k, nq, and let d “ r ` 1.

Exercise 21. Let C be the collection of d-element subsets ofE contained in some block of Spr, k, nq,
and let C1 be the collection of pd ` 1q-element subsets of E that contain no member of C. Show
that C Y C1 is the set of circuits of a rank d paving matroid on E.

We abuse notation and write the above paving matroid by Spr, k, nq.

Exercise 22. Show that the paving matroid Spr, k, nq is negatively correlated.

Let i and j be distinct elements of E, and write the set of blocks V as the disjoint union

V “ Vij Y Vij Y Vi
j Y Vj

i .

Here Vij is the set of blocks containing i and containing j, Vij is the set of blocks not containing
i and not containing j, Vi

j is the set of blocks not containing i and containing j, and Vj
i is the set

of blocks containing i and not containing j.

Exercise 23. Let C be the collection of d-element subsets of E that is contained in a block in
Vi

j Y Vj
i , and let C1 be the collection of pd ` 1q-element subsets of E that contain no member of

C. Show that C Y C1 is the set of circuits of a rank d paving matroid on E.

We abuse notation and write the above paving matroid by Spr, k, n, i, jq.

Exercise 24.

(1) Show that the numbers of bases of Spr, k, n, i, jq containing i and containing j is

|Bij | “

ˆ

n´ 2

r ´ 1

˙

.

(2) Show that the numbers of bases of Spr, k, n, i, jq not containing i and not containing j is

|Bij | “

ˆ

n´ 2

r ` 1

˙

´ 2

ˆ

k ´ 1

r ` 1

˙

«

`

n´1
r´1

˘

`

k´1
r´1

˘ ´

`

n´2
r´2

˘

`

k´2
r´2

˘

ff

.

(3) Show that the numbers of bases of Spr, k, n, i, jq not containing i and containing j is

|Bj
i | “

ˆ

n´ 2

r

˙

´

ˆ

k ´ 1

r

˙

«

`

n´1
r´1

˘

`

k´1
r´1

˘ ´

`

n´2
r´2

˘

`

k´2
r´2

˘

ff

.

By Peter Keevash’s big theorem, we know that Spr, k, nq exists if and only if
ˆ

k ´m

r ´m

˙

divides
ˆ

n´m

r ´m

˙

for all nonnegative m ď r.

Call parameters pr, k, nq valid if it satisfies the above divisibility condition.
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Exercise 25. Find valid parameters pr, k, nq such that Spr, k, n, i, jq is not negatively correlated.
How many did you find? How large is the ratio |Bij ||Bij |{|Bi

j ||B
j
i |?

Here is an easy construction of paving matroids related to the above example. For r ă n,
let H be any hypergraph on the vertex set rns such that all pairwise intersections of hyperedges
have cardinality less than r. Let d “ r ` 1.

Exercise 26. Show that the collection of d-element subsets of rns that is not contained in any
hyperedge is the set of bases of a matroid.

This construction may be useful in proving Welsh’s conjecture on excluded minors for bal-
anced matroids.

6. CORRELATION IN SPARSE PAVING MATROIDS

Exercise 27. Let C be a collection of d-element subsets of E satisfying the following condition:

The symmetric difference of C1, C2 P C does not have cardinality 2 for any
C1, C2 P C.

Let C1 be the collection of pd` 1q-element subsets of E that contain no member of C. Show that
C Y C1 is the set of circuits of a rank d matroid on E.

Matroids of the above kind are called sparse paving. It has been conjectured that, asymptoti-
cally, almost every matroid is sparse paving. This is not stronger than the previously introduced
conjecture on paving matroids, by the following result.

Exercise 28. A paving matroid is sparse paving if and only if its dual is paving.

Mark Jerrum proved that every sparse paving matroid is balanced [Jer06]. Is every sparse
paving matroid Rayleigh? A proof is given in [Eri08, Theorem 4.2.1]. The proof actually claims
something stronger:

For a sparse paving matroid, the coefficients of the polynomial |Bi
jpwq||B

j
i pwq| ´

|Bijpwq||Bijpwq| are nonnegative.

Benjamin Schröter noticed that something’s strange.

Exercise 29. Check that the graphic matroid of the complete graph K4 is sparse paving. Is the
stronger claim in [Eri08] true for K4?

Exercise 30. Prove or disprove that all sparse paving matroids are Rayleigh.
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7. ENTROPY OF SIMPLICIAL COMPLEXES

Recall that the Shannon entropy HpXq of a discrete random variable X is, by definition,

HpXq “ ´
ÿ

k

PpX “ kq logPpX “ kq,

where the logarithm is in base 2 and the sum is over all values of X with nonzero probability. For
a simplicial complex ∆, let I∆ be the dimension of a face drawn uniformly at random from the
collection of all faces of ∆. Kruskal-Katona theorem gives a complete numerical characterization
of f -vectors of simplicial complexes.1

Exercise 31. State the Kruskal-Katona theorem.

The following statements feel true to me (do you agree?), but I could not prove them.

Exercise 32. Prove or disprove the following statements:

(1) For any ε ą 0, there is a simplicial complex ∆ of dimension d such that

p1´ εq log d ď HpI∆q ď log d.

(2) For any ε ą 0, there is a pure simplicial complex ∆ of dimension d such that

p1´ εq log d ď HpI∆q ď log d.

8. SUBMODULAR FUNCTIONS

A real-valued function c on 2rns is said to be strictly submodular if, for any pair of incomparable
subsets I1, I2 Ď rns, we have

cI1 ` cI2 ą cI1 X I2 ` cI1 Y I2 .

The function c is said to be submodular if the equality is allowed in the displayed inequality. The
main theorem of Hodge theory for matroids is a statement about strictly submodular functions.

Exercise 33.

(1) For every n, construct an explicit strictly submodular function on 2rns.

(2) How many independent Sn-invariant strictly submodular functions on 2rns can you find?

A submodular function is symmetric if cI “ crnszI for all I .

Exercise 34. For every n, construct an explicit symmetric strictly submodular function on 2rns.

A submodular function is strictly increasing if cI ă cJ for all I Ĺ J .

Exercise 35. For every n, construct an explicit strictly increasing strictly submodular function
on 2rns.

1According to Ziegler, a similar characterization of f -vectors of pure simplicial complexes is “probably impossible”
[Zie95, Exercise 8.16].
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A submodular function is strictly decreasing if cI ą cJ for all I Ĺ J .

Exercise 36. For every n, construct an explicit strictly decreasing strictly submodular function
on 2rns.

Exercise 37. Let G be a graph with the vertex set rns, and define the cut function of G by

cI “ pthe number of edges joining a vertex in I and not in Iq.

(1) Show that the cut function is a submodular function on 2rns.

(2) When is the cut function strictly submodular?

(3) Define a hypergraph analog of the cut function.

Exercise 38. Let G1, G2, . . . , Gn be subgroups of a finite group G, and let g be an element of G
chosen uniformly at random. Show that the function

cI “ ´ logPpg P Gi for all i P Iq

is a submodular function on 2rns.

Show that the above statement is a special case of the next result, due to Claude Shannon.

Exercise 39. Let X1,X2, . . . ,Xn be any sequence of discrete random variables on a probability
space Ω. For a finite subset I Ď rns, write XI for the random variable pXiqiPI . Show that the
entropy

cI “ HpXIq

is a submodular function on 2rns.

I think the joint entropy function tends to be strictly submodular, if there are dependencies
between the random variables. Can you make this precise?

9. THE CHOW RING OF A MATROID AND ITS VARIATION

9.1. Let M be a loopless matroid on E of rank d ` 1, and let L be the lattice of flats of M.
Introduce variables xF , one for each nonempty proper flat F of M, and consider the polynomial
ring

SpMq “ RrxF sF‰∅,F‰E,FPL .

The Chow ring ApMq is the quotient of SpMq by the ideal generated by the linear forms
ÿ

e1PF

xF ´
ÿ

e2PF

xF ,

one for each pair of distinct elements e1 and e2 of E, and the quadratic monomials

xF1xF2 ,

one for each pair of incomparable nonempty proper flats F1 and F2 of M. We denote the degree
q component of ApMq by AqpMq.
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We may now state the hard Lefschetz theorem and the Hodge-Riemann relations for ma-
troids. The function “deg” in Theorem 9.1 is the unique isomorphism AdpMq » R with the
property

degpxF1xF2 ¨ ¨ ¨xFd
q “ 1 for any chain of nonempty proper flats F1 Ĺ F2 Ĺ ¨ ¨ ¨ Ĺ Fd in M.

Exercise 40.

(1) Show that the squarefree monomials of the form xF1
xF2

¨ ¨ ¨xFd
span AdpMq.

(2) Show that any two squarefree monomials of the form xF1xF2 ¨ ¨ ¨xFd
are equal in AdpMq.

(3) Show that any squarefree monomial of the form xF1
xF2

¨ ¨ ¨xFd
is nonzero in AdpMq.

Theorem 9.1. Let c be a strictly submodular function on 2E satisfying c∅ “ cE “ 0, and let L be
the element

L “
ÿ

F

cFxF P A
1pMq,

where the sum is over all nonempty proper flats of M.

(1) (Poincaré duality) For every nonnegative integer q ď d
2 , we have a nondegenerate pairing

AqpMq ˆAd´qpMq ÝÑ R, pη1, η2q ÞÝÑ degpη1 η2q.

(2) (Hard Lefschetz theorem) For every nonnegative integer q ď d
2 , the multiplication by L

defines an isomorphism

AqpMq ÝÑ Ad´qpMq, η ÞÝÑ Ld´2q η.

(3) (Hodge-Riemann relations) For every nonnegative integer q ď d
2 , the multiplication by L

defines a symmetric bilinear form

AqpMq ˆAqpMq ÝÑ R, pη1, η2q ÞÝÑ p´1qq degpη1η2Ld´2qq

that is positive definite on the kernel of Ld´2q`1.

Exercise 41.

(1) Prove the above theorem when d “ 2.

(2) Prove the above theorem when d “ 3.

9.2. Let N be a loopless matroid on E of rank d, and let L be the lattice of flats of N. Introduce
variables xF , one for each proper flat F of N, and consider the polynomial ring

S̃pNq “ RrxF sF‰E,FPL .

The Chow ring ÃpNq is the quotient of S̃pNq by the ideal generated by the quadratic monomials

xF1
xF2

,

one for each pair of incomparable proper flats F1 and F2 of N, and the quadratic forms

yixF , yi “ pthe sum of all xG for proper flats G not containing iq,
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for every element i and every proper flat F not containing i. The function “deg” in Theorem 9.2
is the unique isomorphism ÃdpNq » R with the property

degpx∅xF1 ¨ ¨ ¨xFd
q “ 1 for any chain of nonempty proper flats ∅ Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fd in N.

Exercise 42.

(1) Show that the squarefree monomials of the form x∅xF1 ¨ ¨ ¨xFd
span ÃdpNq.

(2) Show that any two squarefree monomials of the form x∅xF1
¨ ¨ ¨xFd

are equal in ÃdpMq.

(3) Show that any squarefree monomial of the form x∅xF1 ¨ ¨ ¨xFd
is nonzero in ÃdpMq.

Theorem 9.2. Let c be a strictly decreasing strictly submodular function on 2E satisfying cE “ 0,
and let L be the element

L “
ÿ

F

cFxF P Ã
1pNq,

where the sum is over all proper flats of N.

(1) (Poincaré duality) For every nonnegative integer q ď d
2 , we have a nondegenerate pairing

ÃqpNq ˆ Ãd´qpNq ÝÑ R, pη1, η2q ÞÝÑ degpη1 η2q.

(2) (Hard Lefschetz theorem) For every nonnegative integer q ď d
2 , the multiplication by L

defines an isomorphism

ÃqpNq ÝÑ Ãd´qpNq, η ÞÝÑ Ld´2q η.

(3) (Hodge-Riemann relations) For every nonnegative integer q ď d
2 , the multiplication by L

defines a symmetric bilinear form

ÃqpNq ˆ ÃqpNq ÝÑ R, pη1, η2q ÞÝÑ p´1qq degpη1η2Ld´2qq

that is positive definite on the kernel of Ld´2q`1.

Exercise 43.

(1) Prove the above theorem when d “ 2.

(2) Prove the above theorem when d “ 3.

One beautiful property of the Chow ring ÃpNq is that it contains the graded Möbius algebra of
the lattice of flats L “ L pNq. Introduce symbols yF , one for each flat F of N, and construct
vector spaces

BppNq “
à

FPL p

QyF , B˚pNq “
à

FPL

QyF .

We equip B˚pNqwith the structure of a commutative graded algebra over Q by setting

yF1
yF2

“

$

&

%

yF1_F2
if rankpF1q ` rankpF2q “ rankpF1 _ F2q,

0 if rankpF1q ` rankpF2q ą rankpF1 _ F2q.

For simplicity, we write yi instead of ytiu.
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Exercise 44. There is a unique graded algebra homomorphism

ϕ : BpNq ÝÑ ÃpNq, yF ÞÝÑ
ź

iPBF

yi,

where BF is any maximal independent set of N in F .

(1) Show that ϕ does not depend on the choice of bases BF of F .

(2) Show that ϕ is a graded algebra homomorphism.

(3) Show that ϕ is injective.

(4) Show that deg ϕpyEq “ 1.

10. VOLUME POLYNOMIALS

Let bpwq be a homogeneous degree d polynomial in the variables w “ pw1, . . . , wnq with
positive coefficients. We write

bpw ` 1q “ bdpwq ` ¨ ¨ ¨ ` b2pwq ` b1pwq ` b0pwq,

where bkpwq is homogeneous of degree k.

Exercise 45. Are there implications between the following statements?

(1) The polynomial b2pwq is stable.

(2) The function log bpwq is concave on the positive orthant.

(3) The function bpwq1{d is concave on the positive orthant.

Exercise 46. Can we explicitly write down the volume polynomial for the Chow ring ÃpNq?
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