
Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory
The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 1: The combinatorics of Kazhdan-Lusztig-Stanley polynomials

Exercises

Let P be a ranked poset. Recall that we defined the characteristic function � := ⇣

�1
⇣̄ 2 I(P ), where

⇣

xy

(t) := 1 and thus ⇣̄
xy

(t) = t

r

xy for all x  y. Let f 2 I(P ) the the right KLS-function associated with

�, which is characterized by the following properties:

• f

xx

(t) = 1 for all x 2 P

• deg f
xy

(t) < r

xy

/2 for all x < y 2 P

• f̄ = �f , i.e. t

r

xz

f

xz

(t�1) =
X

xyz

�

xy

(t)f
yz

(t) for all x  z 2 P .

1. Suppose that P has a unique minimal element 0 (of rank 0) and a unique maximal element 1 (of rank d).

Let W
i

be the number of elements of P of rank i.

a) Show that �01(t) = t

d �W1t
d�1 + lower order terms.

Hint: First show that ⇣�1
0x (t) = �1 for every rank 1 element x 2 P .

b) Show that f01(t) = 1 + (W
d�1 �W1)t+ higher order terms.

c) Try to find formulas for the coe�cient of td�2 in �01(t) and the coe�cient of t2 in f01(t). Your an-

swers should involve the numbers

W

ij

:= |{(x, y) 2 P

2 | x  y, rkx = i, rk y = j}|.

(A solution will be given in Lecture 5.)

2. Let P
n

be the poset whose elements are subsets of [n] of cardinality not equal to n� 1, with rkS = |S| for
all proper subsets and rk[n] = n� 1.

a) Show that, for every proper subset S ( [n], �;S(t) = (t� 1)|S|.

b) Show that �;[n](t) =
(t� 1)n + (�1)n(t� 1)

t

.

3. Let ⇧
n

be the poset of partitions of n, ordered by refinement, where the rank of a partition is equal to n

minus the number of parts. Thus the minimal element 0 is the partition into n singletons, which has rank 0,

and the maximal element 1 is the partition into a single part, which has rank n� 1.

a) Compute f01(t) for small n. Hint: For n  5, you can get the answer using Problem 1(b). For

n  7, you can get the answer using Problem 1(c).

b) Show that �01(t) = (t� 1)(t� 2) · · · (t� (n� 1)).
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Lecture 2: Introduction to intersection cohomology

Exercise

LetX be a variety over Fq. Let PX(t) :=
P

dim IH2i(X)ti, and for all p 2 X, let PX,p(t) :=
P

dim IH2i(ICX,p)t
i.

Recall that, assuming that all cohomolgy groups are chaste (meaning that they vanish in odd degree and

the Frobenius automorphism acts on as scalar multiplication by qi on the degree 2i part), the Grothendieck-

Lefschetz trace formula and Poincaré duality combine to tell us that

qdimXPX(q�1) =
X

p2X

PX,p(q).

Recall also that, if X is an a�ne cone with cone point 0 2 X, then PX,0(t) = PX(t), and this polynomial has

degree strictly less than the dimension of X (unless X is a point).

1. Fix a prime power q, and let Xn be the variety of n ⇥ n nilpotent matrices over Fq with rank at

most 1. This is a singular variety with a stratification into two pieces, namely the nilpotent matrices of rank

exactly 1 (which admits a transitive action of GLn(Fq) and is therefore smooth) and the zero matrix.

a) Compute |Xn r {0}|. Hint: The image and the kernel determine the matrix up to scale.

b) Use part (a) to compute the Poincaré polynomial for the intersection cohomology of Xn. (You may assume

that everything is chaste.)
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Lecture 3: The main theorem

Exercises

1. Let C = SpecR be an a�ne variety.

a) Show that an action of Gm on C is equivalent to a Z-grading on R.

b) Show that this action contracts C to a single point if and only if R is generated in positive degrees.

2. Recall that we defined Vn := {p 2 An | p1 + · · · + pn = 0}, and we defined Yn to be the closure of

Vn inside of (P1)n. We then computed the local intersection cohomology Poincaré polynomial of Yn at its

most singular point (1, . . . ,1). Compute the global intersection cohomology Poincaré polynomial of Yn.

(We will come back to this in Lecture 5.)

3. For people familiar with toric geometry. Let T be a split algebraic torus over Fq with cochar-

acter lattice N and let ⌃ be a rational fan in NR containing the zero cone. We order ⌃ by reverse inclusion

and equip it with the rank function given by codimension. Thus the maximal element is 0, and its rank is

equal to the dimension of T .

Let Y be the T -toric variety associated with ⌃. The cones of ⌃ are in bijection with T -orbits in Y and

with T -invariant a�ne open subsets of Y . Given � 2 ⌃, let V� denote the corresponding orbit, let W� denote

the corresponding a�ne open subset, and let T� ⇢ T be the stabilizer of V�. We then have dimV� = codim�,

and

�  ⌧ () V̄� ⇢ V⌧ () W� � W⌧ () W� � V⌧ .

For each � 2 ⌃, we have a canonical identification V�
⇠= T/T�, and we define e� 2 V� to be the identity

element of T/T�. In particular, we have T� ⇢ T ⇠= V0 ⇢ Y for all �, and we define

C� := W� \ T̄�.

The character lattice of T� is equal to N� := N \ R�, C� is isomorphic to the T�-toric variety associated

with the cone � ⇢ N�,R, and e� 2 C� is the unique fixed point. If �  ⌧ , then U�⌧ := C� \ V⌧ is equal to the

T�-orbit in C� corresponding to the face ⌧ of �.

a) For each � 2 ⌃, find a homomorphism ⇢� : Gm ! T ⇢ Aut(Y ) that contracts C� to e�.

b) For each � 2 ⌃, find a subgroup G� ⇢ T such that the action map G� ⇥ C� ! Y is an open immersion.

c) For all �  ⌧ 2 ⌃, compute |C� \ V⌧ (Fqs)|, and show that it is equal to �⌧ (q) for a certain (very simple!)

polynomial �⌧ (t). Our main theorem says that  2 I(⌃) is a ⌃-kernel. Prove directly that  is a ⌃-kernel

without all of the geometry.

If ⌃ is equal to the cone over a polytope � along with all of its faces, then the largest right KLS-function

associated with  (the intersection cohomology Poincaré polynomial of Y ) is known as the g-polynomial of

�. Note that this makes sense even if ⌃ is not rational, because we can still define  and show that it is a

⌃-kernel.
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Lecture 4: Hyperplane arrangements

Exercises

1. Fix a prime power q and a positive integer n, and consider the vector space V = Fn
q . Let Pq,n be

the hyperplane arrangement consisting of all hyperplanes in V . Prove that �Pq,n(t) = (t�q)(t�q2) · · · (t�qn).

Hint: First prove that q is a root. With some more work, you can prove that qm is a root for all m  n.

Then use Problem 1(a) from the first set of exercises.

2. Let Bn be the arrangement in kn/k consisting of the
�
n
2

�
hyperplanes {xi = xj}. Recall that flats

of Bn are in bijection with partitions of the set [n]. Let P = (P1, . . . , Pm) be such a partition into m parts,

and let F be the associated flat.

a) Show that the contraction (Bn)F is isomorphic to Bm.

b) Show that the localization BF
n is isomorphic to B|P1| ⇥ · · ·⇥ B|Pm|.

3. Let A be a hyperplane arrangement in V such that the intersection of all the hyperplanes is {0}.
Let UA := V r

[

H2A
H be the complement of A. Recall that the we have a natural injection

V ,!
Y

H2A
V/H ⇠=

Y

H2A
A1,

and we define YA to be the closure of V inside of
Y

H2A
P1. For any flat F ⇢ V , we made the following

definitions:

(eF )H :=

8
<

:
0 if F ⇢ H VF := {p 2 YA | pH = 1 () F 6⇢ H}

1 if F 6⇢ H CF := {p 2 YA | pH = 0 () F ⇢ H}.

Here’s what we still need to show in order to apply our main theorem and conclude that fA(t) = PYA,eV (t).

(I think that parts (a) and (e) are the most satisfying to work through.)

a) eF 2 YA. Hint: Choose a generic element of F and “let it run o↵ to infinity”.

b) VF = V + eF (it is clear that the RHS is contained in the LHS).

c) YA =
`

F VF (it is clear that the RHS is contained in the LHS).

d) For all pairs of flats F  G (equivalently G ⇢ F ), we have CF \ VG
⇠= UAG

F
.

Hint: First show that CF \ VG
⇠= YAG

F
and use this to reduce to the case G = {0} and F = V .

e) By part (b), we have an isomorphism VF
⇠= V/ Stab(eF ) = V/F . Fix a section VF ! V of the projection,

and show that the map VF ⇥ CF ! YA taking (v, p) to v + p is an open immersion.

Hint: By dimension count, it’s enough to prove injectivity. That is, if v + p = v0 + p0, we need to show that

v = v0. Since v and v0 lie in a subspace complementary to F ⇢ V , it is enough to show that v and v0 have

the same image in V/F , which is equivalent to the statement that v + eF = v0 + eF .
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Lecture 5: The Z-polynomial

Exercises

1. Let P be a ranked poset. Let  2 I(P ) be a P -kernel, and let f, g, Z 2 I(P ) be the associated

right KLS-function, left KLS-function, and Z-function. Recall that this means the following:

• f

xx

(t) = 1 = g

xx

(t) for all x 2 P ,

• deg f
xy

(t) and deg g
xy

(t) are both strictly less than r

xy

/2 for all x < y 2 P ,

• f̄ = f and ḡ = g,

• Z = gf = gf̄ = ḡf .

Show that, if you know Z, you can compute f , g, and  recursively.

2. Let A be a hyperplane arrangement in a vector space V of dimension d. Let cA(i) be the coe�cient of ti

in fA(t). For any increasing sequence k1  · · ·  k

i

, let

D

k1···ki :=
�

�

�

n

(F1, . . . , Fi

)
�

�

�

F1 ⇢ · · · ⇢ F

i

and dimF

j

= k

j

for all j
o

�

�

�

.

Recall that we proved that

cA(i) =
X

F

cAF (dimF � i)�
X

F 6=V

cAF (i� codimF ).

We used this to show that cA(1) = D1 �D

d�1 and cA(2) = D2 +D13 �D23 �D

d�2 �D1(d�2) +D2(d�2).

Find a similar formula for cA(3).

Hint: Your formula should have 18 terms, half of which are positive and half of which are negative.

Each term should be a D number with at most 3 indices.


