Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 1: The combinatorics of Kazhdan-Lusztig-Stanley polynomials

Exercises

Let P be a ranked poset. Recall that we defined the characteristic function $\chi:=\zeta^{-1} \bar{\zeta} \in I(P)$, where $\zeta_{x y}(t):=1$ and thus $\bar{\zeta}_{x y}(t)=t^{r_{x y}}$ for all $x \leq y$. Let $f \in I(P)$ the the right KLS-function associated with χ, which is characterized by the following properties:

- $f_{x x}(t)=1$ for all $x \in P$
- $\operatorname{deg} f_{x y}(t)<r_{x y} / 2$ for all $x<y \in P$
- $\bar{f}=\chi f$, i.e. $t^{r_{x z}} f_{x z}\left(t^{-1}\right)=\sum_{x \leq y \leq z} \chi_{x y}(t) f_{y z}(t)$ for all $x \leq z \in P$.

1. Suppose that P has a unique minimal element 0 (of rank 0) and a unique maximal element 1 (of rank d). Let W_{i} be the number of elements of P of rank i.
a) Show that $\chi_{01}(t)=t^{d}-W_{1} t^{d-1}+$ lower order terms.

Hint: First show that $\zeta_{0 x}^{-1}(t)=-1$ for every rank 1 element $x \in P$.
b) Show that $f_{01}(t)=1+\left(W_{d-1}-W_{1}\right) t+$ higher order terms.
c) Try to find formulas for the coefficient of t^{d-2} in $\chi_{01}(t)$ and the coefficient of t^{2} in $f_{01}(t)$. Your answers should involve the numbers

$$
W_{i j}:=\left|\left\{(x, y) \in P^{2} \mid x \leq y, \operatorname{rk} x=i, \operatorname{rk} y=j\right\}\right| .
$$

(A solution will be given in Lecture 5.)
2. Let P_{n} be the poset whose elements are subsets of $[n]$ of cardinality not equal to $n-1$, with rk $S=|S|$ for all proper subsets and $\operatorname{rk}[n]=n-1$.
a) Show that, for every proper subset $S \subsetneq[n], \chi_{\emptyset S}(t)=(t-1)^{|S|}$.
b) Show that $\chi_{\emptyset[n]}(t)=\frac{(t-1)^{n}+(-1)^{n}(t-1)}{t}$.
3. Let Π_{n} be the poset of partitions of n, ordered by refinement, where the rank of a partition is equal to n minus the number of parts. Thus the minimal element 0 is the partition into n singletons, which has rank 0 , and the maximal element 1 is the partition into a single part, which has rank $n-1$.
a) Compute $f_{01}(t)$ for small n. Hint: For $n \leq 5$, you can get the answer using Problem 1(b). For $n \leq 7$, you can get the answer using Problem 1(c).
b) Show that $\chi_{01}(t)=(t-1)(t-2) \cdots(t-(n-1))$.

Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 2: Introduction to intersection cohomology

Exercise

Let X be a variety over \mathbb{F}_{q}. Let $P_{X}(t):=\sum \operatorname{dim} I H^{2 i}(X) t^{i}$, and for all $p \in X$, let $P_{X, p}(t):=\sum \operatorname{dim} I H^{2 i}\left(\mathrm{IC}_{X, p}\right) t^{i}$. Recall that, assuming that all cohomolgy groups are chaste (meaning that they vanish in odd degree and the Frobenius automorphism acts on as scalar multiplication by q^{i} on the degree $2 i$ part), the GrothendieckLefschetz trace formula and Poincaré duality combine to tell us that

$$
q^{\operatorname{dim} X} P_{X}\left(q^{-1}\right)=\sum_{p \in X} P_{X, p}(q)
$$

Recall also that, if X is an affine cone with cone point $0 \in X$, then $P_{X, 0}(t)=P_{X}(t)$, and this polynomial has degree strictly less than the dimension of X (unless X is a point).

1. Fix a prime power q, and let X_{n} be the variety of $n \times n$ nilpotent matrices over \mathbb{F}_{q} with rank at most 1. This is a singular variety with a stratification into two pieces, namely the nilpotent matrices of rank exactly 1 (which admits a transitive action of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and is therefore smooth) and the zero matrix.
a) Compute $\left|X_{n} \backslash\{0\}\right|$. Hint: The image and the kernel determine the matrix up to scale.
b) Use part (a) to compute the Poincaré polynomial for the intersection cohomology of X_{n}. (You may assume that everything is chaste.)

Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 3: The main theorem

Exercises

1. Let $C=\operatorname{Spec} R$ be an affine variety.
a) Show that an action of \mathbb{G}_{m} on C is equivalent to a \mathbb{Z}-grading on R.
b) Show that this action contracts C to a single point if and only if R is generated in positive degrees.
2. Recall that we defined $V_{n}:=\left\{p \in \mathbb{A}^{n} \mid p_{1}+\cdots+p_{n}=0\right\}$, and we defined Y_{n} to be the closure of V_{n} inside of $\left(\mathbb{P}^{1}\right)^{n}$. We then computed the local intersection cohomology Poincaré polynomial of Y_{n} at its most singular point (∞, \ldots, ∞). Compute the global intersection cohomology Poincaré polynomial of Y_{n}. (We will come back to this in Lecture 5.)
3. For people familiar with toric geometry. Let T be a split algebraic torus over \mathbb{F}_{q} with cocharacter lattice N and let Σ be a rational fan in $N_{\mathbb{R}}$ containing the zero cone. We order Σ by reverse inclusion and equip it with the rank function given by codimension. Thus the maximal element is 0 , and its rank is equal to the dimension of T.

Let Y be the T-toric variety associated with Σ. The cones of Σ are in bijection with T-orbits in Y and with T-invariant affine open subsets of Y. Given $\sigma \in \Sigma$, let V_{σ} denote the corresponding orbit, let W_{σ} denote the corresponding affine open subset, and let $T_{\sigma} \subset T$ be the stabilizer of V_{σ}. We then have $\operatorname{dim} V_{\sigma}=\operatorname{codim} \sigma$, and

$$
\sigma \leq \tau \Longleftrightarrow \bar{V}_{\sigma} \subset V_{\tau} \Longleftrightarrow W_{\sigma} \supset W_{\tau} \Longleftrightarrow W_{\sigma} \supset V_{\tau} .
$$

For each $\sigma \in \Sigma$, we have a canonical identification $V_{\sigma} \cong T / T_{\sigma}$, and we define $e_{\sigma} \in V_{\sigma}$ to be the identity element of T / T_{σ}. In particular, we have $T_{\sigma} \subset T \cong V_{0} \subset Y$ for all σ, and we define

$$
C_{\sigma}:=W_{\sigma} \cap \bar{T}_{\sigma} .
$$

The character lattice of T_{σ} is equal to $N_{\sigma}:=N \cap \mathbb{R} \sigma, C_{\sigma}$ is isomorphic to the T_{σ}-toric variety associated with the cone $\sigma \subset N_{\sigma, \mathbb{R}}$, and $e_{\sigma} \in C_{\sigma}$ is the unique fixed point. If $\sigma \leq \tau$, then $U_{\sigma \tau}:=C_{\sigma} \cap V_{\tau}$ is equal to the T_{σ}-orbit in C_{σ} corresponding to the face τ of σ.
a) For each $\sigma \in \Sigma$, find a homomorphism $\rho_{\sigma}: \mathbb{G}_{m} \rightarrow T \subset \operatorname{Aut}(Y)$ that contracts C_{σ} to e_{σ}.
b) For each $\sigma \in \Sigma$, find a subgroup $G_{\sigma} \subset T$ such that the action map $G_{\sigma} \times C_{\sigma} \rightarrow Y$ is an open immersion.
c) For all $\sigma \leq \tau \in \Sigma$, compute $\left|C_{\sigma} \cap V_{\tau}\left(\mathbb{F}_{q^{s}}\right)\right|$, and show that it is equal to $\kappa_{\sigma \tau}(q)$ for a certain (very simple!) polynomial $\kappa_{\sigma \tau}(t)$. Our main theorem says that $\kappa \in I(\Sigma)$ is a Σ-kernel. Prove directly that κ is a Σ-kernel without all of the geometry.

If Σ is equal to the cone over a polytope Δ along with all of its faces, then the largest right KLS-function associated with κ (the intersection cohomology Poincaré polynomial of Y) is known as the \boldsymbol{g}-polynomial of Δ. Note that this makes sense even if Σ is not rational, because we can still define κ and show that it is a Σ-kernel.

Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 4: Hyperplane arrangements

Exercises

1. Fix a prime power q and a positive integer n, and consider the vector space $V=\mathbb{F}_{q}^{n}$. Let $\mathcal{P}_{q, n}$ be the hyperplane arrangement consisting of all hyperplanes in V. Prove that $\chi_{\mathcal{P}_{q, n}}(t)=(t-q)\left(t-q^{2}\right) \cdots\left(t-q^{n}\right)$.

Hint: First prove that q is a root. With some more work, you can prove that q^{m} is a root for all $m \leq n$. Then use Problem 1(a) from the first set of exercises.
2. Let \mathcal{B}_{n} be the arrangement in k^{n} / k consisting of the $\binom{n}{2}$ hyperplanes $\left\{x_{i}=x_{j}\right\}$. Recall that flats of \mathcal{B}_{n} are in bijection with partitions of the set $[n]$. Let $P=\left(P_{1}, \ldots, P_{m}\right)$ be such a partition into m parts, and let F be the associated flat.
a) Show that the contraction $\left(\mathcal{B}_{n}\right)_{F}$ is isomorphic to \mathcal{B}_{m}.
b) Show that the localization \mathcal{B}_{n}^{F} is isomorphic to $\mathcal{B}_{\left|P_{1}\right|} \times \cdots \times \mathcal{B}_{\left|P_{m}\right|}$.
3. Let \mathcal{A} be a hyperplane arrangement in V such that the intersection of all the hyperplanes is $\{0\}$. Let $U_{\mathcal{A}}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ be the complement of \mathcal{A}. Recall that the we have a natural injection

$$
V \hookrightarrow \prod_{H \in \mathcal{A}} V / H \cong \prod_{H \in \mathcal{A}} \mathbb{A}^{1}
$$

and we define $Y_{\mathcal{A}}$ to be the closure of V inside of $\prod_{H \in \mathcal{A}} \mathbb{P}^{1}$. For any flat $F \subset V$, we made the following definitions:

$$
\left(e_{F}\right)_{H}:=\left\{\begin{array}{lll}
0 & \text { if } F \subset H \\
\infty & \text { if } F \not \subset H
\end{array} \quad \begin{array}{ll}
F & V_{F}:=\left\{p \in Y_{\mathcal{A}} \mid p_{H}=\infty \Longleftrightarrow F \not \subset H\right\} \\
C_{F}:=\left\{p \in Y_{\mathcal{A}} \mid p_{H}=0 \Longleftrightarrow F \subset H\right\}
\end{array}\right.
$$

Here's what we still need to show in order to apply our main theorem and conclude that $f_{\mathcal{A}}(t)=P_{Y_{\mathcal{A}}, e_{V}}(t)$. (I think that parts (a) and (e) are the most satisfying to work through.)
a) $e_{F} \in Y_{\mathcal{A}}$. Hint: Choose a generic element of F and "let it run off to infinity".
b) $V_{F}=V+e_{F}$ (it is clear that the RHS is contained in the LHS).
c) $Y_{\mathcal{A}}=\coprod_{F} V_{F}$ (it is clear that the RHS is contained in the LHS).
d) For all pairs of flats $F \leq G$ (equivalently $G \subset F$), we have $C_{F} \cap V_{G} \cong U_{\mathcal{A}_{F}^{G}}$.

Hint: First show that $\overline{C_{F}} \cap \overline{V_{G}} \cong Y_{\mathcal{A}_{F}^{G}}$ and use this to reduce to the case $G=\{0\}$ and $F=V$.
e) By part (b), we have an isomorphism $V_{F} \cong V / \operatorname{Stab}\left(e_{F}\right)=V / F$. Fix a section $V_{F} \rightarrow V$ of the projection, and show that the map $V_{F} \times C_{F} \rightarrow Y_{\mathcal{A}}$ taking (v, p) to $v+p$ is an open immersion.
Hint: By dimension count, it's enough to prove injectivity. That is, if $v+p=v^{\prime}+p^{\prime}$, we need to show that $v=v^{\prime}$. Since v and v^{\prime} lie in a subspace complementary to $F \subset V$, it is enough to show that v and v^{\prime} have the same image in V / F, which is equivalent to the statement that $v+e_{F}=v^{\prime}+e_{F}$.

Nordfjordeid Summer School 2018: Combinatorics and Hodge Theory The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials

Lecture 5: The Z-polynomial

Exercises

1. Let P be a ranked poset. Let $\kappa \in I(P)$ be a P-kernel, and let $f, g, Z \in I(P)$ be the associated right KLS-function, left KLS-function, and Z-function. Recall that this means the following:

- $f_{x x}(t)=1=g_{x x}(t)$ for all $x \in P$,
- $\operatorname{deg} f_{x y}(t)$ and $\operatorname{deg} g_{x y}(t)$ are both strictly less than $r_{x y} / 2$ for all $x<y \in P$,
- $\bar{f}=\kappa f$ and $\bar{g}=g \kappa$,
- $Z=g \kappa f=g \bar{f}=\bar{g} f$.

Show that, if you know Z, you can compute f, g, and κ recursively.
2. Let \mathcal{A} be a hyperplane arrangement in a vector space V of dimension d. Let $c_{\mathcal{A}}(i)$ be the coefficient of t^{i} in $f_{\mathcal{A}}(t)$. For any increasing sequence $k_{1} \leq \cdots \leq k_{i}$, let

$$
D_{k_{1} \cdots k_{i}}:=\mid\left\{\left(F_{1}, \ldots, F_{i}\right) \mid F_{1} \subset \cdots \subset F_{i} \text { and } \operatorname{dim} F_{j}=k_{j} \text { for all } j\right\} \mid
$$

Recall that we proved that

$$
c_{\mathcal{A}}(i)=\sum_{F} c_{\mathcal{A}_{F}}(\operatorname{dim} F-i)-\sum_{F \neq V} c_{\mathcal{A}_{F}}(i-\operatorname{codim} F)
$$

We used this to show that $c_{\mathcal{A}}(1)=D_{1}-D_{d-1}$ and $c_{\mathcal{A}}(2)=D_{2}+D_{13}-D_{23}-D_{d-2}-D_{1(d-2)}+D_{2(d-2)}$. Find a similar formula for $c_{\mathcal{A}}(3)$.

Hint: Your formula should have 18 terms, half of which are positive and half of which are negative. Each term should be a D number with at most 3 indices.

