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Structure of the talk.

1. The flavour and spice of Calabi–Yau fourfolds

2. Construction of families of vertex algebras in
geometry

3. wall-crossing with insertions

3.1 The main statement.
3.2 Are the invariants well defined?
3.3 Which stability conditions do I use?

4. Application to DT/PT wall-crossing for 3-folds
4.1 Wall-crossing between PT0 and PT1 as an example.
4.2 Simplifying assumptions.
4.3 Elliptic fibration over a 3-fold.

5. Further applications coming eventually.



The flavour and spice of Calabi–Yau fourfolds - orientations

1. Existence of orientations is necessary to define invariants and changing

orientations introduces a sign.

2. They were shown to exist for (compactly supported) sheaves 1 by
Cao–Gross–Joyce (19’) in the compact case and in B.(20’) for any
quasi-projective Calabi–Yau fourfold.

3. Wall-crossing is expressed in terms of taking direct sums of sheaves. So,
comparing orientations under direct sums is needed.

Here α, β, γ some topological data and comparison gives signs ϵα,β .

1More generally compactly supported perfect complexes.
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The flavour and spice of Calabi–Yau fourfolds - surfaces and obstruction
theories

1. Increasing the dimension leads to a larger freedom of the dimension of support of
sheaves. This makes the interplay between virtual dimension and insertions richer
and offers more playground with stability conditions.

2. Since the obstruction theories are not of Behrend–Fantechi type, I need to find a
new way of obtaining self-dual obstruction theories on enhanced master spaces.

3. The proof that the invariants counting semistable sheaves are well-defined needs
to be direct.
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Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs CJuK. The
construction is not specific to fourfolds but due to the need to relate degrees of
insertions to virtual dimensions appears naturally in this setting.

2. They are given by the following data on a graded vector space V•(see Li(02’) for
a similar definition)

2.1 a vacuum vector |0⟩ ∈ V0,
2.2 a linear operator T : V• → V•+2 called the translation operator ,
2.3 and a formal u-family of state-field correspondences which is a degree zero linear map

Yu : V• −→ End(V•)Jz, z
−1KJuK ,

for deg(u) = 0, deg(z) = −2 extending to a (u)-adic continuous QJuK-linear map

Yu : V•JuK −→ End(V•)Jz, z
−1KJuK .

It must additionally induce

Yu(v , z) =
∑
n∈Z

vu,nz
−n−1 : V• → V•((z))JuK ,

for each v ∈ V• ⊂ V•JuK and

vu,n : V• → V•JuK

linear for each n ∈ Z.
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Families of Vertex algebras in a picture

2

2Should the pole along z = 0 be constant for all u or should it vary?



Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:

1. (vacuum) T |0⟩ = 0 , Yu(|0⟩, z) = id , Yu(v , z)|0⟩ ∈ v + zV•[[u, z]] ,

2. (translation covariance)3 [T ,Yu(v , z)] =
d
dz
Yu(v , z) for any v ∈ V• ,

3. (locality) for any v ,w ∈ V• and k ≥ 0, there is an N ≫ 0 such that the k’th
order deformations of the fields

Y≤k (v , z) :=
k∑

n=0

un [tn]
{
Yt(v , z)

}
. (1)

satisfy
(z1 − z2)

N [Y≤k (v , z1),Y≤k (w , z2)] = 0 ,

where the supercommutator is defined on End(V•)JuK by

[A,B] = A ◦ B − (−1)|A||B|B ◦ A .

The reason for introducing the finite order deformations and Yu(v , z) mapping to
V•((z))JuK rather than V•JuK((z)) is motivated by the geometric construction.

3Infinitesimal version of skew-symmetry (assuming locality).
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Geometric construction I

The underlying vector space for the geometric construction of the vertex algebras is

V• = H•+vdimC (MX )

where MX is the stack of sheaves4.

1. The vacuum vector |0⟩ and the translation operator are not important for this
talk. I only note that T is the homological analog of the action
ρ : [∗/Gm]×MX → MX which rescales automorphisms of objects.

2. There is a K-theory class Θ on MX ×MX given by the dual of

Ext•(E ,F ) at (E ,F ) ∈ MX ×MX .

It is clearly additive with respect to taking direct sums and multiplicative with
respect to ρ.

3. (New) Consider the trivial C∗-action on MX ×MX and eu the weight one line
bundle. Take an equivariant K-theory class Ωu on MX ×MX satisfying the same
additivity and scaling properties Θ∨ did. I then introduce

Θu = Θ+Ω∨
u + σ∗Ωu .

4Or higher stack of perfect complexes on X
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Geometric construction II

1. Example: Let Mα be a (projective) moduli space of stable complexes of class α
and define

L[α] = πMα ,∗(πX
∗(L) · F)

using the projections to the factors of X ×Mα, L a line bundle on X and F the
universal complex. Extending euL[α] additively to MX ×MX one obtains a
prime example of Ωu .

2. Letting Mα denote the union of connected components associated to an
α ∈ K0(X ), I also define the modified pairing

χΩ(α, β) = χ(α, β) + κ(α, β) + κ(β, α) , where κ(α, β) = rk(Ωu |Mα×Mβ
) .

Definition
Construct the formal family of vertex algebras on V• by setting

Yu(v , z)v
′ =(−1)κ(α,β)+aχΩ(β,β)ϵα,βz

χΩ(α,β)

Σ∗
[
(ezT ⊗ id)

(
v ⊠ v ′ ∩ cz−1 (Θu)

)]
,

where
deg(u) = a

and Σ is the direct sum map MX ×MX → MX .
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The axioms hold

1. (Important) Consider the prototypical example

Ωu |Mα×Mβ
= eu O⊕χ(α,β) ,

then
cz−1

(
Ωu |Mα×Mβ

)
=

(
1 + z−1u

)χ(α,β)
.

2. It becomes clear that the families of vertex algebras will not in general have
constant orders of poles5, and one needs to put restrictions on powers of u for
any kind of vertex algebra axioms to be satisfied.

3. Therefore the axioms discussed previously fit the geometric construction.

Theorem (B.(??) generalizing Joyce(17’))
6 The data (V•,Yu ,T , |0⟩) introduced above satisfies the axioms of a formal u-family
of vertex algebras.

5Because for χ(α, β) < 0, we have an infinite power-series in z−1.
6While the construction is heavily inspired by the original work, the proof is different.
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Families of Lie algebras

To understand how formal families of vertex algebras are applied to wall-crossing, first,
construct a formal family of Lie algebras by

Definition
Starting from a formal u-family of vertex algebras (V•,Yu ,T , |0⟩), define a formal
u-family of Lie algebras (Q•, [−,−]u) for

Q• = V•+2/TV•

by
[v ,w ]u = vu,0w , ∀v ,w ∈ V•JuK .

Here (−) denotes the associated class in the quotient Q•JuK. 7

Outside of the 0 component, we have Q• = H•+vdimC

(
Mrig

X

)
, where Mrig

X is the
quotient by the action of [∗/Gm] and we use a non-standard symmetric obstruction
theory on it.

7The proof that this is a u-family of Lie algebras is standard.
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What is the main statement?

Assumption
Fix two stability conditions σ0, σ1 and assume that a list of assumptions holds. One of
them is that the enhanced master spaces are projective for a choice of a family of
stability conditions interpolating between σ0 and σ1.

Then there should exist classes ⟨Mσi
α ⟩u ∈ Q•[u] independent of choices counting

σi -semistables in class α such that

⟨Mσi
α ⟩u =

[
M
σi
α

]
vir

∩ crk(∆
∗Ωu)

when there are no strictly semistables. Here, the class [M
σi
α ]vir is the pushforward

along the open embedding M
σi
α ↪→ Mrig

X of [M
σi
α ]vir.

Claim (Writing of the proof is in progress)
Let σi be two stability conditions for i = 0, 1, then for some set E ⊂ K0(X ) of
emergent classes, ⟨Mσi

α ⟩u satisfy

⟨Mσ1
α ⟩u =

∑
α⃗⊢α

(coeff.)
[
· · ·

[
⟨Mσ0

α1
⟩u , ⟨Mσ0

α2
⟩u
]
u
, · · · , ⟨Mσ0

αk
⟩u
]
u

whenever the Assumptions hold.
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Definition of ⟨Mσ
α⟩u in the case of torsion-free sheaves.

1. Suppose now that σ is a Gieseker stability/µ-stability for some ample H. When
varying H, one obtains a wall-crossing formula containing only classes counting
semistable torsion-free sheaves.

2. For a fixed α ∈ E of positive rank, consider the moduli space PD
α of Joyce–Song

stable pairs
OX (−D) → F

with F of class α. Here D was chosen sufficiently positive such that
H i (F (D)) = 0 for all semistable F of class α and i > 0.

3. Using the map Π : PD
α → Mrig

X define

⟨Mσ
α⟩u = Π∗

([
PD
α

]vir ∩ crk(TΠ)∩crk
(
∆∗Ωu

))
− explicit lower rank corrections .

4. A major deviation from Joyce(22’) and Mochizuki(09’) is how I prove that these
classes are independent of the choice of D.
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While they use some adapted version of a master space,

I rely on the existence of the embeddings

ιi : P
Di
α ↪→ PD1+D2

α for i = 1, 2

where D1 + D2 can be assumed to be sufficiently positive again.

Then I compare the
obstruction theories of the two moduli spaces to obtain Park’s virtual pullback
diagram.
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Two different ways of proving virtual pullback

1. One way to obtain Park’s compatibility diagram of obstruction theories is by
direct diagram chasing giving

F̃∨[2] FD1
V∨
D2

[1] F̃∨[3]

ι∗1
(
FD1+D2
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F̃ V∨

D2
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ν

ι∗1 ψ

κ̄

ϕ

. (2)

where
VD2

= Rπ
P
D1
α ∗

(
F(D1 + D2)|D2

)
.

is a vector bundle constructed out of the universal sheaf F on X × PD1
α .

2. This was motivated by looking at PD1
α as the vanishing locus of the natural

section

PD1+D2
α

δD2−→ VD2

induced by the restriction O(D1 + D2) → O(D1 + D2)|D2
.

3. Unlike the classical case, this picture can not be lifted to the derived setting
directly.
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Speculation about a more intuitive approach

1. Let’s still take the derived vanishing locus

δ−1
D2

(0) = P̃
D1
α

ι1−→ PD1+D2
α .

2. The cotangent complexes fit into the distinguished triangle

ι∗1LPD1+D2
α

|
P̃D1
α

L
P̃D1
α

V∨
D2

[1] L
PD1+D2
α

|
P̃D1
α
[1] .

3. The relation with PD1
α is more subtle, because we now need a morphism p

completing the diagram

P̃
D1
α

PD1
α PD1+D2

α

p ι1

which should induce a derived Lagrangian correspondence - think of the usual
Lagrangian correspondence just for derived stacks.

4. Derived Lagrangian correspondence ⇐⇒ Park’s compatibility diagram
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Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which
was then generalized by Joyce.

2. Lower floor = sheaf moduli stacks, upper floor = flags of H0
(
F (D)

)
over sheaves

F . The arrows →→→→ are the natural projections.

3. The bottom arrow is never truly realized. Instead, linearize the difference between
σ1 and σ0 in terms of λ and the flags.

4. Wall-crossing happens geometrically only for the flags in the upper row at some
discrete values of t ∈ [0, 1].

5. To get the bottom dashed arrow, I need self-dual obstruction theories on the
flag-bundles compatible with the obstruction theories for Joyce-Song pairs which
were used to define the sheaf invariants.
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Details for the upper arrow

1. Let us zoom in on the area Z around t1. Represent the moduli of flags over
sheaves by the quiver diagram where full dots represent vector spaces and the
circle represents sheaves:

2. The second quiver diagram represents the enhanced master space which is used
to prove wall-crossing at t1.

3. This is the degree zero (moduli) picture only. Need to enrich it to a dg-quiver
diagram to capture the obstruction theory:
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Self-dual obstruction theories on enhanced master spaces
The main steps in constructing the obstruction theory:

1. Start with the stacky Joyce–Song obstruction theory on × ◦ which

works if one assumes H1(OX ) = 0.

2. Consider the obstruction theory of the left-over dg-quiver and “attach” it to the
Joyce–Song part. This works because the family versions of the compositions of
maps

V ∗
r−1 ⊗ Vr−2[−4] −→ V ∗

r−1 ⊗ Vr−1 ⊗ H•(OX ) −→ V ∗
r−2 ⊗ Vr−1 ,

V ∗
r−1 ⊗ Vr−2[−4] −→ V ∗

r−1 ⊗ Vr−1 ⊗ H•(OX ) −→ RHom(Vr−1 ⊗OX (−D),F )

vanish almost for trivial reasons.

3. The diagram chasing takes places in stable ∞-categories to make everything
independent of choices without making it too wild.
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What happens if you work only with triangulated categories



Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that
we have virtual fundamental classes for the flags and the enhanced master spaces.

2. This means that the wall-crossing at each ti holds, so it just needs to descend to
sheaves from flags.

3. I compare obstruction theories along the arrow πd,α in

PD
α

FlagD
d,α

Mα

PD
dr−1,α

π
d,α

and obtain Park’s compatibility diagram. This shows that pushing the flag classes
forward to Mα recovers the sheaf-counting invariants

〈
Mσ

α

〉
u
.

4. Q.E.D.
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Example: relating PT0 and PT1 invariants (unfinished).
1. Take the heart

Ap = ⟨Coh≥2(X ),Coh≤1(X )[−1]⟩ .

in Db(X ).

2. The Pt -family of stability conditions interpolates between PT (0) and PT (1)8

ρ0 : H0(X )⊕ H2(X ) → H , (β, n) 7→ −n + i(β · H) ,

− ρ1 : H4(X ) → H , γ 7→ −γ · H2 ,

− ρ3 : H8(X ) → H , r 7→ r(−t + i) .

Figure: The cyan region represents ≤ 1-dimensional sheaves which are distributed across the
lower half-plane. Wall-crossing happens whenever ρ0 crosses a ray of the phase
arctan(−β · H/n) for some (β, n) ∈ N≤1(X ).

8Comparing DT = PT (−1) and PT (0) is standard from the point of view of stability conditions.
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The PT 0/PT 1 wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the
wall-crossing formula

[PT
(0)
(γ,δ)

]vir =
∑

δ⊢δ
l(δ)=k+1

ni
βi ·H

≤
ni+1

βi+1·H
if 0<i

(−1)k

k!

[
· · ·

[
[PT

(1)
(γ,δ0)

]vir,
[
Mδ1

]in]
, · · · ,

[
Mδk

]in]
,

where δi = (βi , ni ) ∈ H≥6(X ) and γ ∈ H4(X ). I set Ωu = 0 here.

2. Next fix a line bundle L on X and construct the family of vertex algebras for the
class Ωu where

Ωu |{O→F1},{O→F2} = euExt•(O,F2 ⊗ L) = Ωu |{O→F1},{F2} ,

Ωu |{F1},{F2} = 0 .

The restriction of ∆∗
MX

(
Ωu

)
to PT

(i)
(γ,δ)

is given by euL[γ,δ] = euπ2 ∗
(
π∗
XL⊗F

)
.

3. This leads to

〈
PT

(0)
(γ,δ)

〉
u
=

∑
δ⊢δ
(··· )

(−1)k

k!

[
· · ·

[〈
PT

(1)
(γ,δ0)

〉
u
,
[
Mδ1

]in]
u
, · · · ,

[
Mδk

]in]
u
.
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Taking coefficients

1. From the definition of invariants, conclude (using δ = (β, n)) that〈
PT

(i)
γ,δ

〉
u
=

[
PT

(i)
γ,δ

]vir ∩ crk
(
euL[γ,δ]

)
=

[
PT

(i)
γ,δ

]vir ∩ u
γ
2
c1(L)

2+δc1(L)+ncu−1

(
L[γ,δ]

)

2. Combining with degC(
[
PT

(i)
γ,δ

]vir
) = n − γ2

2
leaves us with

⟨PT(i)
γ,δ⟩

L =

∫
[PT

(i)
(γ,δ)

]vir
c
n− γ2

2

(
L[γ,δ]

)
after taking the coefficient

[
u

γ
2
(c1(L)

2+γ)+δc1(L)
]{

−
}
.

3. Notice that the expression depends only on γ if the orthogonality assumption
δc1(L) = 0 holds. This motivates the following

Assumption
In the PT(0)/PT(1) wall-crossing formula, assume that

(δ − δ0) · c1(L)

always holds.
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Conjecture of Bae–Kool–Park
1. Under this orthogonality assumption, taking

[
u

γ
2
(c1(L)

2+γ)]{−
}

in the

wall-crossing formula with insertions leads to

⟨PT(0)
γ,δ⟩

L =
∑
δ⃗⊢δ
(··· )

⟨PT(1)
γ,δ0

⟩L
(−1)k

k!

[
· · ·

[
e(−1,0,γ,δ0), [Mss

δ1
]in
]L
, · · · , [Mss

δk
]in
]L

2. Let us now take an elliptic fibration

X Bπ

i

with base B and section i . Set L = π∗LB which will satisfy the orthogonality
assumption for any line bundle LB because β − β0 will be the multiple of a fiber
class.

3. For the class (γ, δ) = π∗(β, n) for (β, n) ∈ H≥4(B) Bae–Kool–Park define

⟨⟨PT(0)
γ,δ⟩⟩

L =
∑
d≥0

⟨PT(0)
γ,δ+dE ⟩

Lqd

⟨⟨PT(1)
γ,δ⟩⟩

L =
∑
d≥0

⟨PT(1)
γ,δ+dE ⟩

Lqd

⟨⟨PT⟩⟩L =
∑
d≥0

⟨PTdE ⟩Lqd

Here E is the Poincare dual of a fiber class and PT stands for the usual PT
stable pairs.
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BKP conjecture

1. Up to a simple structural assumption on
[
MdE ,n

]in
that holds whenever B is a

Fano of Picard rank 1 and (d , n) = 1 (with a sketch of how it works for any Fano
3-fold), and I expect to prove later, I can show that

Conjecture (Bae–Kool–Park)
The PT(0)/PT(1) correspondence

⟨⟨PT(0)
γ,δ⟩⟩

OX = ⟨⟨PT(1)
γ,δ⟩⟩

OX ⟨⟨PT⟩⟩OX

holds for (γ, δ) = π∗(β, n).

2. This is because in the wall-crossing formula twisted by O[n]
X only the classes

[MdE ,n]
in contribute. Any bracket with [MdE ,n]

in for n ̸= 0 is almost trivially zero
up to a small additional term. The vanishing of this term is precisely the content
of the streuctural assumption.

3. Note that if γ = 0, then this additional assumption is not required in any
geometry, so this expresses PT invariants in terms of just integrals of the form∫

[Mβ,0]
in
c1(O[β,0]

X ) .
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Application to 3-fold DT/PT

1. By the work in progress of Bae–Kool–Park, there is an identification of the
moduli spaces

DTβ,n = PT
(0)
γ,δ , PTβ,n = PT

(1)
γ,δ

and their virtual fundamental classes when some further assumptions on X → B
and geometric realizations of γ = π∗β are satisfied.

2. As a consequence of proving the BKP conjecture, one obtains:

Corollary
As long as the assumptions of BKP hold, we have the following DT/PT
correspondence on the base B:

⟨⟨DTβ⟩⟩OB = ⟨⟨PTβ⟩⟩OB ⟨⟨DT⟩⟩OB .

where the generating series are defined exactly as they were for 4-folds but starting at
(β, 0).
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Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.

3. Self-dual obstruction theories on enhanced master spaces

4. New family of stability conditions interpolating between the different surface
counting theories.

5. (Working on) a complete package for dealing with wall-crossing for stable pairs.
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