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Structure of the talk.

1. THE FLAVOUR AND SPICE OF CALABI-YAU FOURFOLDS

2. CONSTRUCTION OF FAMILIES OF VERTEX ALGEBRAS IN
GEOMETRY

3. WALL-CROSSING WITH INSERTIONS

3.1 THE MAIN STATEMENT.
3.2 ARE THE INVARIANTS WELL DEFINED?
3.3 WHICH STABILITY CONDITIONS DO I USE?
4. APPLICATION TO DT /PT WALL-CROSSING FOR 3-FOLDS

4.1 WALL-CROSSING BETWEEN PT® AND PT! AS AN EXAMPLE.
4.2 SIMPLIFYING ASSUMPTIONS.
4.3 ELLIPTIC FIBRATION OVER A 3-FOLD.

5. FURTHER APPLICATIONS COMING EVENTUALLY.
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The flavour and spice of Calabi—Yau fourfolds - orientations

1. Existence of orientations is necessary to define invariants and changing

Ny
_/
orientations introduces a sign.

2. They were shown to exist for (compactly supported) sheaves ! by
Cao—Gross—Joyce (19') in the compact case and in B.(20') for any
quasi-projective Calabi—Yau fourfold.

I

3. Wall-crossing is expressed in terms of taking direct sums of sheaves. So,
comparing orientations under direct sums is needed.

Here v, 3, some topological data and comparison gives signs ¢, 3.

More generally compactly supported perfect complexes.
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The flavour and spice of Calabi—Yau fourfolds - surfaces and obstruction
theories

1. Increasing the dimension leads to a larger freedom of the dimension of support of
sheaves. This makes the interplay between virtual dimension and insertions richer
and offers more playground with stability conditions.

2. Since the obstruction theories are not of Behrend—Fantechi type, | need to find a
new way of obtaining self-dual obstruction theories on enhanced master spaces.
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3. The proof that the invariants counting semistable sheaves are well-defined needs
to be direct.
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Definition of families of vertex algebras.

1. 1 will be working with families of vertex algebras over formal discs C[u]]. The
construction is not specific to fourfolds but due to the need to relate degrees of
insertions to virtual dimensions appears naturally in this setting.

. They are given by the following data on a graded vector space V,(see Li(02') for
a similar definition)

2.1 a vacuum vector |0) € Vo,

2.2 alinear operator T: Vo — Vg, called the translation operator,
2.3 and a formal u-family of state-field correspondences which is a degree zero linear map

Yy: Vo — End(Ve)[z,z '][u],
for deg(u) = 0, deg(z) = —2 extending to a (u)-adic continuous Q[u]-linear map
Y, Ve[u] — End(Ve)[z, 2z~ *][u] -

It must additionally induce

Yulv,2) = > vunz " Ve = Vo)l
n€z
for each v € V, C V,[u] and
Vu,n @ Ve = Vo [u]

linear for each n € Z.



Families of Vertex algebras in a picture
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Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:
1. (vacuum) T]0) =0, Yu(|0),z) =id, Yu(v,2)|0) € v+ zVe[u, z],
2. (translation covariance)® [T, Yu(v, 2)] = %Yu(v,z) for any v € Vo,

3. (locality) for any v,w € Ve and k > 0, there is an N >> 0 such that the k'th
order deformations of the fields

Y<i(v,z) := Zu t"{Ye(v,2)}. (1)

satisfy
(21 — 2)"[Y<r(v, 21), Yr(w, )] =0,

where the supercommutator is defined on End(V,)[u] by

[A,B]=AoB— (—1)AlIBIBo A,

The reason for introducing the finite order deformations and Y, (v, z) mapping to
Ve ((z)[u] rather than V4[u]((z)) is motivated by the geometric construction.

3Infinitesimal version of skew-symmetry (assuming locality).
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Geometric construction |

The underlying vector space for the geometric construction of the vertex algebras is
Ve = Ho+vdim; (JMX)

where M is the stack of sheaves*

1. The vacuum vector |0) and the translation operator are not important for this
talk. | only note that T is the homological analog of the action
p:[x/Gm] x Mx — Mx which rescales automorphisms of objects.

2. There is a K-theory class © on Mx X Mx given by the dual of
Ext®(E,F) at (E,F)e Mx x Mx.

It is clearly additive with respect to taking direct sums and multiplicative with
respect to p.

3. Consider the trivial C*-action on Mx X Mx and e" the weight one line
bundle. Take an equivariant K-theory class 2, on Mx x Mx satisfying the same
additivity and scaling properties ®V did. | then introduce

0, =0+QY +07Q,.

40or higher stack of perfect complexes on X
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1. Example: Let M, be a (projective) moduli space of stable complexes of class «

and define
Ll = 7y (wx* (L) - F)

using the projections to the factors of X x M, L a line bundle on X and F the
universal complex. Extending et Llo] additively to Mx X Mx one obtains a
of Q.

2. Letting M denote the union of connected components associated to an
a € K%(X), | also define the modified pairing

xa(e, B) = x(, B) + w(a, B) + r(B, @) , where r(a, B) = rk(Qu|rma xmp) -

Definition
Construct the formal family of vertex algebras on Ve by setting

Yu(v, 2)v/ :(,1)H(a’ﬁ)+a><9(3’ﬁ)eaﬁzxn(av@)
pa {(eZT ®id)(vEv' N Cz—l(eu))] ,

where
deg(u) = a

and X is the direct sum map Mx X Mx — Mx.
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The axioms hold

1. Consider the prototypical example

(,8)

Qul Mo xmy = e’ OFX )

then 5
C,—1 (QU‘MH XMﬂ) = (]_ + z_lu)X(Otﬂ ) .

. It becomes clear that the families of vertex algebras will not in general have
constant orders of poles®, and one needs to put restrictions on powers of u for

any kind of vertex algebra axioms to be satisfied.
3. Therefore the axioms discussed previously fit the geometric construction.
Theorem (B.(?7) generalizing Joyce(17"))
6 The data (Ve, Yu, T,|0)) introduced above satisfies the axioms of a formal u-family

of vertex algebras.

5Because for x(a, B) < 0, we have an infinite power-series in z 1.
SWhile the construction is heavily inspired by the original work, the proof is different:



Families of Lie algebras

To understand how formal families of vertex algebras are applied to wall-crossing, first,
construct a formal family of Lie algebras by

Definition

Starting from a formal u-family of vertex algebras (Va, Yy, T,|0)), define a formal
u-family of Lie algebras (Qe, [—, —]u) for

Qe = Vo+2/TVo

by
[Vv,w]y = Vgow, Vv,w € Ve[u].

Here (—) denotes the associated class in the quotient Qe [u]. 7

"The proof that this is a u-family of Lie algebras is standard.
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To understand how formal families of vertex algebras are applied to wall-crossing, first,
construct a formal family of Lie algebras by

Definition

Starting from a formal u-family of vertex algebras (Va, Yy, T,|0)), define a formal
u-family of Lie algebras (Qe, [—, —]u) for

Qo = V.+2/TV0
by

[V:W]U = Vuy,0w, VV, wE Ve [[UH .
Here (—) denotes the associated class in the quotient Qe [u]. v

Outside of the 0 component, we have Qo = He vdime (MX) where MX is the
quotient by the action of [*/G] and we use a non-standard symmetric obstruction
theory on it.

"The proof that this is a u-family of Lie algebras is standard.
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What is the main statement?

Assumption

Fix two stability conditions o, o1 and assume that a list of assumptions holds. One of
them is that the enhanced master spaces are projective for a choice of a family of
stability conditions interpolating between o¢ and o;.

Then there should exist classes (Mg/), € Qe[u] independent of choices counting
oj-semistables in class a such that

(Mahy = [MT] . N (DA™ Q)

vir
when there are no strictly semistables. Here, the class [Mf,:"]\,ir is the pushforward
along the open embedding M5 — M:f of [MZ/]vr.

Claim (Writing of the proof is in progress)

Let o; be two stability conditions for i = 0,1, then for some set £ C K°(X) of

T

emergent classes, (Mg')y satisfy

(MZ1)y = > (coeff) [+ [(ME2)u, (MZ)u] -+ (MED)]

aka

whenever the Assumptions hold.
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Definition of (M), in the case of torsion-free sheaves.

1. Suppose now that o is a Gieseker stability/u-stability for some ample H. When
varying H, one obtains a wall-crossing formula containing only classes counting
semistable torsion-free sheaves.

2. For a fixed a € & of positive rank, consider the moduli space Pg of Joyce-Song
stable pairs
Ox(fD) — F

with F of class .. Here D was chosen sufficiently positive such that
H'(F(D)) = 0 for all semistable F of class a and i > 0.

3. Using the map M : P2 — MY define

<Mg>u = I ([PE}WF N Crk(Tﬂ)mCrk (A*Qu)>

— explicit lower rank corrections.

4. A major deviation from Joyce(22') and Mochizuki(09') is how | prove that these
classes are independent of the choice of D.
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While they use some adapted version of a master space,

Dy

| rely on the existence of the embeddings
i PR s PDIFD for =12
where D; + D, can be assumed to be sufficiently positive again. Then | compare the

obstruction theories of the two moduli spaces to obtain Park'’s virtual pullback
diagram.
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Two different ways of proving virtual pullback

1. One way to obtain Park’'s compatibility diagram of obstruction theories is by
direct diagram chasing giving

V2] r Fp, s V§ (1] ——— FV[3]
|- J H |
i (Fo,+p,) ——— F Vg 1] ——— ¢ (Fpep,)[1] - ()
4 (]Lpgl +0,) ]Lpgl L, 1 (LP21+D2 )l
where

Vo, = Rrp, _(F(D1+D2)lo,) -

is a vector bundle constructed out of the universal sheaf F on X x Pgl.

2. This was motivated by looking at PDDE as the vanishing locus of the natural
section

5
PDiD2 222 vy
induced by the restriction O(D; + Dz) — O(D1 + D2)|p, .

3. Unlike the classical case, this picture can not be lifted to the derived setting
directly.
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Speculation about a more intuitive approach

1. Let's still take the derived vanishing locus

L1 D;+D,
D, — Py .

2. The cotangent complexes fit into the distinguished triangle

LT]LPZﬁDz |,321 ? L,321 ? VBZ[]-] — ]Lpgﬁ% |,321 [1].

3. The relation with Pgl is more subtle, because we now need a morphism p
completing the diagram

~D
Pa

o
Pgl P21+D2

which should induce a derived Lagrangian correspondence - think of the usual
Lagrangian correspondence just for derived stacks.

4. Derived Lagrangian correspondence <= Park’s compatibility diagram
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Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which
was then generalized by Joyce.

N W““;Z"i;éf’g, win 5 htonts
S F
Flags. 5o~ A Ploge
oy Sheants A teong onn Sheaus,
9o o

2. Lower floor = sheaf moduli stacks, upper floor = flags of HO(F(D)) over sheaves
F. The arrows ———— are the natural projections.

3. The bottom arrow is never truly realized. Instead, linearize the difference between
o1 and og in terms of A and the flags.

4. Wall-crossing happens geometrically only for the flags in the upper row at some
discrete values of t € [0, 1].

5. To get the bottom dashed arrow, | need self-dual obstruction theories on the
flag-bundles compatible with the obstruction theories for Joyce-Song pairs which
were used to define the sheaf invariants.
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Details for the upper arrow

1. Let us zoom in on the area Z around t;. Represent the moduli of flags over
sheaves by the quiver diagram where full dots represent vector spaces and the

circle represents sheaves:

1o 2 e 3 Ur-2 e,y Ur—lg
QFlag = *—»>o—>o -
v gy v2 ke Vkt1 Vil gy W
Qnis = o—»o - .

2. The second quiver diagram represents the enhanced master space which is used

to prove wall-crossing at ti.

3. This is the degree zero (moduli) picture only. Need to enrich it to a dg-quiver

diagram to capture the obstruction theory:
V1 e1 v2 Vk—-1 ex_1 Uk e Vk+1 V-1 g_; U

v
ey

vr
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Self-dual obstruction theories on enhanced master spaces
The main steps in constructing the obstruction theory:

Higher rank Joyce-Song obstruction theory Ul er

v1 v2 Vk—1 ep_y Uk ep  Uk+l V-l g U g Vil VU

€l

Dg-quiver obstruction theory

o

1. Start with the stacky Joyce-Song obstruction theory on X —— o which
__“~
works if one assumes H*(Ox) = 0.

2. Consider the obstruction theory of the left-over dg-quiver and “attach” it to the
Joyce—Song part. This works because the family versions of the compositions of
maps

Vr*—l (2] Vr72[_4] — Vr*—l @V ® H.(OX) — V,*_z ® Vi1,
Vi1 ®Vio[—4] — V1 ® Vi1 ® H*(Ox) — RHom(V,_1 ® Ox(—D), F)

vanish almost for trivial reasons.



Self-dual obstruction theories on enhanced master spaces
The main steps in constructing the obstruction theory:

Higher rank Joyce-Song obstruction theory R

er_1

glue

Dg-quiver obstruction theory

1. Start with the stacky Joyce-Song obstruction theory on X —— o which
__“~
works if one assumes H*(Ox) = 0.

2. Consider the obstruction theory of the left-over dg-quiver and “attach” it to the
Joyce—Song part. This works because the family versions of the compositions of
maps

Vi@ Vio[-4] — VL1 @ Vi1 @ H*(Ox) — Vo ® Vi,
Vi1 ®Vio[—4] — V1 ® Vi1 ® H*(Ox) — RHom(V,_1 ® Ox(—D), F)
vanish almost for trivial reasons.

3. The diagram chasing takes places in stable co-categories to make everything
independent of choices without making it too wild.



What happens if you work only with triangulated categories
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Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that
we have virtual fundamental classes for the flags and the enhanced master spaces.

2. This means that the wall-crossing at each t; holds, so it just needs to descend to
sheaves from flags.

3. | compare obstruction theories along the arrow in
D
P(y \
Flag?
gdiya / Ma
D
dr_1,0
U e w o weae, wei, | W
o ———>0o—— >0 -
v
€r_10€p_90---0e]
. »0

and obtain Park’s compatibility diagram. This shows that pushing the flag classes
forward to M, recovers the sheaf-counting invariants <Mg>u

4. Q.E.D.
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8Comparing DT = PT(=1) and PTO) is standard from the point of view ofi stability conditions.
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Example: relating PT? and PT! invariants (unfinished).
1. Take the heart
AP = (Cohs(X), Coh<y(X)[-1]) .
in Db(X).
2. The Pt-family of stability conditions interpolates between PT(®) and PT(1)8

po: HO(X)® H*(X) = H,  (B,n)— —n+i(8-H),

—p i HY(X) 2 H, v —y-H?,

—p3: H3(X) = H, r—r(—t+1i).
/ Po \\\
LN >

Figure: The cyan region represents < 1-dimensional sheaves which are distributed across the
lower half-plane. Wall-crossing happens whenever pg crosses a ray of the phase
arctan(—p3 - H/n) for some (8, n) € N<1(X).

8Comparing DT = PT(=1) and PTO) is standard from the point of view ofi stability conditions.



The PT?/PT?! wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the
wall-crossing formula
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where §; = (8;, n;) € HZ5(X) and v € H*(X). I set Q, = 0 here.
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where §; = (8;, n;) € HZ5(X) and v € H*(X). I set Q, = 0 here.
2. Next fix a line bundle L on X and construct the family of vertex algebras for the
class 2, where
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The restriction of A% (Qu) to PT{)  is given by e/L19] = ety (n5 L& F) .



The PT?/PT?! wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the
wall-crossing formula

(—l)k . .
[PTE?Y)'g)]vir = Z Xl [ o [[PTg.ly),go)]vin [M&Jm] P [M&Jm] ’
)41
B:’fH < ﬁffl if 0<i

where §; = (8;, n;) € HZ5(X) and v € H*(X). I set Q, = 0 here.
2. Next fix a line bundle L on X and construct the family of vertex algebras for the
class 2, where
Ql{oom) {0=FR) =" Ext* (0, R & L) = Qlioom) (R
Qulimyqpy =0
The restriction of A% (Qu) to PT{)  is given by e/L19] = ety (n5 L& F) .
3. This leads to
T 0, =S E L (e M1 L )]
(7,0)/u (7,60) sl Med |

o6
()



Taking coefficients

1. From the definition of invariants, conclude (using § = (8, n)) that
(PTOD, = [PTV 1 e (e b
= [PTO " N u? al)’+sa(bytng (1ol



Taking coefficients

1. From the definition of invariants, conclude (using § = (8, n)) that
(PTOD, = [PTV 1 e (e b
= [PTO " N u? al)’+sa(bytng (1ol

oo 2
2. Combining with degc([PTg?é}V'r) = n— % leaves us with

CT = [ e )

() qvir n—
T( ] 2

after taking the coefficient [u%(cl(L)Qﬂ)Mq(L)}{ -~ }



Taking coefficients

1. From the definition of invariants, conclude (using § = (8, n)) that

ARGENCTLE)

] N a(+sa(l)+n. 1 (L))

" i 2
2. Combining with degc([PTg'?(s}v‘r) = n— % leaves us with

(P51 = /[P. R

(i) qvir n—L%
Tiv.5)] 2

after taking the coefficient [u%( 1(L)2+7)+8cy (L { }

3. Notice that the expression depends only on + if the orthogonality assumption
dci(L) = 0 holds. This motivates the following

Assumption
In the PT(O)/PT(I) wall-crossing formula, assume that

(6 = o) - ar(L)

always holds.
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Conjecture of Bae—Kool—-Park
1. Under this orthogonality assumption, takmg yzlal +'Y { } in the

wall-crossing formula with insertions leads to

Tt = ST G [ e g wag)
i

2. Let us now take an elliptic fibration

with base B and section i. Set L = 7" Lg which will satisfy the orthogonality
assumption for any line bundle Lg because 8 — By will be the multiple of a fiber

class.
3. For the class (v, ) = 7*(8, n) for (3, n) € HZ*(B) Bae—Kool-Park define

0 0
(PTONE =3 (PTY, ) e

d>0
(<PT(WIA,)¢‘>>L = Z<PT(W%)5+dE>qu
d>0
(PTYE =" (PTae) g
d>0

Here E is the Poincare dual of a fiber class and PT stands for the usual PT
stable pairs.



BKP conjecture

1. Up to a simple structural assumption on [Mdg_y,,}i" that holds whenever B is a
Fano of Picard rank 1 and (d, n) = 1 (with a sketch of how it works for any Fano
3-fold), and | expect to prove later, | can show that

Conjecture (Bae—Kool-Park)
The PTO) /PTM) correspondence
0 1
(PTONOX = (PTU, ) Ox (PT)Ox

holds for (v,8) = 7n*(B, n).
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up to a small additional term. The vanishing of this term is precisely the content
of the streuctural assumption.



BKP conjecture

1. Up to a simple structural assumption on [Mdg_n}i" that holds whenever B is a
Fano of Picard rank 1 and (d,n) = 1 (with a sketch of how it works for any Fano
3-fold), and | expect to prove later, | can show that

Conjecture (Bae—Kool-Park)
The PTO) /PTM) correspondence

(PTOpOx = (PTU ) Ox (PT)Ox
holds for (v, 8) = ©*(8, n).

2. This is because in the wall-crossing formula twisted by OE?] only the classes

[Mge,»]™ contribute. Any bracket with [Myg ,]™ for n # 0 is almost trivially zero
up to a small additional term. The vanishing of this term is precisely the content
of the streuctural assumption.

3. Note that if v = 0, then this additional assumption is not required in any
geometry, so this expresses PT invariants in terms of just integrals of the form

/ (o).
[Mg o]™



Application to 3-fold DT/PT

1. By the work in progress of Bae—Kool-Park, there is an identification of the

moduli spaces
_p7@ _p7®
DTg , = PTAH; , PTs,= PTw.d
and their virtual fundamental classes when some further assumptions on X — B
and geometric realizations of v = 7* 3 are satisfied.



Application to 3-fold DT/PT

1. By the work in progress of Bae—Kool-Park, there is an identification of the

moduli spaces
DTs,=PTO,  PTs,= PT%

o
and their virtual fundamental classes when some further assumptions on X — B
and geometric realizations of v = 7* 3 are satisfied.
2. As a consequence of proving the BKP conjecture, one obtains:
Corollary

As long as the assumptions of BKP hold, we have the following DT/PT
correspondence on the base B:

(DTN = (PTe) %8 (DT)".

where the generating series are defined exactly as they were for 4-folds but starting at

(8,0).
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Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

[MMC ww”j e“’
©

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.

3. Self-dual obstruction theories on enhanced master spaces
Uz g, Ul g, Ur

€r—2 €r—1

4. New family of stability conditions interpolating between the different surface
counting theories.

5. (Working on) a complete package for dealing with wall-crossing for stable pairs.
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