# Wall-crossing for holomorphic Donaldson invariants and applications 

Arkadij Bojko

Academia Sinica, Institute of Mathematics

December 12, 2023


## Structure of the talk.

1. The flavour and spice of Calabi-Yau fourfolds
2. Construction of families of vertex algebras in GEOMETRY
3. WALL-CROSSING WITH INSERTIONS
3.1 The main statement.
3.2 Are the invariants well defined?
3.3 Which stability conditions do I use?
4. Application to DT/PT wall-crossing for 3-Folds
4.1 Wall-crossing between PT ${ }^{0}$ and PT $^{1}$ as an example.
4.2 Simplifying assumptions.
4.3 Elliptic fibration over a 3 -fold.
5. Further applications coming eventually.

## The flavour and spice of Calabi-Yau fourfolds - orientations

1. Existence of orientations is necessary to define invariants and changing

orientations introduces a sign.
[^0]
## The flavour and spice of Calabi-Yau fourfolds - orientations

1. Existence of orientations is necessary to define invariants and changing

orientations introduces a sign.
2. They were shown to exist for (compactly supported) sheaves ${ }^{1}$ by Cao-Gross-Joyce (19') in the compact case and in B.(20') for any quasi-projective Calabi-Yau fourfold.

[^1]
## The flavour and spice of Calabi-Yau fourfolds - orientations

1. Existence of orientations is necessary to define invariants and changing

orientations introduces a sign.
2. They were shown to exist for (compactly supported) sheaves ${ }^{1}$ by Cao-Gross-Joyce (19') in the compact case and in B.(20') for any quasi-projective Calabi-Yau fourfold.

3. Wall-crossing is expressed in terms of taking direct sums of sheaves. So, comparing orientations under direct sums is needed.


Here $\alpha, \beta, \gamma$ some topological data and comparison gives signs $\epsilon_{\alpha, \beta}$.

[^2]The flavour and spice of Calabi-Yau fourfolds - surfaces and obstruction theories

1. Increasing the dimension leads to a larger freedom of the dimension of support of sheaves. This makes the interplay between virtual dimension and insertions richer and offers more playground with stability conditions.


The flavour and spice of Calabi-Yau fourfolds - surfaces and obstruction theories

1. Increasing the dimension leads to a larger freedom of the dimension of support of sheaves. This makes the interplay between virtual dimension and insertions richer and offers more playground with stability conditions.

2. Since the obstruction theories are not of Behrend-Fantechi type, I need to find a new way of obtaining self-dual obstruction theories on enhanced master spaces.


The flavour and spice of Calabi-Yau fourfolds - surfaces and obstruction theories

1. Increasing the dimension leads to a larger freedom of the dimension of support of sheaves. This makes the interplay between virtual dimension and insertions richer and offers more playground with stability conditions.

2. Since the obstruction theories are not of Behrend-Fantechi type, I need to find a new way of obtaining self-dual obstruction theories on enhanced master spaces.

3. The proof that the invariants counting semistable sheaves are well-defined needs to be direct.


## Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs $\mathbb{C} \llbracket u \rrbracket$. The construction is not specific to fourfolds but due to the need to relate degrees of insertions to virtual dimensions appears naturally in this setting.

## Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs $\mathbb{C} \llbracket u \rrbracket$. The construction is not specific to fourfolds but due to the need to relate degrees of insertions to virtual dimensions appears naturally in this setting.
2. They are given by the following data on a graded vector space $V_{\bullet}$ (see $\operatorname{Li}\left(02^{\prime}\right)$ for a similar definition)
2.2 a linear operator $T: V_{\bullet} \rightarrow V_{\bullet}+2$ called the translation operator,

## Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs $\mathbb{C} \llbracket u \rrbracket$. The construction is not specific to fourfolds but due to the need to relate degrees of insertions to virtual dimensions appears naturally in this setting.
2. They are given by the following data on a graded vector space $V_{\bullet}$ (see $\operatorname{Li}\left(02^{\prime}\right)$ for a similar definition)
2.1 a vacuum vector $|0\rangle \in V_{0}$,
2.2 a linear operator $T: V_{\bullet} \rightarrow V_{\bullet+2}$ called the translation operator,

## Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs $\mathbb{C} \llbracket u \rrbracket$. The construction is not specific to fourfolds but due to the need to relate degrees of insertions to virtual dimensions appears naturally in this setting.
2. They are given by the following data on a graded vector space $V_{\bullet}$ (see $\operatorname{Li}\left(02^{\prime}\right)$ for a similar definition)
2.1 a vacuum vector $|0\rangle \in V_{0}$,
2.2 a linear operator $T: V_{\bullet} \rightarrow V_{\bullet}+2$ called the translation operator,
2.3 and a formal $u$-family of state-field correspondences which is a degree zero linear map

$$
Y_{u}: V_{\bullet} \longrightarrow \operatorname{End}\left(V_{\bullet}\right) \llbracket z, z^{-1} \rrbracket \llbracket u \rrbracket,
$$

for $\operatorname{deg}(u)=0, \operatorname{deg}(z)=-2$ extending to a $(u)$-adic continuous $\mathbb{Q}[u]$-linear map

$$
Y_{u}: V_{\bullet} \llbracket u \rrbracket \longrightarrow \operatorname{End}\left(V_{\bullet}\right) \llbracket z, z^{-1} \rrbracket \llbracket u \rrbracket .
$$

## Definition of families of vertex algebras.

1. I will be working with families of vertex algebras over formal discs $\mathbb{C} \llbracket u \rrbracket$. The construction is not specific to fourfolds but due to the need to relate degrees of insertions to virtual dimensions appears naturally in this setting.
2. They are given by the following data on a graded vector space $V_{\bullet}$ (see $\operatorname{Li}\left(02^{\prime}\right)$ for a similar definition)
2.1 a vacuum vector $|0\rangle \in V_{0}$,
2.2 a linear operator $T: V_{\bullet} \rightarrow V_{\bullet}+2$ called the translation operator,
2.3 and a formal $u$-family of state-field correspondences which is a degree zero linear map

$$
Y_{u}: V_{\bullet} \longrightarrow \operatorname{End}\left(V_{\bullet}\right) \llbracket z, z^{-1} \rrbracket \llbracket u \rrbracket,
$$

for $\operatorname{deg}(u)=0, \operatorname{deg}(z)=-2$ extending to a $(u)$-adic continuous $\mathbb{Q}[u]$-linear map

$$
Y_{u}: V_{\bullet} \llbracket u \rrbracket \longrightarrow \operatorname{End}\left(V_{\bullet}\right) \llbracket z, z^{-1} \rrbracket \llbracket u \rrbracket .
$$

It must additionally induce

$$
Y_{u}(v, z)=\sum_{n \in \mathbb{Z}} v_{u, n} z^{-n-1}: V_{\bullet} \rightarrow V_{\bullet}((z)) \llbracket u \rrbracket,
$$

for each $v \in V_{\bullet} \subset V_{\bullet} \llbracket u \rrbracket$ and

$$
v_{u, n}: V_{\bullet} \rightarrow V_{\bullet} \llbracket u \rrbracket
$$

linear for each $n \in \mathbb{Z}$.

## Families of Vertex algebras in a picture

- 



$$
\lim _{|z| \rightarrow 0} Y(m, z)(0)=N
$$

- state-field correspundence
- $\begin{array}{rl}\left(z_{1}-z_{2}\right)^{N} & Y\left(\pi_{1} z_{1}\right) Y\left(w_{1} z_{2}\right) \\ & =\left(z_{1}-z_{2}\right)^{N} Y\left(w_{11} z_{2}\right) Y\left(v_{1}, z_{1}\right)\end{array}$
- $e^{z T}|0\rangle=|0\rangle, Y(|0\rangle, z)=i d$,
- Naculum invarioma

- Locality

Famrily of eortse algeteras


ID

[^3]
## Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:

1. (vacuum) $T|0\rangle=0, Y_{u}(|0\rangle, z)=\mathrm{id}, Y_{u}(v, z)|0\rangle \in v+z V_{\bullet} \llbracket u, z \rrbracket$,
[^4]
## Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:

1. (vacuum) $T|0\rangle=0, Y_{u}(|0\rangle, z)=$ id, $Y_{u}(v, z)|0\rangle \in v+z V_{\bullet} \llbracket u, z \rrbracket$,
2. (translation covariance $)^{3}\left[T, Y_{u}(v, z)\right]=\frac{d}{d z} Y_{u}(v, z)$ for any $v \in V_{\bullet}$,
[^5]
## Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:

1. (vacuum) $T|0\rangle=0, Y_{u}(|0\rangle, z)=$ id, $Y_{u}(v, z)|0\rangle \in v+z V_{\bullet} \llbracket u, z \rrbracket$,
2. (translation covariance $)^{3}\left[T, Y_{u}(v, z)\right]=\frac{d}{d z} Y_{u}(v, z)$ for any $v \in V_{\bullet}$,
3. (locality) for any $v, w \in V_{\bullet}$ and $k \geq 0$, there is an $N \gg 0$ such that the $k^{\prime} t h$ order deformations of the fields

$$
\begin{equation*}
Y_{\leq k}(v, z):=\sum_{n=0}^{k} u^{n}\left[t^{n}\right]\left\{Y_{t}(v, z)\right\} . \tag{1}
\end{equation*}
$$

satisfy

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y_{\leq k}\left(v, z_{1}\right), Y_{\leq k}\left(w, z_{2}\right)\right]=0,
$$

where the supercommutator is defined on $\operatorname{End}\left(V_{\bullet}\right) \llbracket u \rrbracket$ by

$$
[A, B]=A \circ B-(-1)^{|A||B|} B \circ A
$$

[^6]
## Axioms of families of vertex algebras.

They are required to satisfy the following set of conditions:

1. (vacuum) $T|0\rangle=0, Y_{u}(|0\rangle, z)=$ id, $Y_{u}(v, z)|0\rangle \in v+z V_{\bullet} \llbracket u, z \rrbracket$,
2. (translation covariance $)^{3}\left[T, Y_{u}(v, z)\right]=\frac{d}{d z} Y_{u}(v, z)$ for any $v \in V_{\bullet}$,
3. (locality) for any $v, w \in V_{\bullet}$ and $k \geq 0$, there is an $N \gg 0$ such that the $k^{\prime} t h$ order deformations of the fields

$$
\begin{equation*}
Y_{\leq k}(v, z):=\sum_{n=0}^{k} u^{n}\left[t^{n}\right]\left\{Y_{t}(v, z)\right\} . \tag{1}
\end{equation*}
$$

satisfy

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y_{\leq k}\left(v, z_{1}\right), Y_{\leq k}\left(w, z_{2}\right)\right]=0,
$$

where the supercommutator is defined on $\operatorname{End}\left(V_{\bullet}\right) \llbracket u \rrbracket$ by

$$
[A, B]=A \circ B-(-1)^{|A||B|} B \circ A
$$

The reason for introducing the finite order deformations and $Y_{u}(v, z)$ mapping to $V_{\bullet}((z)) \llbracket u \rrbracket$ rather than $V_{\bullet} \llbracket u \rrbracket((z))$ is motivated by the geometric construction.

[^7]
## Geometric construction I

The underlying vector space for the geometric construction of the vertex algebras is

$$
V_{\bullet}=H_{\bullet}+\operatorname{vdim}_{\mathbb{C}}\left(\mathcal{M}_{X}\right)
$$

where $\mathcal{M}_{X}$ is the stack of sheaves ${ }^{4}$.

[^8]
## Geometric construction I

The underlying vector space for the geometric construction of the vertex algebras is

$$
V_{\bullet}=H_{\bullet}+\operatorname{vdim}_{\mathbb{C}}\left(\mathcal{M}_{X}\right)
$$

where $\mathcal{M}_{X}$ is the stack of sheaves ${ }^{4}$.

1. The vacuum vector $|0\rangle$ and the translation operator are not important for this talk. I only note that $T$ is the homological analog of the action $\rho:\left[* / \mathbb{G}_{m}\right] \times \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$ which rescales automorphisms of objects.
[^9]
## Geometric construction I

The underlying vector space for the geometric construction of the vertex algebras is

$$
V_{\bullet}=H_{\bullet}+\operatorname{vdim}_{\mathbb{C}}\left(\mathcal{M}_{X}\right)
$$

where $\mathcal{M}_{X}$ is the stack of sheaves ${ }^{4}$.

1. The vacuum vector $|0\rangle$ and the translation operator are not important for this talk. I only note that $T$ is the homological analog of the action $\rho:\left[* / \mathbb{G}_{m}\right] \times \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$ which rescales automorphisms of objects.
2. There is a K-theory class $\Theta$ on $\mathcal{M}_{X} \times \mathcal{M}_{X}$ given by the dual of

$$
\operatorname{Ext}^{\bullet}(E, F) \quad \text { at } \quad(E, F) \in \mathcal{M}_{X} \times \mathcal{M}_{X}
$$

It is clearly additive with respect to taking direct sums and multiplicative with respect to $\rho$.

[^10]
## Geometric construction I

The underlying vector space for the geometric construction of the vertex algebras is

$$
V_{\bullet}=H_{\bullet}+\operatorname{vdim}_{\mathbb{C}}\left(\mathcal{M}_{X}\right)
$$

where $\mathcal{M}_{X}$ is the stack of sheaves ${ }^{4}$.

1. The vacuum vector $|0\rangle$ and the translation operator are not important for this talk. I only note that $T$ is the homological analog of the action $\rho:\left[* / \mathbb{G}_{m}\right] \times \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$ which rescales automorphisms of objects.
2. There is a K-theory class $\Theta$ on $\mathcal{M}_{X} \times \mathcal{M}_{X}$ given by the dual of

$$
\operatorname{Ext}^{\bullet}(E, F) \quad \text { at } \quad(E, F) \in \mathcal{M}_{X} \times \mathcal{M}_{X}
$$

It is clearly additive with respect to taking direct sums and multiplicative with respect to $\rho$.
3. (New) Consider the trivial $\mathbb{C}^{*}$-action on $\mathcal{M}_{X} \times \mathcal{M}_{X}$ and $e^{u}$ the weight one line bundle. Take an equivariant K -theory class $\Omega_{u}$ on $\mathcal{M}_{X} \times \mathcal{M}_{X}$ satisfying the same additivity and scaling properties $\Theta^{\vee}$ did. I then introduce

$$
\Theta_{u}=\Theta+\Omega_{u}^{\vee}+\sigma^{*} \Omega_{u}
$$

[^11]
## Geometric construction II

1. Example: Let $M_{\alpha}$ be a (projective) moduli space of stable complexes of class $\alpha$ and define

$$
L^{[\alpha]}=\pi_{M_{\alpha}, *}\left(\pi_{X}{ }^{*}(L) \cdot \mathcal{F}\right)
$$

using the projections to the factors of $X \times M_{\alpha}, L$ a line bundle on $X$ and $\mathcal{F}$ the universal complex. Extending $e^{u} L^{[\alpha]}$ additively to $\mathcal{M}_{X} \times \mathcal{M}_{X}$ one obtains a prime example of $\Omega_{u}$.

## Geometric construction II

1. Example: Let $M_{\alpha}$ be a (projective) moduli space of stable complexes of class $\alpha$ and define

$$
L^{[\alpha]}=\pi_{M_{\alpha}, *}\left(\pi_{X}{ }^{*}(L) \cdot \mathcal{F}\right)
$$

using the projections to the factors of $X \times M_{\alpha}, L$ a line bundle on $X$ and $\mathcal{F}$ the universal complex. Extending $e^{u} L^{[\alpha]}$ additively to $\mathcal{M}_{X} \times \mathcal{M}_{X}$ one obtains a prime example of $\Omega_{u}$.
2. Letting $\mathcal{M}_{\alpha}$ denote the union of connected components associated to an $\alpha \in K^{0}(X)$, I also define the modified pairing

$$
\chi_{\Omega}(\alpha, \beta)=\chi(\alpha, \beta)+\kappa(\alpha, \beta)+\kappa(\beta, \alpha), \text { where } \kappa(\alpha, \beta)=\operatorname{rk}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right) .
$$

## Geometric construction II

1. Example: Let $M_{\alpha}$ be a (projective) moduli space of stable complexes of class $\alpha$ and define

$$
L^{[\alpha]}=\pi_{M_{\alpha}, *}\left(\pi_{X}(L) \cdot \mathcal{F}\right)
$$

using the projections to the factors of $X \times M_{\alpha}, L$ a line bundle on $X$ and $\mathcal{F}$ the universal complex. Extending $e^{u} L^{[\alpha]}$ additively to $\mathcal{M}_{X} \times \mathcal{M}_{X}$ one obtains a prime example of $\Omega_{u}$.
2. Letting $\mathcal{M}_{\alpha}$ denote the union of connected components associated to an $\alpha \in K^{0}(X)$, I also define the modified pairing

$$
\chi_{\Omega}(\alpha, \beta)=\chi(\alpha, \beta)+\kappa(\alpha, \beta)+\kappa(\beta, \alpha), \text { where } \kappa(\alpha, \beta)=\operatorname{rk}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right) .
$$

## Definition

Construct the formal family of vertex algebras on $V_{\bullet}$ by setting

$$
\begin{aligned}
Y_{u}(v, z) v^{\prime}= & (-1)^{\kappa(\alpha, \beta)+a \chi_{\Omega}(\beta, \beta)} \epsilon_{\alpha, \beta} z^{\chi_{\Omega}(\alpha, \beta)} \\
& \Sigma_{*}\left[\left(e^{z T} \otimes \mathrm{id}\right)\left(v \boxtimes v^{\prime} \cap c_{z^{-1}}\left(\Theta_{u}\right)\right)\right],
\end{aligned}
$$

where

$$
\operatorname{deg}(u)=a
$$

and $\Sigma$ is the direct sum map $\mathcal{M}_{X} \times \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$.

## The axioms hold

## 1. (Important) Consider the prototypical example

$$
\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}=e^{u} \mathcal{O}^{\oplus \chi(\alpha, \beta)},
$$

then

$$
c_{z-1}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right)=\left(1+z^{-1} u\right)^{\chi(\alpha, \beta)}
$$

${ }^{5}$ Because for $\chi(\alpha, \beta)<0$, we have an infinite power-series in $z^{-1}$.
${ }^{6}$ While the construction is heavily inspired by the original work, the proof is different

## The axioms hold

1. (Important) Consider the prototypical example

$$
\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}=e^{u} \mathcal{O}^{\oplus \chi(\alpha, \beta)}
$$

then

$$
c_{z^{-1}}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right)=\left(1+z^{-1} u\right)^{\chi(\alpha, \beta)} .
$$

2. It becomes clear that the families of vertex algebras will not in general have constant orders of poles ${ }^{5}$, and one needs to put restrictions on powers of $u$ for any kind of vertex algebra axioms to be satisfied.
[^12]
## The axioms hold

1. (Important) Consider the prototypical example

$$
\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}=e^{u} \mathcal{O}^{\oplus \chi(\alpha, \beta)}
$$

then

$$
c_{z^{-1}}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right)=\left(1+z^{-1} u\right)^{\chi(\alpha, \beta)} .
$$

2. It becomes clear that the families of vertex algebras will not in general have constant orders of poles ${ }^{5}$, and one needs to put restrictions on powers of $u$ for any kind of vertex algebra axioms to be satisfied.
3. Therefore the axioms discussed previously fit the geometric construction.
[^13]
## The axioms hold

1. (Important) Consider the prototypical example

$$
\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}=e^{u} \mathcal{O}^{\oplus \chi(\alpha, \beta)}
$$

then

$$
c_{z^{-1}}\left(\left.\Omega_{u}\right|_{\mathcal{M}_{\alpha} \times \mathcal{M}_{\beta}}\right)=\left(1+z^{-1} u\right)^{\chi(\alpha, \beta)} .
$$

2. It becomes clear that the families of vertex algebras will not in general have constant orders of poles ${ }^{5}$, and one needs to put restrictions on powers of $u$ for any kind of vertex algebra axioms to be satisfied.
3. Therefore the axioms discussed previously fit the geometric construction.

Theorem (B.(??) generalizing Joyce(17'))
${ }^{6}$ The data ( $V_{\bullet}, Y_{u}, T,|0\rangle$ ) introduced above satisfies the axioms of a formal u-family of vertex algebras.

[^14]
## Families of Lie algebras

To understand how formal families of vertex algebras are applied to wall-crossing, first, construct a formal family of Lie algebras by

## Definition

Starting from a formal $u$-family of vertex algebras ( $V_{\bullet}, Y_{u}, T,|0\rangle$ ), define a formal $u$-family of Lie algebras $\left(Q_{\bullet},[-,-]_{u}\right)$ for

$$
Q_{\bullet}=V_{\bullet}+2 / T V_{\bullet}
$$

by

$$
[\bar{v}, \bar{w}]_{u}=\overline{v_{u, 0} w}, \quad \forall v, w \in V_{\bullet} \llbracket u \rrbracket .
$$

Here $\overline{(-)}$ denotes the associated class in the quotient $Q \bullet \llbracket u \rrbracket .{ }^{7}$

[^15]
## Families of Lie algebras

To understand how formal families of vertex algebras are applied to wall-crossing, first, construct a formal family of Lie algebras by

## Definition

Starting from a formal $u$-family of vertex algebras ( $V_{\bullet}, Y_{u}, T,|0\rangle$ ), define a formal $u$-family of Lie algebras $\left(Q_{\bullet},[-,-]_{u}\right)$ for

$$
Q_{\bullet}=V_{\bullet}+2 / T V_{\bullet}
$$

by

$$
[\bar{v}, \bar{w}]_{u}=\overline{v_{u, 0} w}, \quad \forall v, w \in V_{\bullet} \llbracket u \rrbracket .
$$

Here $\overline{(-)}$ denotes the associated class in the quotient $Q_{\bullet} \llbracket u \rrbracket$. ${ }^{7}$ Outside of the 0 component, we have $Q_{\bullet}=H_{\bullet}+\operatorname{vdim}_{\mathbb{C}}\left(\mathcal{M}_{X}^{\text {rig }}\right)$, where $\mathcal{M}_{X}^{\text {rig }}$ is the quotient by the action of $\left[* / \mathbb{G}_{m}\right]$ and we use a non-standard symmetric obstruction theory on it.

[^16]
## What is the main statement?

## Assumption

Fix two stability conditions $\sigma_{0}, \sigma_{1}$ and assume that a list of assumptions holds. One of them is that the enhanced master spaces are projective for a choice of a family of stability conditions interpolating between $\sigma_{0}$ and $\sigma_{1}$.

## What is the main statement?

## Assumption

Fix two stability conditions $\sigma_{0}, \sigma_{1}$ and assume that a list of assumptions holds. One of them is that the enhanced master spaces are projective for a choice of a family of stability conditions interpolating between $\sigma_{0}$ and $\sigma_{1}$.
Then there should exist classes $\left\langle\mathcal{M}_{\alpha}^{\sigma_{i}}\right\rangle_{u} \in Q_{\bullet}[u]$ independent of choices counting $\sigma_{i}$-semistables in class $\alpha$ such that

$$
\left\langle\mathcal{M}_{\alpha}^{\sigma_{i}}\right\rangle_{u}=\left[M_{\alpha}^{\sigma_{i}}\right]_{\mathrm{vir}} \cap c_{\mathrm{rk}}\left(\Delta^{*} \Omega_{u}\right)
$$

when there are no strictly semistables. Here, the class $\left[M_{\alpha}^{\sigma_{i}}\right]_{\mathrm{vir}}$ is the pushforward along the open embedding $M_{\alpha}^{\sigma_{i}} \hookrightarrow \mathcal{M}_{X}^{\text {rig }}$ of $\left[M_{\alpha}^{\sigma_{i}}\right]^{\text {vir }}$.

## What is the main statement?

## Assumption

Fix two stability conditions $\sigma_{0}, \sigma_{1}$ and assume that a list of assumptions holds. One of them is that the enhanced master spaces are projective for a choice of a family of stability conditions interpolating between $\sigma_{0}$ and $\sigma_{1}$.
Then there should exist classes $\left\langle\mathcal{M}_{\alpha}^{\sigma_{i}}\right\rangle_{u} \in Q_{\bullet}[u]$ independent of choices counting $\sigma_{i}$-semistables in class $\alpha$ such that

$$
\left\langle\mathcal{M}_{\alpha}^{\sigma_{i}}\right\rangle_{u}=\left[M_{\alpha}^{\sigma_{i}}\right]_{\mathrm{vir}} \cap c_{\mathrm{rk}}\left(\Delta^{*} \Omega_{u}\right)
$$

when there are no strictly semistables. Here, the class $\left[M_{\alpha}^{\sigma_{i}}\right]_{\mathrm{vir}}$ is the pushforward along the open embedding $M_{\alpha}^{\sigma_{i}} \hookrightarrow \mathcal{M}_{X}^{\text {rig }}$ of $\left[M_{\alpha}^{\sigma_{i}}\right]^{\text {vir }}$.
Claim (Writing of the proof is in progress) Let $\sigma_{i}$ be two stability conditions for $i=0,1$, then for some set $\mathcal{E} \subset K^{0}(X)$ of emergent classes, $\left\langle M_{\alpha}^{\sigma_{i}}\right\rangle_{u}$ satisfy

$$
\left\langle M_{\alpha}^{\sigma_{1}}\right\rangle_{u}=\sum_{\vec{\alpha} \vdash \alpha}(\text { coeff. })\left[\cdots\left[\left\langle M_{\alpha_{1}}^{\sigma_{0}}\right\rangle_{u},\left\langle M_{\alpha_{2}}^{\sigma_{0}}\right\rangle_{u}\right]_{u}, \cdots,\left\langle M_{\alpha_{k}}^{\sigma_{0}}\right\rangle_{u}\right]_{u}
$$

whenever the Assumptions hold.

## Definition of $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$ in the case of torsion-free sheaves.

1. Suppose now that $\sigma$ is a Gieseker stability/ $\mu$-stability for some ample $H$. When varying $H$, one obtains a wall-crossing formula containing only classes counting semistable torsion-free sheaves.

## Definition of $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$ in the case of torsion-free sheaves.

1. Suppose now that $\sigma$ is a Gieseker stability/ $\mu$-stability for some ample $H$. When varying $H$, one obtains a wall-crossing formula containing only classes counting semistable torsion-free sheaves.
2. For a fixed $\alpha \in \mathcal{E}$ of positive rank, consider the moduli space $P_{\alpha}^{D}$ of Joyce-Song stable pairs

$$
\mathcal{O}_{X}(-D) \rightarrow F
$$

with $F$ of class $\alpha$. Here $D$ was chosen sufficiently positive such that $H^{i}(F(D))=0$ for all semistable $F$ of class $\alpha$ and $i>0$.

## Definition of $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$ in the case of torsion-free sheaves.

1. Suppose now that $\sigma$ is a Gieseker stability/ $\mu$-stability for some ample $H$. When varying $H$, one obtains a wall-crossing formula containing only classes counting semistable torsion-free sheaves.
2. For a fixed $\alpha \in \mathcal{E}$ of positive rank, consider the moduli space $P_{\alpha}^{D}$ of Joyce-Song stable pairs

$$
\mathcal{O}_{X}(-D) \rightarrow F
$$

with $F$ of class $\alpha$. Here $D$ was chosen sufficiently positive such that $H^{i}(F(D))=0$ for all semistable $F$ of class $\alpha$ and $i>0$.
3. Using the map $\Pi: P_{\alpha}^{D} \rightarrow \mathcal{M}_{X}^{\text {rig }}$ define

$$
\left\langle M_{\alpha}^{\sigma}\right\rangle_{u}=\Pi_{*}\left(\left[P_{\alpha}^{D}\right]^{\operatorname{vir}} \cap c_{\mathrm{rk}}\left(\mathbb{T}_{\Pi}\right) \cap c_{\mathrm{rk}}\left(\Delta^{*} \Omega_{u}\right)\right)
$$

- explicit lower rank corrections.


## Definition of $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$ in the case of torsion-free sheaves.

1. Suppose now that $\sigma$ is a Gieseker stability/ $\mu$-stability for some ample $H$. When varying $H$, one obtains a wall-crossing formula containing only classes counting semistable torsion-free sheaves.
2. For a fixed $\alpha \in \mathcal{E}$ of positive rank, consider the moduli space $P_{\alpha}^{D}$ of Joyce-Song stable pairs

$$
\mathcal{O}_{X}(-D) \rightarrow F
$$

with $F$ of class $\alpha$. Here $D$ was chosen sufficiently positive such that $H^{i}(F(D))=0$ for all semistable $F$ of class $\alpha$ and $i>0$.
3. Using the map $\Pi: P_{\alpha}^{D} \rightarrow \mathcal{M}_{X}^{\text {rig }}$ define

$$
\left\langle M_{\alpha}^{\sigma}\right\rangle_{u}=\Pi_{*}\left(\left[P_{\alpha}^{D}\right]^{\operatorname{vir}} \cap c_{\mathrm{rk}}\left(\mathbb{T}_{\Pi}\right) \cap c_{\mathrm{rk}}\left(\Delta^{*} \Omega_{u}\right)\right)
$$

- explicit lower rank corrections.

4. A major deviation from Joyce (22') and Mochizuki( $09^{\prime}$ ) is how I prove that these classes are independent of the choice of $D$.

While they use some adapted version of a master space,


I rely on the existence of the embeddings

$$
\iota_{i}: P_{\alpha}^{D_{i}} \hookrightarrow P_{\alpha}^{D_{1}+D_{2}} \quad \text { for } \quad i=1,2
$$

where $D_{1}+D_{2}$ can be assumed to be sufficiently positive again.

While they use some adapted version of a master space,


I rely on the existence of the embeddings

$$
\iota_{i}: P_{\alpha}^{D_{i}} \hookrightarrow P_{\alpha}^{D_{1}+D_{2}} \quad \text { for } \quad i=1,2
$$

where $D_{1}+D_{2}$ can be assumed to be sufficiently positive again. Then I compare the obstruction theories of the two moduli spaces to obtain Park's virtual pullback diagram.

## Two different ways of proving virtual pullback

1. One way to obtain Park's compatibility diagram of obstruction theories is by direct diagram chasing giving


## Two different ways of proving virtual pullback

1. One way to obtain Park's compatibility diagram of obstruction theories is by direct diagram chasing giving

where

$$
\mathbb{V}_{D_{2}}=R \pi_{P_{\alpha}^{D_{1}} *}\left(\left.\mathcal{F}\left(D_{1}+D_{2}\right)\right|_{D_{2}}\right) .
$$

is a vector bundle constructed out of the universal sheaf $\mathcal{F}$ on $X \times P_{\alpha}^{D_{1}}$.

## Two different ways of proving virtual pullback

1. One way to obtain Park's compatibility diagram of obstruction theories is by direct diagram chasing giving

where

$$
\mathbb{V}_{D_{2}}=R \pi_{P_{\alpha}^{D_{1}} *}\left(\left.\mathcal{F}\left(D_{1}+D_{2}\right)\right|_{D_{2}}\right) .
$$

is a vector bundle constructed out of the universal sheaf $\mathcal{F}$ on $X \times P_{\alpha}^{D_{1}}$.
2. This was motivated by looking at $P_{\alpha}^{D_{1}}$ as the vanishing locus of the natural section

$$
P_{\alpha}^{D_{1}+D_{2}} \xrightarrow{\delta_{D_{2}}} \mathbb{V}_{D_{2}}
$$

induced by the restriction $\left.\mathcal{O}\left(D_{1}+D_{2}\right) \rightarrow \mathcal{O}\left(D_{1}+D_{2}\right)\right|_{D_{2}}$.

## Two different ways of proving virtual pullback

1. One way to obtain Park's compatibility diagram of obstruction theories is by direct diagram chasing giving

where

$$
\mathbb{V}_{D_{2}}=R \pi_{P_{\alpha}^{D_{1}} *}\left(\left.\mathcal{F}\left(D_{1}+D_{2}\right)\right|_{D_{2}}\right) .
$$

is a vector bundle constructed out of the universal sheaf $\mathcal{F}$ on $X \times P_{\alpha}^{D_{1}}$.
2. This was motivated by looking at $P_{\alpha}^{D_{1}}$ as the vanishing locus of the natural section

$$
P_{\alpha}^{D_{1}+D_{2}} \xrightarrow{\delta_{D_{2}}} \mathbb{V}_{D_{2}}
$$

induced by the restriction $\left.\mathcal{O}\left(D_{1}+D_{2}\right) \rightarrow \mathcal{O}\left(D_{1}+D_{2}\right)\right|_{D_{2}}$.
3. Unlike the classical case, this picture can not be lifted to the derived setting directly.

## Speculation about a more intuitive approach

1. Let's still take the derived vanishing locus

$$
\delta_{D_{2}}^{-1}(0)=\widetilde{\boldsymbol{P}}_{\alpha}^{D_{1}} \xrightarrow{\iota_{1}} \boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}
$$

## Speculation about a more intuitive approach

1. Let's still take the derived vanishing locus

$$
\delta_{D_{2}}^{-1}(0)=\widetilde{\boldsymbol{P}}_{\alpha}^{D_{1}} \xrightarrow{\iota_{1}} \boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}
$$

2. The cotangent complexes fit into the distinguished triangle

$$
\left.\left.\boldsymbol{\iota}_{1}^{*} \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{L}_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{V}_{D_{2}}^{\vee}[1] \longrightarrow \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}}[1] .
$$

## Speculation about a more intuitive approach

1. Let's still take the derived vanishing locus

$$
\delta_{D_{2}}^{-1}(0)=\widetilde{\boldsymbol{P}}_{\alpha}^{D_{1}} \xrightarrow{\iota_{1}} \boldsymbol{P}_{\alpha}^{D_{1}+D_{2}} .
$$

2. The cotangent complexes fit into the distinguished triangle

$$
\left.\left.\boldsymbol{\iota}_{1}^{*} \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{L}_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{V}_{D_{2}}^{\vee}[1] \longrightarrow \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}}[1] .
$$

3. The relation with $\boldsymbol{P}_{\alpha}^{D_{1}}$ is more subtle, because we now need a morphism $\boldsymbol{p}$ completing the diagram

which should induce a derived Lagrangian correspondence - think of the usual Lagrangian correspondence just for derived stacks.

## Speculation about a more intuitive approach

1. Let's still take the derived vanishing locus

$$
\delta_{D_{2}}^{-1}(0)=\widetilde{\boldsymbol{P}}_{\alpha}^{D_{1}} \xrightarrow{\iota_{1}} \boldsymbol{P}_{\alpha}^{D_{1}+D_{2}} .
$$

2. The cotangent complexes fit into the distinguished triangle

$$
\left.\left.\boldsymbol{\iota}_{1}^{*} \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{L}_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}} \longrightarrow \mathbb{V}_{D_{2}}^{\vee}[1] \longrightarrow \mathbb{L}_{\boldsymbol{P}_{\alpha}^{D_{1}+D_{2}}}\right|_{\tilde{\boldsymbol{P}}_{\alpha}^{D_{1}}}[1] .
$$

3. The relation with $\boldsymbol{P}_{\alpha}^{D_{1}}$ is more subtle, because we now need a morphism $\boldsymbol{p}$ completing the diagram

which should induce a derived Lagrangian correspondence - think of the usual Lagrangian correspondence just for derived stacks.
4. Derived Lagrangian correspondence $\Longleftrightarrow$ Park's compatibility diagram

Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which was then generalized by Joyce.


## Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which was then generalized by Joyce.

2. Lower floor $=$ sheaf moduli stacks, upper floor $=$ flags of $H^{0}(F(D))$ over sheaves $F$. The arrows $\rightarrow \rightarrow$ are the natural projections.

## Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which was then generalized by Joyce.

2. Lower floor $=$ sheaf moduli stacks, upper floor $=$ flags of $H^{0}(F(D))$ over sheaves $F$. The arrows $\rightarrow \rightarrow$ are the natural projections.
3. The bottom arrow is never truly realized. Instead, linearize the difference between $\sigma_{1}$ and $\sigma_{0}$ in terms of $\lambda$ and the flags.

## Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which was then generalized by Joyce.

2. Lower floor $=$ sheaf moduli stacks, upper floor $=$ flags of $H^{0}(F(D))$ over sheaves $F$. The arrows $\rightarrow \rightarrow$ are the natural projections.
3. The bottom arrow is never truly realized. Instead, linearize the difference between $\sigma_{1}$ and $\sigma_{0}$ in terms of $\lambda$ and the flags.
4. Wall-crossing happens geometrically only for the flags in the upper row at some discrete values of $t \in[0,1]$.

## Proof of wall-crossing for coherent sheaves

1. The following diagram sketches the proof of wall-crossing by Mochizuki which was then generalized by Joyce.

2. Lower floor $=$ sheaf moduli stacks, upper floor $=$ flags of $H^{0}(F(D))$ over sheaves $F$. The arrows $\rightarrow \rightarrow$ are the natural projections.
3. The bottom arrow is never truly realized. Instead, linearize the difference between $\sigma_{1}$ and $\sigma_{0}$ in terms of $\lambda$ and the flags.
4. Wall-crossing happens geometrically only for the flags in the upper row at some discrete values of $t \in[0,1]$.
5. To get the bottom dashed arrow, I need self-dual obstruction theories on the flag-bundles compatible with the obstruction theories for Joyce-Song pairs which were used to define the sheaf invariants.

## Details for the upper arrow

1. Let us zoom in on the area $Z$ around $t_{1}$. Represent the moduli of flags over sheaves by the quiver diagram where full dots represent vector spaces and the circle represents sheaves:


## Details for the upper arrow

1. Let us zoom in on the area $Z$ around $t_{1}$. Represent the moduli of flags over sheaves by the quiver diagram where full dots represent vector spaces and the circle represents sheaves:

2. The second quiver diagram represents the enhanced master space which is used to prove wall-crossing at $t_{1}$.

## Details for the upper arrow

1. Let us zoom in on the area $Z$ around $t_{1}$. Represent the moduli of flags over sheaves by the quiver diagram where full dots represent vector spaces and the circle represents sheaves:

2. The second quiver diagram represents the enhanced master space which is used to prove wall-crossing at $t_{1}$.
3. This is the degree zero (moduli) picture only. Need to enrich it to a dg-quiver diagram to capture the obstruction theory:

## Details for the upper arrow

1. Let us zoom in on the area $Z$ around $t_{1}$. Represent the moduli of flags over sheaves by the quiver diagram where full dots represent vector spaces and the circle represents sheaves:

2. The second quiver diagram represents the enhanced master space which is used to prove wall-crossing at $t_{1}$.
3. This is the degree zero (moduli) picture only. Need to enrich it to a dg-quiver diagram to capture the obstruction theory:


## Self-dual obstruction theories on enhanced master spaces

The main steps in constructing the obstruction theory:

## Self-dual obstruction theories on enhanced master spaces

The main steps in constructing the obstruction theory:
Higher rank Joyce-Song obstruction theory $\xrightarrow[c_{r-1}]{v_{r-1}} \underbrace{e_{r-1}}_{0}{ }^{v_{r}}$


## Self-dual obstruction theories on enhanced master spaces

The main steps in constructing the obstruction theory:


1. Start with the stacky Joyce-Song obstruction theory on $\times \longrightarrow 0$ which works if one assumes $H^{1}\left(\mathcal{O}_{X}\right)=0$.

## Self-dual obstruction theories on enhanced master spaces

The main steps in constructing the obstruction theory:



1. Start with the stacky Joyce-Song obstruction theory on $\times \underset{ }{\longrightarrow}$, which works if one assumes $H^{1}\left(\mathcal{O}_{X}\right)=0$.
2. Consider the obstruction theory of the left-over dg-quiver and "attach" it to the Joyce-Song part. This works because the family versions of the compositions of maps

$$
\begin{aligned}
& V_{r-1}^{*} \otimes V_{r-2}[-4] \longrightarrow V_{r-1}^{*} \otimes V_{r-1} \otimes H^{\bullet}\left(\mathcal{O}_{X}\right) \longrightarrow V_{r-2}^{*} \otimes V_{r-1} \\
& V_{r-1}^{*} \otimes V_{r-2}[-4] \longrightarrow V_{r-1}^{*} \otimes V_{r-1} \otimes H^{\bullet}\left(\mathcal{O}_{X}\right) \longrightarrow \operatorname{RHom}\left(V_{r-1} \otimes \mathcal{O}_{X}(-D), F\right)
\end{aligned}
$$

vanish almost for trivial reasons.

## Self-dual obstruction theories on enhanced master spaces

The main steps in constructing the obstruction theory:



1. Start with the stacky Joyce-Song obstruction theory on $\times \longrightarrow 0$ which works if one assumes $H^{1}\left(\mathcal{O}_{X}\right)=0$.
2. Consider the obstruction theory of the left-over dg-quiver and "attach" it to the Joyce-Song part. This works because the family versions of the compositions of maps

$$
\begin{aligned}
& V_{r-1}^{*} \otimes V_{r-2}[-4] \longrightarrow V_{r-1}^{*} \otimes V_{r-1} \otimes H^{\bullet}\left(\mathcal{O}_{X}\right) \longrightarrow V_{r-2}^{*} \otimes V_{r-1} \\
& V_{r-1}^{*} \otimes V_{r-2}[-4] \longrightarrow V_{r-1}^{*} \otimes V_{r-1} \otimes H^{\bullet}\left(\mathcal{O}_{X}\right) \longrightarrow \operatorname{RHom}\left(V_{r-1} \otimes \mathcal{O}_{X}(-D), F\right)
\end{aligned}
$$

vanish almost for trivial reasons.
3. The diagram chasing takes places in stable $\infty$-categories to make everything independent of choices without making it too wild.

## What happens if you work only with triangulated categories



## Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that we have virtual fundamental classes for the flags and the enhanced master spaces.

## Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that we have virtual fundamental classes for the flags and the enhanced master spaces.
2. This means that the wall-crossing at each $t_{i}$ holds, so it just needs to descend to sheaves from flags.

## Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that we have virtual fundamental classes for the flags and the enhanced master spaces.
2. This means that the wall-crossing at each $t_{i}$ holds, so it just needs to descend to sheaves from flags.
3. I compare obstruction theories along the arrow $\pi_{\bar{d}, \alpha}$ in


## Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that we have virtual fundamental classes for the flags and the enhanced master spaces.
2. This means that the wall-crossing at each $t_{i}$ holds, so it just needs to descend to sheaves from flags.
3. I compare obstruction theories along the arrow $\pi_{\bar{d}, \alpha}$ in

and obtain Park's compatibility diagram. This shows that pushing the flag classes forward to $\mathcal{M}_{\alpha}$ recovers the sheaf-counting invariants $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$.

## Conclusion

1. The obstruction theories consructed above are virtually admissible meaning that we have virtual fundamental classes for the flags and the enhanced master spaces.
2. This means that the wall-crossing at each $t_{i}$ holds, so it just needs to descend to sheaves from flags.
3. I compare obstruction theories along the arrow $\pi_{\bar{d}, \alpha}$ in

and obtain Park's compatibility diagram. This shows that pushing the flag classes forward to $\mathcal{M}_{\alpha}$ recovers the sheaf-counting invariants $\left\langle\mathcal{M}_{\alpha}^{\sigma}\right\rangle_{u}$.
4. Q.E.D.

## Example: relating $\mathrm{PT}^{0}$ and $\mathrm{PT}^{1}$ invariants (unfinished).

1. Take the heart

$$
\mathcal{A}^{p}=\left\langle\operatorname{Coh}_{\geq 2}(X), \operatorname{Coh}_{\leq 1}(X)[-1]\right\rangle .
$$

in $D^{b}(X)$.
${ }^{8}$ Comparing $D T=P T^{(-1)}$ and $P T^{(0)}$ is standard from the point of view of stability conditions.

## Example: relating $\mathrm{PT}^{0}$ and $\mathrm{PT}^{1}$ invariants (unfinished).

1. Take the heart

$$
\mathcal{A}^{p}=\left\langle\operatorname{Coh}_{\geq 2}(X), \operatorname{Coh}_{\leq 1}(X)[-1]\right\rangle .
$$

in $D^{b}(X)$.
2. The $P^{t}$-family of stability conditions interpolates between $P T^{(0)}$ and $P T^{(1) 8}$

[^17]
## Example: relating $\mathrm{PT}^{0}$ and $\mathrm{PT}^{1}$ invariants (unfinished).

1. Take the heart

$$
\mathcal{A}^{p}=\left\langle\operatorname{Coh}_{\geq 2}(X), \operatorname{Coh}_{\leq 1}(X)[-1]\right\rangle .
$$

in $D^{b}(X)$.
2. The $P^{t}$-family of stability conditions interpolates between $P T^{(0)}$ and $P T^{(1) 8}$

$$
\begin{aligned}
& \rho_{0}: H^{0}(X) \oplus H^{2}(X) \rightarrow \mathbb{H}, \quad(\beta, n) \mapsto-n+i(\beta \cdot H) \\
& -\rho_{1}: H^{4}(X) \rightarrow \mathbb{H}, \quad \gamma \mapsto-\gamma \cdot H^{2}, \\
& -\rho_{3}: H^{8}(X) \rightarrow \mathbb{H}, \quad r \mapsto r(-t+i)
\end{aligned}
$$


$\rho_{3}$

Figure: The cyan region represents $\leq$ 1-dimensional sheaves which are distributed across the lower half-plane. Wall-crossing happens whenever $\rho_{0}$ crosses a ray of the phase $\arctan (-\beta \cdot H / n)$ for some $(\beta, n) \in N_{\leq 1}(X)$.

[^18]
## The $P T^{0} / P T^{1}$ wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the wall-crossing formula

$$
\begin{aligned}
& {\left[\mathrm{PT}_{(\gamma, \delta)}^{(0)}\right]_{\mathrm{vir}}=\sum_{\underline{\delta \vdash \delta}} \quad \frac{(-1)^{k}}{k!}\left[\cdots\left[\left[\mathrm{PT}_{\left(\gamma, \delta_{0}\right)}^{(1)}\right]_{\mathrm{vir}},\left[M_{\delta_{1}}\right]^{\mathrm{in}}\right], \cdots,\left[M_{\delta_{k}}\right]^{\mathrm{in}}\right] \text {, }} \\
& \frac{\delta \vdash \delta}{I(\underline{\delta})=k+1} \\
& \frac{n_{i}}{\beta_{i} \cdot H} \leq \frac{n_{i+1}}{\beta_{i+1} \cdot H} \text { if } 0<i
\end{aligned}
$$

where $\delta_{i}=\left(\beta_{i}, n_{i}\right) \in H^{\geq 6}(X)$ and $\gamma \in H^{4}(X)$. I set $\Omega_{u}=0$ here.

## The $P T^{0} / P T^{1}$ wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the wall-crossing formula

$$
\left[\mathrm{PT}_{(\gamma, \delta)}^{(0)}\right]_{\text {vir }}=\sum_{\substack{\frac{\delta \vdash \delta}{\frac{l}{\left(\frac{\delta}{n_{i}}=k+1\right.}} \begin{array}{l}
\frac{n_{i+1}}{\beta_{i} \cdot H} \leq \\
\beta_{i+1} \cdot H
\end{array}}} \frac{(-1)^{k}}{k!}\left[\cdots\left[\left[\mathrm{PT}_{\left(\gamma, \delta_{0}\right)}^{(1)}\right]_{\operatorname{vir}},\left[M_{\delta_{1}}\right]^{\mathrm{in}}\right], \cdots,\left[M_{\delta_{k}}\right]^{\mathrm{in}}\right],
$$

where $\delta_{i}=\left(\beta_{i}, n_{i}\right) \in H^{\geq 6}(X)$ and $\gamma \in H^{4}(X)$. I set $\Omega_{u}=0$ here.
2. Next fix a line bundle $L$ on $X$ and construct the family of vertex algebras for the class $\Omega_{u}$ where

$$
\begin{aligned}
\left.\Omega_{u}\right|_{\left\{\mathcal{O} \rightarrow F_{1}\right\},\left\{\mathcal{O} \rightarrow F_{2}\right\}} & =e^{u} \operatorname{Ext}^{\bullet}\left(\mathcal{O}, F_{2} \otimes L\right)=\left.\Omega_{u}\right|_{\left\{\mathcal{O} \rightarrow F_{1}\right\},\left\{F_{2}\right\}}, \\
\left.\Omega_{u}\right|_{\left\{F_{1}\right\},\left\{F_{2}\right\}} & =0 .
\end{aligned}
$$

The restriction of $\Delta_{\mathcal{M}_{X}}^{*}\left(\Omega_{u}\right)$ to $\mathrm{PT}_{(\gamma, \delta)}^{(i)}$ is given by $e^{u} L^{[\gamma, \delta]}=e^{u} \pi_{2 *}\left(\pi_{X}^{*} L \otimes \mathcal{F}\right)$.

## The $P T^{0} / P T^{1}$ wall-crossing formula

1. After checking assumptions, the last example of stability conditions will give the wall-crossing formula

$$
\left[\mathrm{PT}_{(\gamma, \delta)}^{(0)}\right]_{\text {vir }}=\sum_{\substack{\frac{\delta \vdash \delta}{\frac{l}{\left(\frac{\delta}{n_{i}}=k+1\right.}} \begin{array}{l}
\frac{n_{i+1}}{\beta_{i} \cdot H} \leq \\
\beta_{i+1} \cdot H
\end{array}}} \frac{(-1)^{k}}{k!}\left[\cdots\left[\left[\mathrm{PT}_{\left(\gamma, \delta_{0}\right)}^{(1)}\right]_{\operatorname{vir}},\left[M_{\delta_{1}}\right]^{\mathrm{in}}\right], \cdots,\left[M_{\delta_{k}}\right]^{\mathrm{in}}\right],
$$

where $\delta_{i}=\left(\beta_{i}, n_{i}\right) \in H^{\geq 6}(X)$ and $\gamma \in H^{4}(X)$. I set $\Omega_{u}=0$ here.
2. Next fix a line bundle $L$ on $X$ and construct the family of vertex algebras for the class $\Omega_{u}$ where

$$
\begin{aligned}
\left.\Omega_{u}\right|_{\left\{\mathcal{O} \rightarrow F_{1}\right\},\left\{\mathcal{O} \rightarrow F_{2}\right\}} & =e^{u} \operatorname{Ext}^{\bullet}\left(\mathcal{O}, F_{2} \otimes L\right)=\left.\Omega_{u}\right|_{\left\{\mathcal{O} \rightarrow F_{1}\right\},\left\{F_{2}\right\}}, \\
\left.\Omega_{u}\right|_{\left\{F_{1}\right\},\left\{F_{2}\right\}} & =0 .
\end{aligned}
$$

The restriction of $\Delta_{\mathcal{M}_{X}}^{*}\left(\Omega_{u}\right)$ to $\mathrm{PT}_{(\gamma, \delta)}^{(i)}$ is given by $e^{u} L^{[\gamma, \delta]}=e^{u} \pi_{2 *}\left(\pi_{X}^{*} L \otimes \mathcal{F}\right)$.
3. This leads to

$$
\left\langle\mathrm{PT}_{(\gamma, \delta)}^{(0)}\right\rangle_{u}=\sum_{\frac{\delta \vdash \delta}{(\cdots)}} \frac{(-1)^{k}}{k!}\left[\cdots\left[\left\langle\mathrm{PT}_{\left(\gamma, \delta_{0}\right)}^{(1)}\right\rangle_{u},\left[M_{\delta_{1}}\right]^{\mathrm{in}}\right]_{u}, \cdots,\left[M_{\delta_{k}}\right]^{\mathrm{in}}\right]_{u} .
$$

## Taking coefficients

1. From the definition of invariants, conclude (using $\delta=(\beta, n)$ ) that

$$
\begin{aligned}
\left\langle\mathrm{PT}_{\gamma, \delta}^{(i)}\right\rangle_{u} & =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap c_{\mathrm{rk}}\left(e^{u} L^{[\gamma, \delta]}\right) \\
& =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap u^{\frac{\gamma}{2} c_{1}(L)^{2}+\delta c_{1}(L)+n} c_{u^{-1}}\left(L^{[\gamma, \delta]}\right)
\end{aligned}
$$

## Taking coefficients

1. From the definition of invariants, conclude (using $\delta=(\beta, n)$ ) that

$$
\begin{aligned}
\left\langle\mathrm{PT}_{\gamma, \delta}^{(i)}\right\rangle_{u} & =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap c_{\mathrm{rk}}\left(e^{u} L^{[\gamma, \delta]}\right) \\
& =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap u^{\frac{\gamma}{2} c_{1}(L)^{2}+\delta c_{1}(L)+n} c_{u^{-1}}\left(L^{[\gamma, \delta]}\right)
\end{aligned}
$$

2. Combining with $\operatorname{deg}_{\mathbb{C}}\left(\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\text {vir }}\right)=n-\frac{\gamma^{2}}{2}$ leaves us with

$$
\left\langle\mathrm{PT}_{\gamma, \delta}^{(i)}\right\rangle^{L}=\int_{\left[\mathrm{PT}_{(\gamma, \delta)}^{(i)}\right]^{\text {ir }}} c_{n-\frac{\gamma^{2}}{2}}\left(L^{[\gamma, \delta]}\right)
$$

after taking the coefficient $\left[u^{\frac{\gamma}{2}\left(c_{1}(L)^{2}+\gamma\right)+\delta c_{1}(L)}\right]\{-\}$.

## Taking coefficients

1. From the definition of invariants, conclude (using $\delta=(\beta, n)$ ) that

$$
\begin{aligned}
\left\langle\mathrm{PT}_{\gamma, \delta}^{(i)}\right\rangle_{u} & =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap c_{\mathrm{rk}}\left(e^{u} L^{[\gamma, \delta]}\right) \\
& =\left[\mathrm{PT}_{\gamma, \delta}^{(i)}\right]^{\mathrm{vir}} \cap u^{\frac{\gamma}{2} c_{1}(L)^{2}+\delta c_{1}(L)+n} c_{u^{-1}}\left(L^{[\gamma, \delta]}\right)
\end{aligned}
$$

2. Combining with $\operatorname{deg}_{\mathbb{C}}\left(\left[\mathrm{P}_{\gamma, \delta}^{(i)}\right]^{\text {vir }}\right)=n-\frac{\gamma^{2}}{2}$ leaves us with

$$
\left\langle\mathrm{PT}_{\gamma, \delta}^{(i)}\right\rangle^{L}=\int_{\left[\mathrm{PT}_{(\gamma, \delta)}^{(i)}\right]^{\operatorname{vir}}} c_{n-\frac{\gamma^{2}}{2}}\left(L^{[\gamma, \delta]}\right)
$$

after taking the coefficient $\left[u^{\frac{\gamma}{2}\left(c_{1}(L)^{2}+\gamma\right)+\delta c_{1}(L)}\right]\{-\}$.
3. Notice that the expression depends only on $\gamma$ if the orthogonality assumption $\delta c_{1}(L)=0$ holds. This motivates the following

## Assumption

In the $\mathrm{PT}^{(0)} / \mathrm{PT}^{(1)}$ wall-crossing formula, assume that

$$
\left(\delta-\delta_{0}\right) \cdot c_{1}(L)
$$

always holds.

## Conjecture of Bae-Kool-Park

1. Under this orthogonality assumption, taking $\left[u^{\frac{\gamma}{2}\left(c_{1}(L)^{2}+\gamma\right)}\right]\{-\}$ in the wall-crossing formula with insertions leads to

$$
\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle^{L}=\sum_{\substack{\vec{\delta} \vdash \delta \\(\cdots)}}\left\langle\mathrm{PT}_{\gamma, \delta_{0}}^{(1)}\right\rangle^{L} \frac{(-1)^{k}}{k!}\left[\cdots\left[e^{\left(-1,0, \gamma, \delta_{0}\right)},\left[M_{\delta_{1}}^{\text {ss }}\right]^{\mathrm{in}}\right]^{L}, \cdots,\left[M_{\delta_{k}}^{\mathrm{ss}}\right]^{\mathrm{in}}\right]^{L}
$$

## Conjecture of Bae-Kool-Park

1. Under this orthogonality assumption, taking $\left[u^{\frac{\gamma}{2}\left(c_{1}(L)^{2}+\gamma\right)}\right]\{-\}$ in the wall-crossing formula with insertions leads to

$$
\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle^{L}=\sum_{\substack{\vec{\delta} \vdash \delta \\(\cdots)}}\left\langle\mathrm{PT}_{\gamma, \delta_{0}}^{(1)}\right\rangle^{L} \frac{(-1)^{k}}{k!}\left[\cdots\left[e^{\left(-1,0, \gamma, \delta_{0}\right)},\left[M_{\delta_{1}}^{\text {ss }}\right]^{\mathrm{in}}\right]^{L}, \cdots,\left[M_{\delta_{k}}^{\mathrm{ss}}\right]^{\mathrm{in}}\right]^{L}
$$

2. Let us now take an elliptic fibration

with base $B$ and section $i$. Set $L=\pi^{*} L_{B}$ which will satisfy the orthogonality assumption for any line bundle $L_{B}$ because $\beta-\beta_{0}$ will be the multiple of a fiber class.

## Conjecture of Bae-Kool-Park

1. Under this orthogonality assumption, taking $\left[u^{\frac{\gamma}{2}\left(c_{1}(L)^{2}+\gamma\right)}\right]\{-\}$ in the wall-crossing formula with insertions leads to

$$
\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle^{L}=\sum_{\substack{\vec{\delta} \vdash \delta \\(\cdots)}}\left\langle\mathrm { PT } _ { \gamma , \delta _ { 0 } } ^ { ( 1 ) } L ^ { L } \frac { ( - 1 ) ^ { k } } { k ! } \left[\cdots\left[e^{\left(-1,0, \gamma, \delta_{0}\right)},\left[M_{\delta_{1}}^{\mathrm{ss}} \mathrm{j}^{\mathrm{jn}}\right]^{L}, \cdots,\left[M_{\delta_{k}}^{\mathrm{ss}}\right]^{\mathrm{in}}\right]^{L}\right.\right.
$$

2. Let us now take an elliptic fibration

with base $B$ and section $i$. Set $L=\pi^{*} L_{B}$ which will satisfy the orthogonality assumption for any line bundle $L_{B}$ because $\beta-\beta_{0}$ will be the multiple of a fiber class.
3. For the class $(\gamma, \delta)=\pi^{*}(\beta, n)$ for $(\beta, n) \in H^{\geq 4}(B)$ Bae-Kool-Park define

$$
\begin{aligned}
\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle\right\rangle^{L} & =\sum_{d \geq 0}\left\langle\mathrm{PT}_{\gamma, \delta+d E}^{(0)}\right\rangle^{L} q^{d} \\
\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(1)}\right\rangle\right\rangle^{L} & =\sum_{d \geq 0}\left\langle\mathrm{PT}_{\gamma, \delta+d E}^{(1)}\right\rangle^{L} q^{d} \\
\langle\langle\mathrm{PT}\rangle\rangle^{L} & =\sum_{d \geq 0}\left\langle\mathrm{PT}_{d E}\right\rangle^{L} q^{d}
\end{aligned}
$$

Here $E$ is the Poincare dual of a fiber class and PT stands for the usual PT stable pairs.

## BKP conjecture

1. Up to a simple structural assumption on $\left[M_{d E, n}\right]^{\text {in }}$ that holds whenever $B$ is a Fano of Picard rank 1 and $(d, n)=1$ (with a sketch of how it works for any Fano 3 -fold), and I expect to prove later, I can show that
Conjecture (Bae-Kool-Park)
The $\mathrm{PT}^{(0)} / \mathrm{PT}^{(1)}$ correspondence

$$
\left.\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle\right\rangle^{\mathcal{O}_{x}}=\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(1)}\right\rangle\right\rangle^{\mathcal{O}_{x}}\langle\langle\mathrm{PT}\rangle\rangle\right\rangle^{\mathcal{O}_{x}}
$$

holds for $(\gamma, \delta)=\pi^{*}(\beta, n)$.

## BKP conjecture

1. Up to a simple structural assumption on $\left[M_{d E, n}\right]^{\text {in }}$ that holds whenever $B$ is a Fano of Picard rank 1 and $(d, n)=1$ (with a sketch of how it works for any Fano 3 -fold), and I expect to prove later, I can show that
Conjecture (Bae-Kool-Park)
The $\mathrm{PT}^{(0)} / \mathrm{PT}^{(1)}$ correspondence

$$
\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle\right\rangle^{\mathcal{O}_{x}}=\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(1)}\right\rangle\right\rangle^{\mathcal{O}_{x}}\langle\langle\mathrm{PT}\rangle\rangle^{\mathcal{O}_{X}}
$$

holds for $(\gamma, \delta)=\pi^{*}(\beta, n)$.
2. This is because in the wall-crossing formula twisted by $\mathcal{O}_{X}^{[n]}$ only the classes $\left[M_{d E, n}\right]^{\text {in }}$ contribute. Any bracket with $\left[M_{d E, n}\right]^{\text {in }}$ for $n \neq 0$ is almost trivially zero up to a small additional term. The vanishing of this term is precisely the content of the streuctural assumption.

## BKP conjecture

1. Up to a simple structural assumption on $\left[M_{d E, n}\right]^{\text {in }}$ that holds whenever $B$ is a Fano of Picard rank 1 and $(d, n)=1$ (with a sketch of how it works for any Fano 3 -fold), and I expect to prove later, I can show that
Conjecture (Bae-Kool-Park)
The $\mathrm{PT}^{(0)} / \mathrm{PT}^{(1)}$ correspondence

$$
\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(0)}\right\rangle\right\rangle^{\mathcal{O}_{x}}=\left\langle\left\langle\mathrm{PT}_{\gamma, \delta}^{(1)}\right\rangle\right\rangle^{\mathcal{O}_{x}}\langle\langle\mathrm{PT}\rangle\rangle^{\mathcal{O}_{X}}
$$

holds for $(\gamma, \delta)=\pi^{*}(\beta, n)$.
2. This is because in the wall-crossing formula twisted by $\mathcal{O}_{X}^{[n]}$ only the classes $\left[M_{d E, n}\right]^{\text {in }}$ contribute. Any bracket with $\left[M_{d E, n}\right]^{\text {in }}$ for $n \neq 0$ is almost trivially zero up to a small additional term. The vanishing of this term is precisely the content of the streuctural assumption.
3. Note that if $\gamma=0$, then this additional assumption is not required in any geometry, so this expresses PT invariants in terms of just integrals of the form

$$
\int_{\left[M_{\beta, 0}\right]^{\text {in }}} c_{1}\left(\mathcal{O}_{X}^{[\beta, 0]}\right)
$$

## Application to 3-fold DT/PT

1. By the work in progress of Bae-Kool-Park, there is an identification of the moduli spaces

$$
D T_{\beta, n}=\mathrm{PT}_{\gamma, \delta}^{(0)}, \quad \mathrm{PT}_{\beta, n}=\mathrm{PT}_{\gamma, \delta}^{(1)}
$$

and their virtual fundamental classes when some further assumptions on $X \rightarrow B$ and geometric realizations of $\gamma=\pi^{*} \beta$ are satisfied.

## Application to 3-fold DT/PT

1. By the work in progress of Bae-Kool-Park, there is an identification of the moduli spaces

$$
D T_{\beta, n}=\mathrm{PT}_{\gamma, \delta}^{(0)}, \quad \mathrm{PT}_{\beta, n}=\mathrm{PT}_{\gamma, \delta}^{(1)}
$$

and their virtual fundamental classes when some further assumptions on $X \rightarrow B$ and geometric realizations of $\gamma=\pi^{*} \beta$ are satisfied.
2. As a consequence of proving the BKP conjecture, one obtains:

Corollary
As long as the assumptions of BKP hold, we have the following DT/PT correspondence on the base $B$ :

$$
\left\langle\left\langle D T_{\beta}\right\rangle\right\rangle^{\mathcal{O}_{B}}=\left\langle\left\langle\mathrm{P} T_{\beta}\right\rangle\right\rangle^{\mathcal{O}_{B}}\langle\langle D T\rangle\rangle{ }^{\mathcal{O}_{B}} .
$$

where the generating series are defined exactly as they were for 4-folds but starting at $(\beta, 0)$.

## Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions


## Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.


## Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.

3. Self-dual obstruction theories on enhanced master spaces


## Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.

3. Self-dual obstruction theories on enhanced master spaces

4. New family of stability conditions interpolating between the different surface counting theories.


## Summary of everything new that my work introduces

1. Formal families of vertex algebras in relation to wall-crossing with insertions

2. Well-defined invariants counting semistable torsion-free sheaves on fourfolds.

3. Self-dual obstruction theories on enhanced master spaces

4. New family of stability conditions interpolating between the different surface counting theories.

5. (Working on) a complete package for dealing with wall-crossing for stable pairs.

[^0]:    ${ }^{1}$ More generally compactly supported perfect complexes.

[^1]:    ${ }^{1}$ More generally compactly supported perfect complexes.

[^2]:    ${ }^{1}$ More generally compactly supported perfect complexes.

[^3]:    ${ }^{2}$ Should the pole along $z=0$ be constant for all $u$ or should it vary?

[^4]:    ${ }^{3}$ Infinitesimal version of skew-symmetry (assuming locality).

[^5]:    ${ }^{3}$ Infinitesimal version of skew-symmetry (assuming locality).

[^6]:    ${ }^{3}$ Infinitesimal version of skew-symmetry (assuming locality).

[^7]:    ${ }^{3}$ Infinitesimal version of skew-symmetry (assuming locality).

[^8]:    ${ }^{4}$ Or higher stack of perfect complexes on $X$

[^9]:    ${ }^{4}$ Or higher stack of perfect complexes on $X$

[^10]:    ${ }^{4}$ Or higher stack of perfect complexes on $X$

[^11]:    ${ }^{4}$ Or higher stack of perfect complexes on $X$

[^12]:    ${ }^{5}$ Because for $\chi(\alpha, \beta)<0$, we have an infinite power-series in $z^{-1}$.
    ${ }^{6}$ While the construction is heavily inspired by the original work, the proof is different 3

[^13]:    ${ }^{5}$ Because for $\chi(\alpha, \beta)<0$, we have an infinite power-series in $z^{-1}$.
    ${ }^{6}$ While the construction is heavily inspired by the original work, the proof is different

[^14]:    ${ }^{5}$ Because for $\chi(\alpha, \beta)<0$, we have an infinite power-series in $z^{-1}$.
    ${ }^{6}$ While the construction is heavily inspired by the original work, the proof is different

[^15]:    ${ }^{7}$ The proof that this is a $u$-family of Lie algebras is standard.

[^16]:    ${ }^{7}$ The proof that this is a $u$-family of Lie algebras is standard.

[^17]:    ${ }^{8}$ Comparing $D T=P T^{(-1)}$ and $P T^{(0)}$ is standard from the point of view of stabilityconditions.

[^18]:    ${ }^{8}$ Comparing $D T=P T^{(-1)}$ and $P T^{(0)}$ is standard from the point of view of stability conditions.

