0. INTRODUCTION

Our aim is to pursue the following speculative analogy:

It seems to have something highly non-trivial to say about non-perturbative aspects of topological string theory. For example for the CY₃ category associated to the A₂ quiver we end up considering the Painlevé I τ -function! But so far we can only deal with a few simple examples.

- **Remarks 0.1.** (a) A Joyce structure is something like a non-linear analogue of a Frobenius structure, obtained by replacing the structure group $\operatorname{GL}_n(\mathbb{C})$ by the group of symplectic automorphisms of an algebraic torus $(\mathbb{C}^*)^n$.
 - (b) The relation with enumerative invariants in the two cases is *completely different*. Both structures involve pencils of flat connections on the tangent bundle. In the GW case the connnection 1-form is given by the triple partial derivatives of the g = 0 GW generating function. In the DT cases the connections are given implicitly by their Stokes data.
 - (c) The top arrow is not so well understood if one wants genuine rather than formal Frobenius structures. The bottom arrow has a more global flavour from the start, and is even less well understood. We will at least need to assume a sub-exponential growth condition on the DT invariants

$$\sum_{\mathbf{y}\in\mathbb{Z}^{\oplus n}}|\Omega(\mathbf{y})|e^{-R\|\mathbf{y}\|}<\infty.$$

This is expected to hold for the derived category of coherent sheaves on a local Calabi-Yau threefold but not for compact ones. There are lots of examples of \mathcal{D} defined using quivers with potential where it holds.

1. Lecture 1: Stokes data

We explain the definition of Stokes data in the simplest possible case. Then we explain why DT invariants can be viewed as non-linear Stokes data.

1.1. Stokes data. Since passing from Frobenius to Joyce structures involves changing the structure group it is worth being a bit pennickety about this now. Fix a finite dimensional complex vector space T and set $\mathfrak{g} = \mathfrak{gl}(T)$ and $G = \operatorname{GL}(T)$. Choose a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$. We the get a root system $\Phi \subset \mathfrak{h}^*$ and a root decomposition $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$. Define

$$\mathfrak{h}^{\mathrm{reg}} = \{ U \in \mathfrak{h} : U(\alpha) \neq 0 \text{ for all } \alpha \in \Phi \} \subset \mathfrak{g}, \qquad \mathfrak{g}^{\mathrm{od}} = \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha} \subset \mathfrak{g}.$$

Example 1.1. We can take $T = \mathbb{C}^n$ so that $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$ is the space of $n \times n$ matrices and take $\mathfrak{h} \subset \mathfrak{g}$ to be the subspace of diagonal matrices. Then $\Phi = \{\alpha_{ij} = e_j i^* - e_j^* : 1 \leq i, j \leq n\}$ and $\mathfrak{g}_{\alpha_{ij}} = \mathbb{C} \cdot E_{ij}$. The subset $\mathfrak{h}^{\text{reg}}$ consists of diagonal matrices with distinct eigenvalues and \mathfrak{g}^{od} is matrices with zeroes on the diagonal.

Define a meromorphic connection on the trivial G-bundle over \mathbb{P}^1

$$\nabla = d - \left(\frac{U}{\epsilon^2} + \frac{V}{\epsilon}\right)d\epsilon.$$

Remark 1.2. We can equivalently think of ∇ as a connection on the associated trivial vector bundle $\mathcal{O}_{\mathbb{P}^1} \otimes_{\mathbb{C}} W$. The above *G*-bundle is the frame bundle of this. Flat sections of the *G*-bundle connection are given by bases of flat sections of the vector bundle connection.

The connection ∇ has a regular singularity (simple pole) at $\epsilon = \infty$ but an irregular singularity at $\epsilon = 0$. We should consider the generalised monodromy data at this point.

Definition 1.3. A ray $\ell = \mathbb{R}_{>0} \cdot \zeta \subset \mathbb{C}^*$ is called Stokes if it is of the form $\mathbb{R}_{>0} \cdot U(\alpha)$ for $\alpha \in \Phi$.

In general there will be $\frac{1}{2}n(n-1)$ Stokes rays but for non-generic U they could have collided.

Theorem 1.4 (Balser, Jurkat, Lutz, 1970s). For each non-Stokes ray $r \subset \mathbb{C}^*$ there exists a unique flat section $Y_r \colon \mathbb{H}_r \to G$ of ∇ defined on the half-plane \mathbb{H}_r centered on r such that $Y_r(\epsilon) \cdot e^{U/\epsilon} \to 1$ as $\epsilon \to 0$.

Note that if V = 0 the flat sections of ∇ are given by $Y(\epsilon) = C \cdot e^{-U/\epsilon}$ for $C \in G$.

Definition 1.5. The Stokes factor $S_{\ell} \in G$ associated to a Stokes ray $\ell \subset \mathbb{C}^*$ is defined by

$$Y_{r_{-}}(\epsilon) = Y_{r_{+}}(\epsilon) \cdot S_{\ell},$$

where $r_{\pm} = \exp(\pm i\pi\delta)$ are small non-Stokes perturbations of ℓ .

Exercise 1.6. Show that

$$S_{\ell} \in \exp\left(\bigoplus_{U(\alpha) \in \ell} \mathfrak{g}_{\alpha}\right) \subset G.$$

If we fix U we get a holomorphic (but not algebraic) Stokes map $\mathcal{S}_U: \mathfrak{g}^{\mathrm{od}} \to \mathfrak{g}^{\mathrm{od}}$ sending an element V to the sum of the elements $\log(S_\ell)$ over the set of Stokes rays ℓ .

Theorem 1.7. For each $U \in \mathfrak{h}^{reg}$ the Stokes map \mathcal{S}_U is a local biholomorphism.

That is, after having fixed U, we can uniquely reconstruct the connection ∇ from its Stokes data, at least locally. We will see how to do this in practice later using Riemann-Hilbert problems. To get a complete reconstruction one must add a discrete amount of extra monodromy data (a choice of the log of the monodromy, and the central connection matrix).

1.2. **DT invariants as Stokes data.** Consider a CY₃ triangulated category \mathcal{D} . Assume $\Gamma = K_0(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$. Recall the skew-symmetric Euler form

$$\langle [E], [F] \rangle = \sum_{i \in \mathbb{Z}} (-1)^i \dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(E, F[i]) \colon \Gamma \times \Gamma \to \mathbb{Z}.$$

4

Introduce the algebraic torus

$$\mathbb{T} = \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}^*) \cong (\mathbb{C}^*)^n, \qquad \mathbb{C}[\mathbb{T}] = \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma}.$$

with the invariant Poisson structure

$$\{x_{\alpha}, x_{\beta}\} = \langle \alpha, \beta \rangle \cdot x_{\alpha+\beta}$$

Let $\sigma = (Z, \mathcal{P})$ be a stability condition on \mathcal{D} . Given extra assumptions we get DT invariants $DT_{\sigma}(\gamma) \in \mathbb{Q}$ and $\Omega_{\sigma}(\gamma) \in \mathbb{Q}$ related by the multi-cover formula

$$DT_{\sigma}(\gamma) = \sum_{n \in \mathbb{N}: \gamma = n\alpha} \frac{\Omega_{\sigma}(\alpha)}{n^2}$$

A ray $\ell \subset \mathbb{C}^*$ is called Stokes if $\ell = \mathbb{R}_{>0} \cdot Z(\gamma)$ for some class $\gamma \in \Gamma$ with $DT_{\sigma}(\gamma) \neq 0$. There are countably many Stokes rays in general. The following picture is for a stability condition on $\mathcal{D}^b \operatorname{Coh}(X)$ with X the resolved conifold.

Try to define, for each Stokes ray $\ell \subset \mathbb{C}^*$, a Poisson automorphism $\mathbb{S}_{\ell} \colon \mathbb{T} \to \mathbb{T}$:

$$\mathbb{S}_{\ell}^{*}(x_{\beta}) = \exp\bigg\{\sum_{Z(\gamma)\in\ell} \operatorname{DT}_{\sigma}(\gamma) \cdot x_{\gamma}, -\bigg\}(x_{\beta}) = x_{\beta} \cdot \prod_{Z(\gamma)\in\ell} (1 - x_{\gamma})^{\Omega(\gamma) \cdot \langle \beta, \gamma \rangle} \bigg\}$$

We are ignoring quadratic refinements here: really we should replace \mathbb{T} by a torsor over it which introduces some signs. In any case work is required to make rigorous sense of \mathbb{S}_{ℓ} . Three possible approaches are:

- Assume there are only finitely many nonzero $\Omega(\gamma)$: then the \mathbb{S}_{ℓ} are well-defined birational automorphisms of \mathbb{T} ,
- Assume a sub-exponential growth condition on the DT invariants

$$\sum_{\gamma \in \mathbb{Z}^{\oplus n}} |\Omega(\gamma)| e^{-R \|\gamma\|} < \infty.$$

Then the \mathbb{S}_{ℓ} are well-defined on analytic open subsets of \mathbb{T} .

• Work with formal series: replace $\operatorname{Aut} \mathbb{C}[x_i^{\pm 1}]$ with $\operatorname{Aut} \mathbb{C}[[x_i]]$. This allows a rigorous statement of the wall-crossing formula but is not good for more global statements.

Consider the Lie algebra

$$\mathfrak{g}=\mathrm{vect}_{\{-,-\}}(\mathbb{T})=\mathfrak{h}\oplus\mathfrak{g}^{\mathrm{od}}$$

of algebraic vector fields on \mathbb{T} whose flows preserve $\{-, -\}$. Temporarily assume that $\langle -, - \rangle$ is non-degenerate. The Cartan subalgebra consists of translation-invariant vector fields:

$$\mathfrak{h} = T_e(\mathbb{T}) = \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}).$$

The subalgebra $\mathfrak{g}^{\mathrm{od}}$ consists of Hamiltonian vector fields:

$$\mathfrak{g}^{\mathrm{od}} = \bigoplus_{\gamma \in \Gamma^{\times}} \mathfrak{g}_{\alpha} = \bigoplus_{\gamma \in \Gamma^{\times}} \mathbb{C} \cdot x_{\gamma}.$$

The root system is $\Gamma^{\times} = \Gamma \setminus \{0\}$, and the root decomposition of a function is its Fourier decomposition. Note the lack of a well-defined exponential map (time 1 flow)

$$\exp: \mathfrak{g} = \operatorname{vect}_{\{-,-\}}(\mathbb{T}) \dashrightarrow G = \operatorname{Aut}_{\{-,-\}}(\mathbb{T})$$

The \mathbb{S}_{ℓ} defined above look like the Stokes factors for a meromorphic connection on the trivial *G*-bundle over \mathbb{P}^1

$$\nabla_{\sigma} = d - \left(\frac{Z}{\epsilon^2} + \frac{\operatorname{Ham}_F}{\epsilon}\right) d\epsilon,$$

where $Z \in \mathfrak{h}$ is the central charge $Z \colon \Gamma \to \mathbb{C}$, and $F = \sum_{\gamma \in \Gamma^{\times}} F_{\gamma} \cdot x_{\gamma} \in \mathfrak{g}^{\mathrm{od}}$ is a function on \mathbb{T} . Further evidence for this comes from the wall-crossing formula.

2. Lecture 2: Frobenius and Joyce structures

A (tame) Frobenius structure on a complex manifold M is essentially an isomonodromic family of meromorphic connections of the type considered last time. Replacing linear connections by non-linear connections leads to the notion of a Joyce structure.

2.1. Frobenius manifolds and iso-Stokes. A Frobenius structure on a complex manifold M consists of a holomorphic metric g, a commutative and associative multiplication $*: T_M \times T_M \to T_M$, and identity and Euler vector fields e and E subject to a system of axioms.

The most well-known consequence of this structure is a pencil (= 1-dimensional family) of flat, torsion-free connections on the tangent bundle

$$\nabla_X^{(\epsilon)}(Y) = \nabla_X^{LC}(Y) + \epsilon^{-1}X * Y.$$

Here $\epsilon \in \mathbb{C}^* \subset \mathbb{P}^1$ is the parameter in the pencil, ∇^{LC} is the Levi-Civita connection for the metric g, and X and Y are vector fields on M.

In fact this pencil is part of a bigger structure. Consider the projection $p: M \times \mathbb{P}^1 \to M$. Then there is a flat meromorphic connection on the bundle $p^*(T_M)$ by the formula

$$\nabla = p^*(\nabla^{LC}) + \epsilon^{-1}\Theta - \left(\frac{U}{\epsilon^2} + \frac{V}{\epsilon}\right)d\epsilon$$

Here $\Theta \in T_M^* \otimes \operatorname{End}(T_M)$ is given by $\Theta_X(Y) = X * Y$ and $U, V \in \operatorname{End}(T_M)$ are given by U(X) = E * X and $V(X) = \nabla_X^{LC}(E) + \frac{1}{2}(d-2) \cdot X$. The constant $d \in \mathbb{C}$ is the charge or conformal dimension of the Frobenius structure.

For each $m \in M$ we can restrict to $p^{-1}(m) = \mathbb{P}^1$ to get a connection

$$\nabla_m = d - \left(\frac{U_m}{\epsilon^2} + \frac{V_m}{\epsilon}\right) d\epsilon.$$

of the form considered above, where $W = T_{M,m}$. The multiplication gives a map $W \to \mathfrak{g} = \mathfrak{gl}(W)$ and when the multiplication is semi-simple this is injective. Since the multiplication is commutative the image $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra, and we have $V \in \mathfrak{g}^{\mathrm{od}}$. The Frobenius manifold is called tame if $U \in \mathfrak{h}$ has distinct eigenvalues: then we are in the setting considered above.

The fact that the connections ∇_m for different $m \in M$ are related by the sideways connection implies the Stokes factors of ∇_m are constant. More precisely, since the Stokes rays may collide and separate as U_m varies, the correct way to state the iso-Stokes condition is the following.

Theorem 2.1. For any convex sector $\Delta \subset \mathbb{C}^*$ the clockwise product

$$S_{\Delta}(m) := \prod_{\ell \in \Delta}^{\frown} S_{\ell}(m) \in G$$

is constant as $m \in M$ varies in any domain where the boundary rays of Δ are never Stokes.

The wall-crossing formula in DT theory is the exact same statement for the DT automorphisms \mathbb{S}_{ℓ} consistered above. We see that over $\operatorname{Stab}(\mathcal{D})$ there should be an analogue of a Frobenius structure where instead of linear automorphisms of \mathbb{C}^n we deal with Poisson automorphisms of $(\mathbb{C}^*)^n$. For simplicity we assume the Poisson structure / Euler form is non-degenerate. Thus we replace pencils of flat linear connections with pencils of non-linear symplectic connections. This gives the notion of a Joyce structure.

$$0 \longrightarrow V_{X/M} \xrightarrow{i} T_X \xrightarrow{\pi_*} \pi^*(T_M)$$

where π_* is the derivative of π and $V_{X/M} \subset T_X$ is the sub-bundle of vertical tangent vectors. A non-linear connection on π is a splitting of this sequence:

$$h: \pi^*(T_M) \to T_X, \qquad \pi_* \circ h = \mathrm{id}.$$

Then π is necessarily a submersion, and the tangent bundle

$$T_X = V_{X/M} \oplus \operatorname{im}(h)$$

decomposes into vertical and horizontal directions.

Given a path $\gamma \colon [0,1] \to M$ and a point $x \in \pi^{-1}(\gamma(0))$ we obtain a lifted path

$$\alpha \colon [0,\epsilon] \to X$$

for $0 \ll \epsilon < 1$ defined by the conditions $\alpha(0) = x$ and $\dot{\alpha}(t) = h(\dot{\gamma}(t))$. Varying x in a small neighbourhood $U_0 \subset \pi^{-1}(\gamma(0))$ we obtain parallel transport maps

$$\mathrm{PT}(\gamma) \colon U_0 \subset \pi^{-1}(\gamma(0)) \to U_t \subset \pi^{-1}(\gamma(t)),$$

well-defined for $0 \ll t < 1$ and $U_0 \subset \pi^{-1}(\gamma(0))$ small enough.

The connection h is called flat if it satisfies

$$h([w_1, w_2]) = [h(w_1), h(w_2)]$$

for any vector fields w_1, w_2 on M. Then $PT(\gamma)$ depends only on the homotopy class of γ .

2.3. **Pre-Joyce structures.** Let M be a complex manifold with tangent bundle $\pi: X = T_M \to M$. There is a canonical isomorphism $\nu: \pi^*(T_M) \to V_{X/M}$ coming from

$$V_{X/M,x} = T_{\pi^{-1}(\pi(x)),x} = T_{T_{M,\pi(x)},x} = T_{M,\pi(x)} = \pi^*(T_M)_x$$

Take a non-linear connection $h: \pi^*(T_M) \to T_X$, and set $v = i \circ \nu$. We get a pencil of connections $h_{\epsilon} = h + \epsilon^{-1} v$ depending on $\epsilon^{-1} \in \mathbb{C}$.

Definition 2.2. A pre-Joyce structure on a complex manifold *M* consists of

(i) a holomorphic symplectic form ω on M,

(ii) a non-linear connection h on the tangent bundle $\pi: X = T_M \to M$,

such that each connection $h_{\epsilon} = h + \epsilon^{-1}v$ is flat and symplectic.

Here we say that a connection on π is symplectic if the partially-defined maps

$$\operatorname{PT}(\gamma) \colon T_{M,m} \to T_{M,m'},$$

are symplectic, i.e. take ω_m to $\omega_{m'}$.

2.4. In co-ordinates. Take co-ordinates z_i on M and write $\omega = \sum_{i < j} \omega_{ij} dz_i \wedge dz_j$. Assume ω_{ij} is a constant matrix (so we have more-or-less chosen Darboux co-ordinates) and let η_{ij} be the inverse matrix. Writing tangent vectors in the form $\sum_i \theta_i \cdot \frac{\partial}{\partial z_i}$ gives co-ordinates z_i, θ_i on $X = T_M$. The definition of v gives

$$v\left(\frac{\partial}{\partial z_i}\right) = \frac{\partial}{\partial \theta_i}$$

and the symplectic condition gives Hamiltonian functions $W_i: X \to \mathbb{C}$ such that

$$v\left(\frac{\partial}{\partial z_i}\right) = \frac{\partial}{\partial \theta_i}, \qquad h\left(\frac{\partial}{\partial z_i}\right) = \frac{\partial}{\partial z_i} + \sum_{p,q} \eta_{pq} \cdot \frac{\partial W_i}{\partial \theta_p} \cdot \frac{\partial}{\partial \theta_q}$$

Flatness implies that $W_i = \frac{\partial W}{\partial \theta_i}$, where $W \colon X \to \mathbb{C}$ must satisfy

$$\frac{\partial^2 W}{\partial \theta_i \partial z_j} - \frac{\partial^2 W}{\partial \theta_j \partial z_i} = \sum_{p,q} \eta_{pq} \cdot \frac{\partial^2 W}{\partial \theta_i \partial \theta_p} \cdot \frac{\partial^2 W}{\partial \theta_j \partial \theta_q}.$$

These are known as Plebanski's second heavenly equations.

2.5. Complex hyperkähler structure on $X = T_M$. A non-linear connection h on π gives

$$T_X = \operatorname{im}(v) \oplus \operatorname{im}(h) \cong \pi^*(T_M) \oplus \pi^*(T_M) = \pi^*(T_M) \otimes_{\mathbb{C}} \mathbb{C}^2$$

We get a holomorphic metric g and an action of the quaternions on T_X :

$$g = \begin{pmatrix} 0 & \omega \\ \omega & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} i \cdot \mathbb{1} & 0 \\ 0 & -i \cdot \mathbb{1} \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & -\mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \qquad K = IJ.$$

The essential point here is that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong \operatorname{End}_{\mathbb{C}}(\mathbb{C}^2)$.

Theorem 2.3. The operators I, J, K preserve the metric g and are parallel for the associated Levi-Civita connection precisely if the connections h_{ϵ} are all flat and symplectic.

Thus a pre-Joyce structure on M defines a complex HK structure on $X = T_M$.

2.6. **Definition of a Joyce structure.** A Joyce structure is a pre-Joyce structure with some extra symmetries.

Definition 2.4. A Joyce structure on a complex manifold M consists of

- (i) a pre-Joyce structure (ω, h) as above,
- (ii) an integral affine structure $T_M^{\mathbb{Z}} \subset T_M$,
- (iii) a \mathbb{C}^* -action on M,

satisfying the following conditions

- (i) the connection h is invariant under translations by $T_M^{\mathbb{Z}} \subset T_M$ and hence descends to the bundle $T_M^{\#} = T_M / T_M^{\mathbb{Z}} \to M$ whose fibres are isomorphic to $(\mathbb{C}^*)^n$,
- (ii) Let E be the generating vector field for the induced \mathbb{C}^* action on X. Then

$$\operatorname{Lie}_{E}(g) = g, \quad \operatorname{Lie}_{E}(I) = 0, \quad \operatorname{Lie}_{E}(J \pm iK) = \mp (J \pm iK)$$

(iii) Let -1 denote the involution of X acting by -1 on the fibres of π . Then

$$(-1)^*(g) = -g, \quad (-1)^*(I) = I, \quad (-1)^*(J \pm iK) = -(J \pm iK),$$

In appropriate co-ordinates as above the conditions (i)-(iii) become

- (i) $W(z_1, \cdots, z_n, \theta_1 + k_1, \cdots, \theta_n + k_n) = W(z_1, \cdots, z_n, \theta_1, \cdots, \theta_n),$
- (ii) $W(tz_1, \cdots, tz_n, \theta_1, \cdots, \theta_n) = t^{-1}W(z_1, \cdots, z_n, \theta_1, \cdots, \theta_n),$
- (iii) $W(z_1, \cdots, z_n, -\theta_1, \cdots, -\theta_n) = -W(z_1, \cdots, z_n, \theta_1, \cdots, \theta_n).$