
0. Introduction

Our aim is to pursue the following speculative analogy:

Genus 0 GW invariants of a variety V  Frobenius structure on M ⊂ H∗(V,C)

DT invariants of a CY3 ∆-category D ??
 Joyce structure on M = Stab(D)

It seems to have something highly non-trivial to say about non-perturbative aspects of topo-

logical string theory. For example for the CY3 category associated to the A2 quiver we end up

considering the Painlevé I τ -function! But so far we can only deal with a few simple examples.

Remarks 0.1. (a) A Joyce structure is something like a non-linear analogue of a Frobenius

structure, obtained by replacing the structure group GLn(C) by the group of symplectic

automorphisms of an algebraic torus (C∗)n.

(b) The relation with enumerative invariants in the two cases is completely different. Both

structures involve pencils of flat connections on the tangent bundle. In the GW case the

connnection 1-form is given by the triple partial derivatives of the g = 0 GW generating

function. In the DT cases the connections are given implicitly by their Stokes data.

(c) The top arrow is not so well understood if one wants genuine rather than formal Frobe-

nius structures. The bottom arrow has a more global flavour from the start, and is

even less well understood. We will at least need to assume a sub-exponential growth

condition on the DT invariants∑
γ∈Z⊕n

|Ω(γ)|e−R‖γ‖ <∞.

This is expected to hold for the derived category of coherent sheaves on a local Calabi-

Yau threefold but not for compact ones. There are lots of examples of D defined using

quivers with potential where it holds.

1. Lecture 1: Stokes data

We explain the definition of Stokes data in the simplest possible case. Then we explain why

DT invariants can be viewed as non-linear Stokes data.
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1.1. Stokes data. Since passing from Frobenius to Joyce structures involves changing the

structure group it is worth being a bit pennickety about this now. Fix a finite dimensional

complex vector space T and set g = gl(T ) and G = GL(T ). Choose a Cartan subalgebra h ⊂ g.

We the get a root system Φ ⊂ h∗ and a root decomposition g = h⊕
⊕

α∈Φ gα. Define

hreg = {U ∈ h : U(α) 6= 0 for all α ∈ Φ} ⊂ g, god =
⊕
α∈Φ

gα ⊂ g.

Example 1.1. We can take T = Cn so that g = gln(C) is the space of n×n matrices and take

h ⊂ g to be the subspace of diagonal matrices. Then Φ = {αij = e)i
∗ − e∗j : 1 ≤ i, j ≤ n} and

gαij = C · Eij. The subset hreg consists of diagonal matrices with distinct eigenvalues and god

is matrices with zeroes on the diagonal.

Define a meromorphic connection on the trivial G-bundle over P1

∇ = d−
(
U

ε2
+
V

ε

)
dε.

Remark 1.2. We can equivalently think of ∇ as a connection on the associated trivial vector

bundle OP1 ⊗C W . The above G-bundle is the frame bundle of this. Flat sections of the

G-bundle connection are given by bases of flat sections of the vector bundle connection.

The connection∇ has a regular singularity (simple pole) at ε =∞ but an irregular singularity

at ε = 0. We should consider the generalised monodromy data at this point.

Definition 1.3. A ray ` = R>0 ·ζ ⊂ C∗ is called Stokes if it is of the form R>0 ·U(α) for α ∈ Φ.

u1 − u2

u2 − u3
u1 − u3

In general there will be 1
2
n(n−1) Stokes rays but for non-generic U they could have collided.

Theorem 1.4 (Balser, Jurkat, Lutz, 1970s). For each non-Stokes ray r ⊂ C∗ there exists

a unique flat section Yr : Hr → G of ∇ defined on the half-plane Hr centered on r such that

Yr(ε) · eU/ε) → 1 as ε→ 0.

Note that if V = 0 the flat sections of ∇ are given by Y (ε) = C · e−U/ε for C ∈ G.
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Definition 1.5. The Stokes factor S` ∈ G associated to a Stokes ray ` ⊂ C∗ is defined by

Yr−(ε) = Yr+(ε) · S`,

where r± = exp(±iπδ) are small non-Stokes perturbations of `.

`

r+

r−

Exercise 1.6. Show that

S` ∈ exp
( ⊕
U(α)∈`

gα

)
⊂ G.

If we fix U we get a holomorphic (but not algebraic) Stokes map SU : god → god sending an

element V to the sum of the elements log(S`) over the set of Stokes rays `.

Theorem 1.7. For each U ∈ hreg the Stokes map SU is a local biholomorphism.

That is, after having fixed U , we can uniquely reconstruct the connection ∇ from its Stokes

data, at least locally. We will see how to do this in practice later using Riemann-Hilbert prob-

lems. To get a complete reconstruction one must add a discrete amount of extra monodromy

data (a choice of the log of the monodromy, and the central connection matrix).

1.2. DT invariants as Stokes data. Consider a CY3 triangulated category D. Assume

Γ = K0(D) ∼= Z⊕n. Recall the skew-symmetric Euler form

〈[E], [F ]〉 =
∑
i∈Z

(−1)i dimC HomD(E,F [i]) : Γ× Γ→ Z.
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Introduce the algebraic torus

T = HomZ(Γ,C∗) ∼= (C∗)n, C[T] =
⊕
γ∈Γ

C · xγ.

with the invariant Poisson structure

{xα, xβ} = 〈α, β〉 · xα+β.

Let σ = (Z,P) be a stability condition on D. Given extra assumptions we get DT invariants

DTσ(γ) ∈ Q and Ωσ(γ) ∈ Q related by the multi-cover formula

DTσ(γ) =
∑

n∈N:γ=nα

Ωσ(α)

n2
.

A ray ` ⊂ C∗ is called Stokes if ` = R>0 · Z(γ) for some class γ ∈ Γ with DTσ(γ) 6= 0. There

are countably many Stokes rays in general. The following picture is for a stability condition on

Db Coh(X)) with X the resolved conifold.

· · ·· · ·

· · ·· · ·

OCOC(1) OC(−1)

Ox Ox[±1]

OC [±1]

Try to define, for each Stokes ray ` ⊂ C∗, a Poisson automorphism S` : T→ T:

S∗`(xβ) = exp

{ ∑
Z(γ)∈`

DTσ(γ) · xγ,−
}

(xβ) = xβ ·
∏

Z(γ)∈`

(1− xγ)Ω(γ)·〈β,γ〉

We are ignoring quadratic refinements here: really we should replace T by a torsor over it

which introduces some signs. In any case work is required to make rigorous sense of S`. Three

possible approaches are:

• Assume there are only finitely many nonzero Ω(γ): then the S` are well-defined bira-

tional automorphisms of T,

• Assume a sub-exponential growth condition on the DT invariants∑
γ∈Z⊕n

|Ω(γ)|e−R‖γ‖ <∞.
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Then the S` are well-defined on analytic open subsets of T.

• Work with formal series: replace AutC[x±1
i ] with AutC[[xi]]. This allows a rigorous

statement of the wall-crossing formula but is not good for more global statements.

Consider the Lie algebra

g = vect{−,−}(T) = h⊕ god

of algebraic vector fields on T whose flows preserve {−,−}. Temporarily assume that 〈−,−〉
is non-degenerate. The Cartan subalgebra consists of translation-invariant vector fields:

h = Te(T) = HomZ(Γ,C).

The subalgebra god consists of Hamiltonian vector fields:

god =
⊕
γ∈Γ×

gα =
⊕
γ∈Γ×

C · xγ.

The root system is Γ× = Γ \ {0}, and the root decomposition of a function is its Fourier

decomposition. Note the lack of a well-defined exponential map (time 1 flow)

exp: g = vect{−,−}(T) 99K G = Aut{−,−}(T)

The S` defined above look like the Stokes factors for a meromorphic connection on the trivial

G-bundle over P1

∇σ = d−
(
Z

ε2
+

HamF

ε

)
dε,

where Z ∈ h is the central charge Z : Γ→ C, and F =
∑

γ∈Γ× Fγ · xγ ∈ god is a function on T.

Further evidence for this comes from the wall-crossing formula.

2. Lecture 2: Frobenius and Joyce structures

A (tame) Frobenius structure on a complex manifold M is essentially an isomonodromic fam-

ily of meromorphic connections of the type considered last time. Replacing linear connections

by non-linear connections leads to the notion of a Joyce structure.

2.1. Frobenius manifolds and iso-Stokes. A Frobenius structure on a complex manifold M

consists of a holomorphic metric g, a commutative and associative multiplication ∗ : TM×TM →
TM , and identity and Euler vector fields e and E subject to a system of axioms.

The most well-known consequence of this structure is a pencil (= 1-dimensional family) of

flat, torsion-free connections on the tangent bundle

∇(ε)
X (Y ) = ∇LC

X (Y ) + ε−1X ∗ Y.
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Here ε ∈ C∗ ⊂ P1 is the parameter in the pencil, ∇LC is the Levi-Civita connection for the

metric g, and X and Y are vector fields on M .

In fact this pencil is part of a bigger structure. Consider the projection p : M × P1 → M .

Then there is a flat meromorphic connection on the bundle p∗(TM) by the formula

∇ = p∗(∇LC) + ε−1Θ−
(
U

ε2
+
V

ε

)
dε.

Here Θ ∈ T ∗M ⊗ End(TM) is given by ΘX(Y ) = X ∗ Y and U, V ∈ End(TM) are given by

U(X) = E ∗ X and V (X) = ∇LC
X (E) + 1

2
(d − 2) · X. The constant d ∈ C is the charge or

conformal dimension of the Frobenius structure.

For each m ∈M we can restrict to p−1(m) = P1 to get a connection

∇m = d−
(
Um
ε2

+
Vm
ε

)
dε.

of the form considered above, where W = TM,m. The multiplication gives a map W → g =

gl(W ) and when the multiplication is semi-simple this is injective. Since the multiplication is

commutative the image h ⊂ g is a Cartan subalgebra, and we have V ∈ god. The Frobenius

manifold is called tame if U ∈ h has distinct eigenvalues: then we are in the setting considered

above.

The fact that the connections ∇m for different m ∈M are related by the sideways connection

implies the Stokes factors of ∇m are constant. More precisely, since the Stokes rays may collide

and separate as Um varies, the correct way to state the iso-Stokes condition is the following.

Theorem 2.1. For any convex sector ∆ ⊂ C∗ the clockwise product

S∆(m) :=
y∏
`∈∆

S`(m) ∈ G

is constant as m ∈M varies in any domain where the boundary rays of ∆ are never Stokes.

The wall-crossing formula in DT theory is the exact same statement for the DT automor-

phisms S` consisdered above. We see that over Stab(D) there should be an analogue of a Frobe-

nius structure where instead of linear automorphisms of Cn we deal with Poisson automorphisms

of (C∗)n. For simplicity we assume the Poisson structure / Euler form is non-degenerate. Thus

we replace pencils of flat linear connections with pencils of non-linear symplectic connections.

This gives the notion of a Joyce structure.
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2.2. Non-linear connections. Let π : X →M be a map of complex manifolds. Consider the

tangent sequence

0 −→ VX/M
i−→ TX

π∗−→ π∗(TM)

where π∗ is the derivative of π and VX/M ⊂ TX is the sub-bundle of vertical tangent vectors. A

non-linear connection on π is a splitting of this sequence:

h : π∗(TM)→ TX , π∗ ◦ h = id .

Then π is necessarily a submersion, and the tangent bundle

TX = VX/M ⊕ im(h)

decomposes into vertical and horizontal directions.

Given a path γ : [0, 1]→M and a point x ∈ π−1(γ(0)) we obtain a lifted path

α : [0, ε]→ X

for 0 � ε < 1 defined by the conditions α(0) = x and α̇(t) = h(γ̇(t)). Varying x in a small

neighbourhood U0 ⊂ π−1(γ(0)) we obtain parallel transport maps

PT(γ) : U0 ⊂ π−1(γ(0))→ Ut ⊂ π−1(γ(t)),

well-defined for 0� t < 1 and U0 ⊂ π−1(γ(0)) small enough.

The connection h is called flat if it satisfies

h([w1, w2]) = [h(w1), h(w2)]

for any vector fields w1, w2 on M . Then PT(γ) depends only on the homotopy class of γ.

2.3. Pre-Joyce structures. Let M be a complex manifold with tangent bundle π : X =

TM →M . There is a canonical isomorphism ν : π∗(TM)→ VX/M coming from

VX/M,x = Tπ−1(π(x)),x = TTM,π(x),x = TM,π(x) = π∗(TM)x.

Take a non-linear connection h : π∗(TM)→ TX , and set v = i◦ν. We get a pencil of connections

hε = h+ ε−1v depending on ε−1 ∈ C.

0 // VX/M
i
// TX

π∗
// π∗(TM)

h

��

ν

gg

// 0

Definition 2.2. A pre-Joyce structure on a complex manifold M consists of

(i) a holomorphic symplectic form ω on M ,
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(ii) a non-linear connection h on the tangent bundle π : X = TM →M ,

such that each connection hε = h+ ε−1v is flat and symplectic.

Here we say that a connection on π is symplectic if the partially-defined maps

PT(γ) : TM,m → TM,m′ ,

are symplectic, i.e. take ωm to ωm′ .

2.4. In co-ordinates. Take co-ordinates zi on M and write ω =
∑

i<j ωij dzi ∧ dzj. Assume

ωij is a constant matrix (so we have more-or-less chosen Darboux co-ordinates) and let ηij be

the inverse matrix. Writing tangent vectors in the form
∑

i θi ·
∂
∂zi

gives co-ordinates zi, θi on

X = TM . The definition of v gives

v
( ∂

∂zi

)
=

∂

∂θi
,

and the symplectic condition gives Hamiltonian functions Wi : X → C such that

v
( ∂

∂zi

)
=

∂

∂θi
, h

( ∂

∂zi

)
=

∂

∂zi
+
∑
p,q

ηpq ·
∂Wi

∂θp
· ∂
∂θq

.

Flatness implies that Wi = ∂W
∂θi

, where W : X → C must satisfy

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=
∑
p,q

ηpq ·
∂2W

∂θi∂θp
· ∂

2W

∂θj∂θq
.

These are known as Plebanski’s second heavenly equations.

2.5. Complex hyperkähler structure on X = TM . A non-linear connection h on π gives

TX = im(v)⊕ im(h) ∼= π∗(TM)⊕ π∗(TM) = π∗(TM)⊗C C2.

We get a holomorphic metric g and an action of the quaternions on TX :

g =

(
0 ω
ω 0

)
, I =

(
i · 1 0

0 −i · 1

)
, J =

(
0 −1
1 0

)
, K = IJ.

The essential point here is that H⊗R C ∼= EndC(C2).

Theorem 2.3. The operators I, J,K preserve the metric g and are parallel for the associated

Levi-Civita connection precisely if the connections hε are all flat and symplectic.

Thus a pre-Joyce structure on M defines a complex HK structure on X = TM .
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2.6. Definition of a Joyce structure. A Joyce structure is a pre-Joyce structure with some

extra symmetries.

Definition 2.4. A Joyce structure on a complex manifold M consists of

(i) a pre-Joyce structure (ω, h) as above,

(ii) an integral affine structure T Z
M ⊂ TM ,

(iii) a C∗-action on M ,

satisfying the following conditions

(i) the connection h is invariant under translations by T Z
M ⊂ TM and hence descends to the

bundle T#
M = TM/T

Z
M →M whose fibres are isomorphic to (C∗)n,

(ii) Let E be the generating vector field for the induced C∗ action on X. Then

LieE(g) = g, LieE(I) = 0, LieE(J ± iK) = ∓(J ± iK)

(iii) Let −1 denote the involution of X acting by −1 on the fibres of π. Then

(−1)∗(g) = −g, (−1)∗(I) = I, (−1)∗(J ± iK) = −(J ± iK),

In appropriate co-ordinates as above the conditions (i)-(iii) become

(i) W (z1, · · · , zn, θ1 + k1, · · · , θn + kn) = W (z1, · · · , zn, θ1, · · · , θn),

(ii) W (tz1, · · · , tzn, θ1, · · · , θn) = t−1W (z1, · · · , zn, θ1, · · · , θn),

(iii) W (z1, · · · , zn,−θ1, · · · ,−θn) = −W (z1, · · · , zn, θ1, · · · , θn).


