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Background/Motivation

Theorem (-, Lin, Zhao) Let S be a complex K3 surface of Picard number
one. Assume that there is a fully faithful functor Db(S) →Db(S′) for a
smooth irreducible surface S′. Then S′ is birational to a Fourier–Mukai
partner of S.

To complete this result in higher Picard number cases, the only missing
step is:

For every semi-rigid/spherical object E, there exists a Bridgeland
stability condition σ such that E is σ-stable. (⋆)

(⋆) is true when the K3 surface S is of Picard number one thanks to
theorem of Bayer–Bridgeland stating that Stab(S) is contractible.

STEW 2023 Sperhical 2 / 25



Definition and Notion

Let S be a complex K3 surface, an object E ∈ Db(S) is called spherical if

RHom(E,E) = C⊕ C[−2].

Let σ be a stability condition, the width of an object E is defined to be
wE(σ) = w(σ,E) := ϕ+

σ (E)− ϕ−
σ (E).

Bayer–Bridgeland show that when S is of Picard number one, for every
spherical (or semi-rigid object) E, the stability manifold Stab(S) contracts
to w−1

E (0), which is closed with the same dimension of Stab(S). In
particular, E is σ-stable for every σ in the inner points of w−1

E (0).
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Questions by Huybrechts

We notice that even the classical version of (⋆) is unknown. Four exercise
questions are posted at the end of Chapter 16 Huybretchs’s book ‘Lectures
on K3 Surfaces’.

1 E spherical object =⇒ E⊥ ̸= ∅?
2 Let E be a spherical bundle =⇒ ∃H ∈Amp(S) such that E is

pH-stable?
Is there a way to ‘count’spherical vector bundles with a given
Mukai vector v?

3 Find two non-isomorphic K3 surfaces X and Y over a field K with
Db(X) ≃ Db(Y) over K and XK ≃ YK.

4 Let X be a K3 surface. Then Stab(X) is connected and
simply-connected. ( =⇒ Auts(Db(X))/Z[2] ≃ π1[Õ(N(X)) \ D0].)

Goal: To get 40/100 (pass marks in the UK system).
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Notations and classical results

Let S be a smooth project K3 surface over C. We recap the concept of
Mukai vector/pairing.

H̃(S) = H0(S,Z)⊕ NS(S)⊕ H4(S,Z).
For E ∈ Coh(S), the Mukai vector of E is

v(E) = (rk(E), ch1(E), ch2(E) + rk(E)) ∈ H̃(S).

Mukai pairing: vi = (ri,Di, si) ∈ H̃(S), where i = 1, 2:

⟨v1, v2⟩ := −r1s2 − r2s1 + D1D2.

Rieman–Roch: −χ(E,F) = ⟨v(E), v(F)⟩.
E spherical =⇒ ⟨v(E), v(E)⟩ = −2.
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Existence result

We call v ∈ H̃(S) spherical if ⟨v, v⟩ = −2 and rk(v) > 0.
Theorem(Kuleshov) ∀ spherical Mukai vector v, ∃ bundle E on S with
v(E) = v.

OS(D) is spherical.
If C ≃ P1 is a (−2)-curve on S, then OC(n) is spherical. But for a
given v = (0,D, s) with D2 = −2, D may not be effective, so there is
no coherent sheaf with Mukai vector v.

Theorem(Siedel–Thomas): Let E ∈ Db(S) be spherical, one may define a
spherical twist TE : Db(S) → Db(S) which is an equivalence on Db(S). On
the level of objects, TE(F) is defined as

E ⊗ RHom(E,F) ev−→ F → TE(F) +−→
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Examples of spherical sheaves

Let D be an effective divisor such that OS(D) is globally generated. Then
there is the short exact sequence

0 → KD → OS ⊗ Hom(OS,OS(D))
ev−→ OS(D) → 0.

It follows that KD = TOS(OS(D))[−1] is a spherical bundle.
Let D ̸= 0 be a divisor such that neither ±D is effective.

0 → OS(D) → ED → OS ⊗ Hom(OS,OS(D)[1]) → 0.

Then ED = TOS(OS(D)) is a spherical bundle.
Let C ≃ P1 be a (−2)-curve, then

0 → OC(−2) → TOS(OC(−2)) → OS → 0.

The spherical sheaf TOS(OC(−2)) is non-torsion and non-torsion-free.
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Remark on E⊥

Theorem: Let E be an n-spherical object in Db(X), where X is an
n-dimensional smooth variety over C, then E⊥ is non-empty.

When X is a K3 surface of Picard number one, this has been proved
by Bayer using tools and results on the contractibility of Stab(X).
When n = 2, we expect that

Db(X)/⟨E⊥,E⟩ ≃ Db
sing(SpecC[x]/(x2)).

E.g. E = OC(−1) where C ≃ P1 is a (−2)-curve.
Another corollary is that the power of a spherical twist Tk

E (when
k ̸= 0) is not in Z[1]× (Aut(X)⋉ Pic(X)).

Subtotal: 25/100
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Stabilities

For the rest of the talk, we focus on the second question.
Let H ∈ Amp(S). The slope of F with respect to H is:

µH(F) :=
Hch1(F)

rk(F) .

Slope stability: A torsion-free sheaf F is called µH-(semi)stable if
∀0 ̸= E ⊊ F, rk(E) < rk(F), we have

µH(E) < (≤)µH(F).

Reduced Hilbert polynomial: pH,E(n) := χ(E(nH))/rk(E).
Gieseker stability: A sheaf F is called pH-(semi)stable if ∀0 ̸= E ⊊ F, we
have

pH,E(n) < (≤)pH,E(n),

for n ≫ 0.
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µH-stable =⇒ pH-stable =⇒ pH-semistable =⇒ µH-semistable
E is µH-stable =⇒ µH±ϵD-stable for 0 < ϵ ≪ 1.
If E is a pH-stable spherical bundle, then E is the unique
pH-semistable with Mukai vector v(E).

Example: Let H0 ∈Amp(S) and D ̸= be a divisor such that H0D = 0.
Then ED is µH−-stable, µH+-unstable; µH0-semistable, pH0-stable.

Example: Let S be a generic elliptic K3 surface with a section. We may
consider the spherical bundle B := TOS(E−F)(TOS(F−E)(OS(2E − 2F))),
which is with Mukai vector v(B) = (113, 82E − 82F,−119). Then B is
p3E+F-stable, but B is not slope semistable with respect to any other (up
to a scalar) polarization. The spherical bundle B is not pH-stable with
respect to any polarization other than 3E + F up to a scalar.

Theorem(Mukai): Let S be a K3 surface with Picard number one, then
every spherical bundle is pH-stable.
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Example: never-stable spherical bundle

Question: Let E be a spherical bundle =⇒ Does there exists H ∈Amp(S)
such that E is pH-stable?
Recall the example of

0 → OC(−2) → FC → OS → 0.

The torsion part OC(−2) always destabilizes FC. To get a spherical vector
bundle that is never stable, we may apply the spherical twist
Tm := TOC(−mG)[−1] on FC for some ample divisor G and m ≫ 0. In
particular, we have the short exact sequence of spherical bundles.

0 → Tm(OC(−2)) → Tm(FC) → Tm(OS) → 0.
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Example (continued)

By a direct computation, we have

µ(Tm(OC(−2)))− µ(Tm(OS)) ∼ G − m2G2 + 2

2m2GC − 2mC.

To let Tm(OC(−2)) always destabilize Tm(FC) when m ≫ 0, we need to
choose G so that G − G2

2GCC is effective.
This relies on NE(S). For example, if S is of Picard number 2 with NE(S)
spanned by [C] and the class of an elliptic curve, then G − G2

2GCC is never
effective.

If S is of Picard number 2 with NE(S) spanned by two (−2)-classes, then
there exists G such that G − G2

2GCC is effective. In particular, when m ≫ 0,
the spherical bundle Tm(FC) is never µH-semistable for any H ∈Amp(S).
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Example (remark)

.

.
By Theorem of Kovács, there exists a K3 surface S of Picard number
2 with NE(S) spanned by two (−2)-classes.
That is the only construction of we know so far.
In the case that S is an elliptic K3 surface admitting a section C ≃ P1

of Picard number two, we would like to know if there exist spherical
bundles that is never µH-semistable.

.

.

.

.
Subtotal: 35/100
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Example: infinitely many spherical bundles

Recall the second part of the question: is there a way to count spherical
vector bundles with a given Mukai vector?
(Firstly, we wonder if there are only finitely many spherical vector bundles
with a given Mukai vector?)

By Torelli Theorem, there exists a projective K3 surface S such that
NS(S) = Zh ⊕ Ze ⊕ Zf such that: h2 = 12, e2 = −6,f2 = −30, and h, e, f
orthogonal to each other.
By Theorem of Kovács, the cone

NE(S) = Nef(S) = {α ∈ NSQ(S)|α2 ≥ 0, αh ≥ 0}

is circular. For a spherical vector v with rank greater than 1, it is ‘likely’
that there are infinitely many walls for v. It follows that there are infinitely
many spherical bundles with Mukai vector v.
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More precisely, we may choose v = (2, f,−7).
Then for every pair of positive integer solutions (a, b) to the Pell equation
2x2 − y2 = 1, we may consider the divisors Da = ah + be + f and
Ea = −ah − be.
Note that

(Da − Ea)
2 = 48a2 − 24b2 − 30 = −6.

By the description for NE(S), neither Da − Ea or Ea − Da is effective.
It follows that RHom(OS(Da),OS(Ea)) = C[−1].
So Va = TOS(Ea)(OS(Da)) is a rank 2 spherical bundle that fits into the
short exact sequence

0 → OS(Da) → Va → OS(Ea) → 0.

The Mukai vector of Va is given as

v(Va) = (1,Da,
1
2D2

a + 1) + (1,Ea,
1
2E2

a + 1) = (2, f,−7).
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Example (remark)

Each Va is µHa-stable where Ha := 7ah + 7be + 3f.
When Nef(S) is circular (in the case that S is of Picard number two,
that is, the two boundary rays of Nef(S) are irrational), we expect
there always exists spherical vector v so that there are infinitely many
spherical bundles with Mukai vector v.
The naive counting does not make sense in the above cases, but we
do not know if one can put certain weights on spherical bundles to
solve this issue.

Subtotal: 38/100
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A finiteness result
Theorem: Let S be a smooth projective surface over C with Nef(S) being
rational polyhedral. Then for every class v = (rk, ℓ, s) ∈ H̃(S,Z) with
rk > 0 and (rk, ℓ) being primitive, there are only finitely many numerical
walls of v. In particular, there are finitely many walls and chambers for the
moduli space Ms

H(v) in Amp(S).
In particular, when S is a K3 surface with Nef(S) rational polyhedral,
then for every spherical vector v, it makes sense to count all stable
spherical bundles with Mukai vector v.

HS(v) :=#{E | v(E) = v; ∃H ∈ Amp(S), E is µH-stable.} < +∞.

=#{chambers of Ms(v)}.

In general, HS(v) < #{E | v(E) = v, E is a vector bundle.} =: H′
S(v),

which we do not know (but we expect) to be finite when Nef(S) is rational
polyhedral.

Subtotal: 39/100
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Reduce to numerical counting

Prop: Let S be a K3 surface, v be a spherical vector. Then W ⊂ Amp(S)
is an actual wall of v if and only if it is a numerical wall of v, in other
words, ∃ a spherical w satisfying

1 rk(w) < rk(v);
2 ⟨v,w⟩ < 0;
3 W = (µ(v)− µ(w))⊥.

Cor: The counting HS(v) only depends on Nef(S) and (−,−)intersection.
Let S′ be another K3 surface. Assume that there exists an injective group
homomorphism f : NS(S′) → NS(S) preserving the intersection numbers
and f(Nef(S′)) ⊆ Nef(S). Then HS′((rk, ℓ, s)) ≤ HS((rk, f(ℓ), s)).

E.g. Assume that S is an elliptic K3 surface admitting a section C ≃ P1,
then HS ≥ HS′ where S′ is such an elliptic curve of Picard number two.
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Case study

For the rest of the talk, we discuss HS(v) for the generic elliptic K3 surface.
Let S be an elliptic K3 surface with a section C ≃ P1. Denote by e the
divisor class of elliptic fiber and σ the section.

NS(S) = Ze ⊕ Zσ;
e2 = 0 e.σ = 1 σ2 = −2.

Nef(S) = R≥0.e + R≥0.(2e + σ); NE(S) = R≥0.e + R≥0.σ.
A spherical vector v = (r, nσ + me, s) satisfies

−2 = ⟨v, v⟩ = −2n2 + 2nm − 2rs

For any given (r, n) satisfying gcd(r, n) = 1, ∃!m mod r. The last integer
s is determined by (r, n,m).
As F is µH-stable ⇐⇒ F(D), F∨ is stable.
We only need to compute H(r, n) := H((r, nσ + me, s)) for gcd(r, n) = 1
and n ∈ [0, r/2].
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Numbers

H(r, n) := H((r, nσ + me, s))
H(1, 0) = 1;
H(2, 1) = 2 given by the extensions OS(e) → F1 → O(σ − e) and
OS(σ − e) → F2 → O(e).
H(3, 1) = 3; H(4, 1) = 4; H(5, 1) = 5;
H(5, 2) = 6; the only case that is greater than the rank.
H(7, 1) = H(7, 2) = H(7, 3) = 7;
H(8, 1) = 8; H(8, 3) = 6; H(9, 1) = 9; H(9, 2) = 7;H(9, 4) = 8;

Proposition: H(r, 1) = r.
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Numbers

Results via the help of a computer.
H(21, 2) = 13; H(21, 8) = 11;
H(93, 2) = 49; H(93, 4) = 30; H(93, 10) = 26;
H(811, 92) = 48; H(811, 93) = 47; H(811, 94) = 46;
H(3, 1) = 3; H(5, 2) = 6; H(8, 3) = 6; H(13, 5) = 11; H(23, 8) = 11;
H(34, 13) = 18; H(55, 21) = 18; H(89, 34) = 27; H(144, 55) = 27;
H(233, 89) = 38.

Let b0 = b1 = 1 and bn+1 = bn + bn−1 be the Fibonacci sequence.
Then H(bn+1, bn−1) = ⌊n

2⌋
2 + 2 when n ≥ 3.

For a ‘random’ (R,N), it is expected that H(R,N) ∼ (ln R)2.
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Asymptotic Behavior

We have the following conjecture on the asymptotic behavior of the
counting numbers.

minrk(v)=R{HS(v)} ∼ (ln R)2.
Averagerk(v)=R{HS(v)} ∼ (ln R)2.

We can only prove a weaker version on the average estimation:

Proposition: For every α > 0,

ϕ(R)
R (ln R)2 ≲ Averagerk(v)=R{HS(v)} ≲ Rα.

Here ϕ(m) =
∑

gcd(m,n)=1,1≤n≤m 1 is the Euler totient function.
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For a given spherical vector v = (R,Nσ + me, s) and gcd(R, r) = 1, the
number of actual walls with respect to spherical vectors w in the form of
(r, nσ + ∗e, ∗) is:

#
{

t ∈ Z≥1 : (Rn − rN)|R2 + r2 − tRr > (Rn − rN)2
}

This reduces the conjecture on the average estimation to an analytic
number theory question.

AR := {R2 + r2 − tRr ∈ Z ∩ [1,R2] | t ∈ Z, 1 ≤ r ≤ R, gcd(r,R) = 1}.

G(R) :=
∑

a∈Am

τ(a).

Here τ(m) :=
∑

d|m 1 is the divisor function.
Question: G(R) ∼ (ln R)(#AR)?
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Final remarks

A few remarks on τ(m).∑
m≤R τ(m) = R ln R + (2γ − 1)R + O(

√
R).∑

R≤m≤R+Rα τ(m) ∼ Rα ln R.
We still do not know the answer to many questions even in this elliptic K3
surface case.

Does there ∃ a spherical bundle never semistable?
H′

S(v) := #{E | v(E) = v, E is a vector bundle.}
Q: H′

S(v) < +∞ finite or even H′
S(v) < c HS(v) for some constant

c > 0.
Question (⋆) at the beginning: Let E be a spherical object. Does
there ∃ a stability condition σ so that E is σ-stable?

Total: 40/100
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Thank you!

STEW 2023 Sperhical 25 / 25


