Recent developments in genuine multi-sided surface representation and editing

Márton Vaitkus, Péter Salvi, Tamás Várady

Budapest University of Technology and Economics

MMCS10, Oslo, Norway

June 26-28, 2024

Outline

Motivation

Curved domain multi-sided patches

Generalized Bézier patches Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters Interior control

Parametric medial axis templates Blending functions Tools for editing

Control vectors Hierarchical editing

Conclusion

Multi-sided patches - Motivation from geometric design

Demand for genuine multi-sided representations

[Gregory, Sabin, Loop-DeRose, Kato, Várady et al, Krasauskas, Karciauskas, Rockwood, Kosinka et al, Deng et al]

Multi-sided patches - Motivation from analysis

[U. Reif]

Immersed FEM [V. Shapiro]

- Trimmed IGA, WEB-spline, Finite Cell Method, meshless, PINN, ...
- ► Strong enforcement of boundary conditions → Transfinite interpolation [Kantorovich, Rvachev, Shapiro, Höllig, Reif, Cirak, Sukumar, ...]

NEW: Survey on multi-sided patches

Comput. Aided Geom. Des. 110 (2024) 102286

Genuine multi-sided parametric surface patches - A survey

Tamás Várady, Péter Salvi*, Márton Vaitkus

Budapest University of Technology and Economics, Budapest, Hungary

ARTICLE INFO

Keywords: Multi-sided surfaces Ribbon-based surfaces Transfinite interpolation Control point patches Surface modeling General topology

ABSTRACT

A state-of-the-art survey is presented on various formulations of multi-sided parametric surface patches, with a focus on methods that interpolate positional and cross-derivative information along boundaries.

Classification and constituents of multi-sided patches

Classification and constituents of multi-sided patches

Outline

Motivation

Curved domain multi-sided patches Generalized Bézier patches Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Parametric medial axis templates Blending functions

Tools for editing

Control vectors Hierarchical editing

Conclusion

Generalized Bézier patches [Várady et al., '16]

Interior control structure

$$\mathbf{S}(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{d} \sum_{k=0}^{(d-1)+2} \cdot \mathbf{C}_{ijk} \underline{\mu_{i,j,k}(u,v)} B^{d}_{i,j,k}(u,v) + \mathbf{C}_{0} \cdot \underbrace{B_{0}(u,v)}_{1-\sum \mu B}$$

$$B_{i,j,k}^d(u,v) := B_i^d(s_i(u,v)) \cdot B_k^d(h_i(u,v))$$
 with (s_i, h_i)

local parameters over convex polygonal domain.

Generalized Bézier patches [Várady et al., '16]

Shape \checkmark Interior control \checkmark

Generalized Bézier patches [Várady et al., '16]

Shape \times Interior control \checkmark

Curved domains [Várady et al., '20]

Multiply-connected domains [Várady et al., '20]

Generalized B-spline patches [Vaitkus et al., '21]

Curved domain Generalized Bézier patches

Shape \checkmark Interior control \times

Ribbon setting? Interior control?

Outline

Motivation

Curved domain multi-sided patches Generalized Bézier patches Generalized B-spline patches

Ribbon generation Cross-derivatives by parameters

Interior control

Parametric medial axis templates Blending functions

Tools for editing

Control vectors Hierarchical editing

Conclusion

Importance of cross-derivative strength

Cross-derivative setting [Salvi et al., '23]

Domain & parameterizations

Outline

Motivation

Curved domain multi-sided patches Generalized Bézier patches Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Parametric medial axis templates Blending functions

Tools for editing

Control vectors Hierarchical editing

Conclusion

Distance parameters

Parametric medial axis

MAT-based quad structure

"Quadratic" Bézier template & skeleton

"Cubic" Bézier template & skeleton

"Quartic" Bézier template & skeleton

"Quintic" Bézier template & skeleton

Control structure hierarchy

Control structure hierarchy

Control structure hierarchy

Blending functions

Assign to CPs a *combination* of Bernstein polynomials Can also **distribute weight deficiency** proportionally

MAT-template Generalized Bézier patches

Shape \checkmark Interior control \checkmark

MAT-template Generalized Bézier patches

Computers & Graphics 121 (2024) 103952

Special Section on SMI 2024

Interior control structure for Generalized Bézier patches over curved domains[‡]

Márton Vaitkus*, Péter Salvi, Tamás Várady

Outline

Motivation

Curved domain multi-sided patches Generalized Bézier patches Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Parametric medial axis templates Blending functions

Tools for editing Control vectors Hierarchical editing

Conclusion

Editing ribbons by control vectors – Exact G^1

Editing ribbons by control vectors – Approximate G^1

Editing the interior hierarchically

Editing the interior hierarchically

Outline

Motivation

Curved domain multi-sided patches Generalized Bézier patches Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Parametric medial axis templates Blending functions

Tools for editing

Control vectors Hierarchical editing

Conclusion

Conclusion & future work

- Curved, multi-connected domains
 - Handling of highly curved boundaries
 - Natural cross-derivative lengths
 - MAT \rightarrow interior control structure
- Interior blends
 - Proportional weight deficiency distribution
- Editing
 - Boundary CPs \rightarrow implicitly by control vectors
 - Interior CPs \rightarrow simultaneously with a falloff function

Work in progress:

- Interior control structure for Generalized B-splines
- Local interpolation for curve networks (a la Catmull-Rom)
- Shape optimization/fairing

Related papers

1. Multi-sided patch survey

T. Várady, P. Salvi, M. Vaitkus: Genuine multi-sided parametric surface patches – a survey. Computer Aided Geometric Design, Vol. 110, #102286, 2024.

2. Modeling with control vectors

P. Salvi, M. Vaitkus, T. Várady: Constrained modeling of multi-sided patches. Computers and Graphics, Vol. 114, pp. 86–95, 2023.

3. Independent interior controls

P. Salvi:

Intuitive interior control for multi-sided patches with arbitrary boundaries. Computer-Aided Design and Applications, Vol. 21(1), pp. 143–154, 2024.

4. MAT-based interior controls

M. Vaitkus, P. Salvi, T. Várady: Interior control structure for Generalized Bézier patches over curved domains. Computers and Graphics, 2024. (accepted for SMI'24)

https://3dgeo.iit.bme.hu/