
Control point modifications of PH curves

Francesca Pelosi
University of Siena

Department of Information Engineering and Mathematics

joint work with R.T. Farouki and M.L. Sampoli

26 giugno 2024

1 of 26



OUTLINE

Motivation

Planar quintic PH curves
Formulation
Properties

PH Control polygon constraints
PH construction
PH modification

Examples & Closure

2 of 26



• The origins of the control–polygon paradigm for constructing and
manipulating free–form curves can be traced to the pioneering ideas of
Paul de Casteljau and Pierre Bézier

• De Casteljau’s courbes et surfaces à pôles, based on using pilot points
to design curves and surfaces

• The focus of the present study is to elucidate use of the control–polygon
paradigm in the context of the planar Pythagorean–Hodograph (PH)
curves
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• De Casteljau’s courbes et surfaces à pôles, based on using pilot points
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to design curves and surfaces

• The focus of the present study is to elucidate use of the control–polygon
paradigm in the context of the planar Pythagorean–Hodograph (PH)
curves

3 of 26



• The origins of the control–polygon paradigm for constructing and
manipulating free–form curves can be traced to the pioneering ideas of
Paul de Casteljau and Pierre Bézier
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Motivation

• The algebraic structure of the PH curves facilitates
an exact computation of various properties that otherwise necessitate
numerical approximations:

◦ arc lengths
◦ offset curves
◦ rotation–minimizing frames
◦ ...

• PH curves are compatible with the Bézier/B–spline form, but their
non–linear nature makes the construction more challenging

◦ Control–Polygon constraints that characterize PH curves are typically
cumbersome and non–intuitive (apart from the cubic case)
[Farouki, 1994, Hormann, et al. 2024]

◦ modification of the Bézier/B–spline control points compromise the PH
nature

◦ ab initio constructions of PH curves matching specified geometrical data,

rather than a posteriori modification of existing PH curves

[Farouki, Jaklic, Jüttler, Kosinka, Giannelli, Manni, Pelosi, Pottmann, Sampoli,

Sestini, Sir, Walton, ...]
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[Farouki, Jaklic, Jüttler, Kosinka, Giannelli, Manni, Pelosi, Pottmann, Sampoli,

Sestini, Sir, Walton, ...]

4 of 26



Motivation

• The algebraic structure of the PH curves facilitates
an exact computation of various properties that otherwise necessitate
numerical approximations:

◦ arc lengths
◦ offset curves
◦ rotation–minimizing frames
◦ ...

• PH curves are compatible with the Bézier/B–spline form, but their
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Motivation

• AIM: to address the inability to construct and modify PH curve
segments by their Bézier control points.

◦ analysis for planar PH quintics:

• possible extension to polynomial PH curves of higher degree

◦ generalization to several recently–developed alternative PH curve
formulations
[Kim, 2017, Moon 2020]

[Kim, 2019]

[Albrecht, 2017]

some formulations forfeit some desirable features of the Bézier form

• the convell hull
• variation–diminishing properties
• association of a unique curve

with any given control polygon
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Planar quintic PH curves

• complex representation: a planar PH quintic r(t) is generated from a
quadratic pre–image polynomial w(t)

w(t) = w0 b
2
0(t) + w1 b

2
1(t) + w2 b

2
2(t)

◦ w0,w1,w2: complex coefficients;
◦ bni (t) =

(
n
i

)
(1− t)n−iti , i = 0, . . . , n : Bernstein basis on t ∈ [ 0, 1 ]

• by integrating the expression r′(t) = w2(t) yields the complex control

points p0, . . . ,p5 of the Bézier form

r(t) =

5∑
k=0

pk b
5
k(t)

p1=p0 + 1
5
w2

0 ,

p2=p1 + 1
5
w0w1 ,

p3=p2 + 1
5

2w2
1+w0w2

3
,

p4=p3 + 1
5
w1w2 ,

p5=p4 + 1
5
w2

2 ,

where p0 is a freely–chosen integration constant.
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Planar quintic PH curves: properties

• Polynomial parametric speed

σ(t) = |r′(t)| = |w(t)|2

the derivative ds/dt of arc length s with respect to the curve parameter t.
• The curvature may be expressed as

κ(t) = 2
Im(w(t)w′(t))

|w(t)|4
.

PH quintic:
◦ the numerator is the quadratic polynomial

2 Im(w0w1) b2
0(t)− Im(w2w0) b2

1(t) + 2 Im(w1w2) b2
2(t)

◦ (odd–multiplicity) real roots, if any, identify inflections of r(t) according
with the sign of

∆ = Im2(w2w0)− 4 Im(w0w1) Im(w1w2)
• two inflections for ∆ > 0
• none if ∆ < 0
• for ∆ = 0: double root, where κ(t) = κ′(t) = 0
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Planar quintic PH curves: properties

• rational offset curves rd(t) = r(t) + dn(t)

◦ defines center–line tool path, in order to cut a desired profile
◦ defines tolerance zone characterizing allowed variations in part shape
◦ defines erosion, dilation operators in mathematical morphology, image

processing, geometrical smoothing procedures, etc.

• closed-form evaluation of energy integral E =
∫ 1

0
κ2ds

• real–time CNC interpolators, rotation-minimizing frames, etc.
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Planar quintic PH curves

• Complex control–polygon legs of r(t):

Li = pi − pi−1 , i = 1, . . . , 5, L1 + · · ·+ L5 = 1

◦ canonical form to simplify the construction and shape analysis:
• invoke a translation/rotation/scaling transformation to eliminate all

non–essential degrees of freedom:
• r(0) = (0, 0) and r(1) = (1, 0)

• the control–polygon legs are related to the coefficients w0,w1,w2(
w2

0,w0w1,
2w2

1 + w0w2

3
,w1w2,w

2
2

)
= 5 (L1,L2,L3,L4,L5) .
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Control Polygon PH–constraints

• NOT all choices for L1, . . . ,Ln will define a PH curve

DOF: for degree n planar PH curve
- degree 1

2
(n− 1) pre–image polynomial w(t)

- 1
2
(n + 1) complex coefficients

- imposing end–point conditions:

⇒ 1
2
(n− 1) degrees of freedom:

• 1 for a PH cubics:
◦ the simplest non–trivial PH curves, which are identified by

L2
2 = L1L3

translated/scaled/rotated segments of a unique non–inflectional curve —
Tschirnhaus cubic [Farouki, 1990]

• 2 for a PH quintics
◦ are the lowest–order PH curves that are generally considered to be suitable

for free–form design applications.
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Control Polygon PH–constraints

Proposition [Farouki-1994]

Sufficient and necessary conditions for a quintic Bézier curve to be a PH
curve is the satisfaction of

L1L
2
4 = L5L

2
2

(1)

and any one of the four equations

3L1 L2 L3 − L2
1 L4 − 2L3

2 = 0

3L5 L4 L3 − L2
5 L2 − 2L3

4 = 0

(2)

3L1 L4 L3 − L5 L1 L2 − 2L2
2 L4 = 0

3L5 L2 L3 − L1 L5 L4 − 2L2
4 L2 = 0

Canonical–form

L1 + L2 + L3 + L4 + L5 = 1

(3)
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Control Polygon PH-construction

• A canonical–form quintic PH curve in complex form

embodies two free complex parameters that must be chosen so as

to ensure that its five control–polygon legs satisfy the (1)-(2) constraints

that identify quintic PH curves

• Fixing two control legs, the remaining three can be filled in by a simple
algorithm that requires only the solution of a quadratic or quartic
equation with complex coefficients.
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Control Polygon PH-construction

• Several examples illustrate how this approach can be employed in the
practical design of planar PH quintics with desired shape features

-0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L1

L5

Hermite problem

4 distinct PH quintics

L2 L4

symmetric control polygon

2 distinct PH curves

L1

L2

Assigned initial curvature

κ(0) = 4
5

(L1×L2)·k
|L1 |3

,

2 distinct PH quintics

L1

L4

L1, L4

4 distinct PH curves

the good PH has smallest
absolute rotation index
Rabs = 1

2π

∫ 1
0
|κ(t)|σ(t) dt

(exact evaluation for quintic PH curves)
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Control Polygon PH-modification

• a posteriori modification of quintic PH curves:

◦ intuitive approach of displacing a subset of the control points,

p̃k = pk + ∆pk , k = 0, . . . , 5

the control polygon legs become

L̃k = Lk + ∆L̃k , k = 1, . . . , 5 ,

where ∆L̃k := ∆pk −∆pk−1.

◦ the control polygon legs L̃k must also satisfy the PH-constraints (1)-(2)

⇒ a system of equations that identify the admissible displacements ∆pk

• for general PH:
2 cubic constraints ⇒ at least 2 non-zero displacements to obtain a different
PH r̃(t)
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Control Polygon PH-modification

• = 2 modified control points ⇒ finite number of modified PH quintics

p0, p5

1 (good) solution
p1, p2

1 (unsatisfactory) solution

p1, p4

3 solutions - 1 good solution

p2, p3

4 solutions (1 good)

p1, p3

3 (unsatisfactory) solutions

obtaining quintic PH curves with
predictably good shape
among the finitely–many modified
PH curves, is a difficult task
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Control Polygon PH-modification

• > 2 modified control points
◦ number of unknowns exceeds the number of constraints
◦ infinitely–many modifications r̃(t) are possible

⇒ exploit the excess freedoms in optimizing a shape measure for the
modified curve

◦ p0, p5: fixed in canonical position

◦ 1 fixed interior displacement ∆p`

◦ 3 complex unknown displacement ∆pi, ∆pj , ∆pk by

min
∆pi,∆pj ,∆pk

F (∆pi,∆pj ,∆pk)

+ subjects to PH constraints (1)-(2)
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Control Polygon PH-modification

Penalty function:

• expect the shape changes localized to the vicinity of the modified control
point p`;

• minimize the distance ∆r between r̃(t) and r(t) after imposing one
displacement ∆r(t) = ∆pib

5
i (t) + ∆pjb

5
j (t) + ∆pkb

5
k(t)

min
∆pi,∆pj ,∆pk

∫ 1

0

|∆r(t)|2dt

considering the proportional expression:

Penalty function

F (∆pi,∆pj ,∆pk) = Cii|∆pi|2 + Cjj |∆pj |2 + Ckk|∆pk|2

+ 2 Re(Cij∆pi∆pj + Cjk∆pj∆pk + Cki∆pk∆pi)
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Control Polygon PH-modification

+ PH-constraints for the modified PH curve

2 cubic complex PH–constraints in ∆Lk = ∆pk −∆pk−1

2L4(L1 + ∆L1)∆L4 − 2L2(L5 + ∆L5)∆L2 (1)

+(L1 + ∆L1)∆L2
4 − (L5 + ∆L5)∆L2

2 + L2
4∆L1 − L2

2∆L5 = 0 ,

+ (3L2L3 − 2L1L4)∆L1 + 3 (L1L3 − 2L2
2 + L3∆L1)∆L2 (2)

+ 3L2(L1 + ∆L1)∆L3 − L1(L1 + 2 ∆L1)∆L4 − (L4 + ∆L4)(∆L1)2

− 2 (3L2 + ∆L2)(∆L2)2 + 3 (L1 + ∆L1)∆L2∆L3 = 0 .

18 of 26



Example 1: data with inflection

PH - curve and CP

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

κ− plot

κ(t) = 2
Im(w(t)w′(t))
|w(t)|4

inflection near r(1)

∆p4 = 0.31 − 0.39i
|∆p4| = 0.5
Eq.(1)-(2)= 1e − 16
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Example 2: data with inflection

Large |∆p4| (= 0.5)

vs. sequence of smaller |∆p4| (= 0.05)
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Curvature

inflection near r(1)

∆p4 = 0.352 + 0.354i
|∆p4| = 0.5

Eq.(1)-(2)= 1e − 10
p̃1 = p̃2, p̃3 = p̃4

“large” ∆p` may result in
slow convergence
local minimun or
degenerate control polygon

⇒ sequence of smaller steps,
modified PH used as input,
in a predictor-corrector scheme,
⇒ dependable approach

Smooth transition, regular control polygons
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Example 3: convex data
• Sequence of 10 small displacements (|∆p`| = 0.1) along different directions:

vertical diagonal

initial-tangent end-tangent

smoothly-varying dependence
of PH control polygons and curves
on the location of their control points
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Example 4: inflectional data
• Sequence of 10 small displacements (|∆p`| = 0.05) along different directions:

initial-tangent end-tangent

vertical diagonal
22 of 26
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Example 4: inflectional data
• Sequence of 10 small displacements (|∆p`| = 0.05) along different directions:
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Example 5: sequential displacements

• All interior control points are sequentially modified (|∆pi| = 0.2)

successive modifications
to enable interactive changes
to the control polygon and curve shape
while maintaining its PH nature
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Summarizing: we have presented . . .

• practical and efficient means for the

modification of planar PH quintics through the control points :

◦ the displacement of a single interior control point is considered
◦ the remaining interior control points are exploited as free parameters

to minimize a modified/original PH curves distance
◦ subject to satisfaction of the PH constraints

• it works
best for displacements of reasonable magnitude

• larger modifications may also be achieved incrementally

◦ using successive applications
◦ the output of each step serving as input for the next step

• modifications to more than one of the interior control points can be
sequentially implemented:

◦ the optimization process is sufficiently fast (0.015 sec.) to admit

real–time user modification and display of planar quintic PH curves

⇒ a rich set of “neighboring” PH quintics that have the same end points
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... spatial case?

• Although it seems natural to seek a generalization of the methodology to
spatial PH curves, this is not a trivial task

◦ no system of control–polygon constraints for the spatial PH quintics is
currently known.

◦ Moreover in the quaternion representation, the spatial PH quintic
interpolants to given first–order Hermite data comprise a two–parameter
family rather than a discrete set as in the planar case.

Thanks for the attention!!
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... from Arcachon

Happy Birthday Tom!!
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