Control point modifications of PH curves

Francesca Pelosi

University of Siena
Department of Information Engineering and Mathematics

joint work with R.T. Farouki and M.L. Sampoli

OUTLINE

Motivation

Planar quintic PH curves
Formulation
Properties

PH Control polygon constraints
PH construction
PH modification

Examples \& Closure

- The origins of the control-polygon paradigm for constructing and manipulating free-form curves can be traced to the pioneering ideas of Paul de Casteljau and Pierre Bézier

- The origins of the control-polygon paradigm for constructing and manipulating free-form curves can be traced to the pioneering ideas of Paul de Casteljau and Pierre Bézier

- The origins of the control-polygon paradigm for constructing and manipulating free-form curves can be traced to the pioneering ideas of Paul de Casteljau and Pierre Bézier
- De Casteljau's courbes et surfaces à pôles, based on using pilot points to design curves and surfaces

(λ_{1} varie de 0 a 1 ot $\mu_{\mathrm{S}} 1$ a 0 , loraque P va on D).

- The origins of the control-polygon paradigm for constructing and manipulating free-form curves can be traced to the pioneering ideas of Paul de Casteljau and Pierre Bézier
- De Casteljau's courbes et surfaces à pôles, based on using pilot points to design curves and surfaces
- The focus of the present study is to elucidate use of the control-polygon paradigm in the context of the planar Pythagorean-Hodograph (PH) curves

Motivation

- The algebraic structure of the PH curves facilitates an exact computation of various properties that otherwise necessitate numerical approximations:
- arc lengths
- offset curves
- rotation-minimizing frames
...

Motivation

- The algebraic structure of the PH curves facilitates an exact computation of various properties that otherwise necessitate numerical approximations:
- arc lengths
- offset curves
- rotation-minimizing frames
- ...
- PH curves are compatible with the Bézier/B-spline form, but their non-linear nature makes the construction more challenging

Motivation

- The algebraic structure of the PH curves facilitates an exact computation of various properties that otherwise necessitate numerical approximations:
- arc lengths
- offset curves
- rotation-minimizing frames
- ...
- PH curves are compatible with the Bézier/B-spline form, but their non-linear nature makes the construction more challenging
- Control-Polygon constraints that characterize PH curves are typically cumbersome and non-intuitive (apart from the cubic case) [Farouki, 1994, Hormann, et al. 2024]

Motivation

- The algebraic structure of the PH curves facilitates an exact computation of various properties that otherwise necessitate numerical approximations:
- arc lengths
- offset curves
- rotation-minimizing frames
- ...
- PH curves are compatible with the Bézier/B-spline form, but their non-linear nature makes the construction more challenging
- Control-Polygon constraints that characterize PH curves are typically cumbersome and non-intuitive (apart from the cubic case) [Farouki, 1994, Hormann, et al. 2024]
- modification of the Bézier/B-spline control points compromise the PH nature

Motivation

- The algebraic structure of the PH curves facilitates an exact computation of various properties that otherwise necessitate numerical approximations:
- arc lengths
- offset curves
- rotation-minimizing frames
- ...
- PH curves are compatible with the Bézier/B-spline form, but their non-linear nature makes the construction more challenging
- Control-Polygon constraints that characterize PH curves are typically cumbersome and non-intuitive (apart from the cubic case) [Farouki, 1994, Hormann, et al. 2024]
- modification of the Bézier/B-spline control points compromise the PH nature
$a b$ initio constructions of PH curves matching specified geometrical data, rather than a posteriori modification of existing PH curves [Farouki, Jaklic, Jüttler, Kosinka, Giannelli, Manni, Pelosi, Pottmann, Sampoli, Sestini, Sir, Walton, ...]

Motivation

- AIM: to address the inability to construct and modify PH curve segments by their Bézier control points.

Motivation

- AIM: to address the inability to construct and modify PH curve segments by their Bézier control points.
- analysis for planar PH quintics:

Motivation

- AIM: to address the inability to construct and modify PH curve segments by their Bézier control points.
- analysis for planar PH quintics:
- possible extension to polynomial PH curves of higher degree

Motivation

- AIM: to address the inability to construct and modify PH curve segments by their Bézier control points.
- analysis for planar PH quintics:
- possible extension to polynomial PH curves of higher degree
- generalization to several recently-developed alternative PH curve formulations
[Kim, 2017, Moon 2020]
[Kim, 2019]
[Albrecht, 2017]
some formulations forfeit some desirable features of the Bézier form

Motivation

- AIM: to address the inability to construct and modify PH curve segments by their Bézier control points.
- analysis for planar PH quintics:
- possible extension to polynomial PH curves of higher degree
- generalization to several recently-developed alternative PH curve formulations
[Kim, 2017, Moon 2020]
[Kim, 2019]
[Albrecht, 2017]
some formulations forfeit some desirable features of the Bézier form
- the convell hull
- variation-diminishing properties
- association of a unique curve with any given control polygon

Planar quintic PH curves

- complex representation: a planar PH quintic $\mathbf{r}(t)$ is generated from a quadratic pre-image polynomial $\mathbf{w}(t)$

$$
\mathbf{w}(t)=\mathbf{w}_{0} b_{0}^{2}(t)+\mathbf{w}_{1} b_{1}^{2}(t)+\mathbf{w}_{2} b_{2}^{2}(t)
$$

- $\mathbf{w}_{0}, \mathbf{w}_{1}, \mathbf{w}_{2}$: complex coefficients;
- $b_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}, \quad i=0, \ldots, n$: Bernstein basis on $t \in[0,1]$
- by integrating the expression $\mathbf{r}^{\prime}(t)=\mathbf{w}^{2}(t)$ yields the complex control points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{5}$ of the Bézier form

$$
\mathbf{r}(t)=\sum_{k=0}^{5} \mathbf{p}_{k} b_{k}^{5}(t)
$$

$$
\begin{aligned}
& \mathbf{p}_{1}=\mathbf{p}_{0}+\frac{1}{5} \mathbf{w}_{0}^{2}, \\
& \mathbf{p}_{2}=\mathbf{p}_{1}+\frac{1}{5} \mathbf{w}_{0} \mathbf{w}_{1}, \\
& \mathbf{p}_{3}=\mathbf{p}_{2}+\frac{1}{5} \mathbf{w}_{1}^{2}+\mathbf{w}_{0} \mathbf{w}_{2}, \\
& \mathbf{p}_{4}=\mathbf{p}_{3}+\frac{1}{5} \mathbf{w}_{1} \mathbf{w}_{2}, \\
& \mathbf{p}_{5}=\mathbf{p}_{4}+\frac{1}{5} \mathbf{w}_{2}^{2},
\end{aligned}
$$

where \mathbf{p}_{0} is a freely-chosen integration constant.

Planar quintic PH curves: properties

- Polynomial parametric speed

$$
\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|=|\mathbf{w}(t)|^{2}
$$

the derivative $\mathrm{d} s / \mathrm{d} t$ of arc length s with respect to the curve parameter t.

- The curvature may be expressed as

$$
\kappa(t)=2 \frac{\operatorname{Im}\left(\overline{\mathbf{w}}(t) \mathbf{w}^{\prime}(t)\right)}{|\mathbf{w}(t)|^{4}} .
$$

PH quintic:

- the numerator is the quadratic polynomial

$$
2 \operatorname{Im}\left(\overline{\mathbf{w}}_{0} \mathbf{w}_{1}\right) b_{0}^{2}(t)-\operatorname{Im}\left(\overline{\mathbf{w}}_{2} \mathbf{w}_{0}\right) b_{1}^{2}(t)+2 \operatorname{Im}\left(\overline{\mathbf{w}}_{1} \mathbf{w}_{2}\right) b_{2}^{2}(t)
$$

- (odd-multiplicity) real roots, if any, identify inflections of $\mathbf{r}(t)$ according with the sign of

$$
\Delta=\operatorname{Im}^{2}\left(\overline{\mathbf{w}}_{2} \mathbf{w}_{0}\right)-4 \operatorname{Im}\left(\overline{\mathbf{w}}_{0} \mathbf{w}_{1}\right) \operatorname{Im}\left(\overline{\mathbf{w}}_{1} \mathbf{w}_{2}\right)
$$

- two inflections for $\Delta>0$
- none if $\Delta<0$
- for $\Delta=0$: double root, where $\kappa(t)=\kappa^{\prime}(t)=0$

Planar quintic PH curves: properties

- rational offset curves $\mathbf{r}_{d}(t)=\mathbf{r}(t)+d \mathbf{n}(t)$

- defines center-line tool path, in order to cut a desired profile
- defines tolerance zone characterizing allowed variations in part shape
- defines erosion, dilation operators in mathematical morphology, image processing, geometrical smoothing procedures, etc.
- closed-form evaluation of energy integral $E=\int_{0}^{1} \kappa^{2} \mathrm{~d} s$
- real-time CNC interpolators, rotation-minimizing frames, etc.

Planar quintic PH curves

- Complex control-polygon legs of $\mathbf{r}(t)$:

$$
\mathbf{L}_{i}=\mathbf{p}_{i}-\mathbf{p}_{i-1}, \quad i=1, \ldots, 5, \quad \mathbf{L}_{1}+\cdots+\mathbf{L}_{5}=1
$$

- canonical form to simplify the construction and shape analysis:
- invoke a translation/rotation/scaling transformation to eliminate all non-essential degrees of freedom:
- $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}(1)=(1,0)$

Planar quintic PH curves

- Complex control-polygon legs of $\mathbf{r}(t)$:

$$
\mathbf{L}_{i}=\mathbf{p}_{i}-\mathbf{p}_{i-1}, \quad i=1, \ldots, 5, \quad \mathbf{L}_{1}+\cdots+\mathbf{L}_{5}=1
$$

- canonical form to simplify the construction and shape analysis:
- invoke a translation/rotation/scaling transformation to eliminate all non-essential degrees of freedom:
- $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}(1)=(1,0)$
- the control-polygon legs are related to the coefficients $\mathbf{w}_{0}, \mathbf{w}_{1}, \mathbf{w}_{2}$

$$
\left(\mathbf{w}_{0}^{2}, \mathbf{w}_{0} \mathbf{w}_{1}, \frac{2 \mathbf{w}_{1}^{2}+\mathbf{w}_{0} \mathbf{w}_{2}}{3}, \mathbf{w}_{1} \mathbf{w}_{2}, \mathbf{w}_{2}^{2}\right)=5\left(\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}, \mathbf{L}_{4}, \mathbf{L}_{5}\right)
$$

Control Polygon PH-constraints

- NOT all choices for $\mathbf{L}_{1}, \ldots, \mathbf{L}_{n}$ will define a PH curve

Control Polygon PH-constraints

- NOT all choices for $\mathbf{L}_{1}, \ldots, \mathbf{L}_{n}$ will define a PH curve

DOF: for degree n planar PH curve

- degree $\frac{1}{2}(n-1)$ pre-image polynomial $\mathbf{w}(t)$
- $\frac{1}{2}(n+1)$ complex coefficients
- imposing end-point conditions:
$\Rightarrow \frac{1}{2}(n-1)$ degrees of freedom:

Control Polygon PH-constraints

- NOT all choices for $\mathbf{L}_{1}, \ldots, \mathbf{L}_{n}$ will define a PH curve

DOF: for degree n planar PH curve

- degree $\frac{1}{2}(n-1)$ pre-image polynomial $\mathbf{w}(t)$
- $\frac{1}{2}(n+1)$ complex coefficients
- imposing end-point conditions:
$\Rightarrow \quad \frac{1}{2}(n-1)$ degrees of freedom:
- 1 for a PH cubics:
- the simplest non-trivial PH curves, which are identified by

$$
\mathbf{L}_{2}^{2}=\mathbf{L}_{1} \mathbf{L}_{3}
$$

translated/scaled/rotated segments of a unique non-inflectional curve Tschirnhaus cubic [Farouki, 1990]

Control Polygon PH-constraints

- NOT all choices for $\mathbf{L}_{1}, \ldots, \mathbf{L}_{n}$ will define a PH curve

DOF: for degree n planar PH curve

- degree $\frac{1}{2}(n-1)$ pre-image polynomial $\mathbf{w}(t)$
- $\frac{1}{2}(n+1)$ complex coefficients
- imposing end-point conditions:
$\Rightarrow \quad \frac{1}{2}(n-1)$ degrees of freedom:
- 1 for a PH cubics:
- the simplest non-trivial PH curves, which are identified by

$$
\mathbf{L}_{2}^{2}=\mathbf{L}_{1} \mathbf{L}_{3}
$$

translated/scaled/rotated segments of a unique non-inflectional curve Tschirnhaus cubic [Farouki, 1990]

Control Polygon PH-constraints

- NOT all choices for $\mathbf{L}_{1}, \ldots, \mathbf{L}_{n}$ will define a PH curve

DOF: for degree n planar PH curve

- degree $\frac{1}{2}(n-1)$ pre-image polynomial $\mathbf{w}(t)$
- $\frac{1}{2}(n+1)$ complex coefficients
- imposing end-point conditions:
$\Rightarrow \frac{1}{2}(n-1)$ degrees of freedom:
- 1 for a PH cubics:
- the simplest non-trivial PH curves, which are identified by

$$
\mathbf{L}_{2}^{2}=\mathbf{L}_{1} \mathbf{L}_{3}
$$

translated/scaled/rotated segments of a unique non-inflectional curve Tschirnhaus cubic [Farouki, 1990]

- 2 for a PH quintics
- are the lowest-order PH curves that are generally considered to be suitable for free-form design applications.

Control Polygon PH-constraints

Proposition [Farouki-1994]

Sufficient and necessary conditions for a quintic Bézier curve to be a PH curve is the satisfaction of

$$
\mathbf{L}_{1} \mathbf{L}_{4}^{2}=\mathbf{L}_{5} \mathbf{L}_{2}^{2}
$$

and any one of the four equations

$$
\begin{aligned}
3 \mathbf{L}_{1} \mathbf{L}_{2} \mathbf{L}_{3}-\mathbf{L}_{1}^{2} \mathbf{L}_{4}-2 \mathbf{L}_{2}^{3} & =0 \\
3 \mathbf{L}_{5} \mathbf{L}_{4} \mathbf{L}_{3}-\mathbf{L}_{5}^{2} \mathbf{L}_{2}-2 \mathbf{L}_{4}^{3} & =0 \\
3 \mathbf{L}_{1} \mathbf{L}_{4} \mathbf{L}_{3}-\mathbf{L}_{5} \mathbf{L}_{1} \mathbf{L}_{2}-2 \mathbf{L}_{2}^{2} \mathbf{L}_{4} & =0 \\
3 \mathbf{L}_{5} \mathbf{L}_{2} \mathbf{L}_{3}-\mathbf{L}_{1} \mathbf{L}_{5} \mathbf{L}_{4}-2 \mathbf{L}_{4}^{2} \mathbf{L}_{2} & =0
\end{aligned}
$$

Canonical-form

$$
\mathbf{L}_{1}+\mathbf{L}_{2}+\mathbf{L}_{3}+\mathbf{L}_{4}+\mathbf{L}_{5}=1
$$

Control Polygon PH-constraints

Proposition [Farouki-1994]

Sufficient and necessary conditions for a quintic Bézier curve to be a PH curve is the satisfaction of

$$
\begin{equation*}
\mathbf{L}_{1} \mathbf{L}_{4}^{2}=\mathbf{L}_{5} \mathbf{L}_{2}^{2} \tag{1}
\end{equation*}
$$

and any one of the four equations

$$
\begin{align*}
3 \mathbf{L}_{1} \mathbf{L}_{2} \mathbf{L}_{3}-\mathbf{L}_{1}^{2} \mathbf{L}_{4}-2 \mathbf{L}_{2}^{3} & =0 \\
3 \mathbf{L}_{5} \mathbf{L}_{4} \mathbf{L}_{3}-\mathbf{L}_{5}^{2} \mathbf{L}_{2}-2 \mathbf{L}_{4}^{3} & =0 \tag{2}\\
3 \mathbf{L}_{1} \mathbf{L}_{4} \mathbf{L}_{3}-\mathbf{L}_{5} \mathbf{L}_{1} \mathbf{L}_{2}-2 \mathbf{L}_{2}^{2} \mathbf{L}_{4} & =0 \\
3 \mathbf{L}_{5} \mathbf{L}_{2} \mathbf{L}_{3}-\mathbf{L}_{1} \mathbf{L}_{5} \mathbf{L}_{4}-2 \mathbf{L}_{4}^{2} \mathbf{L}_{2} & =0
\end{align*}
$$

Canonical-form

$$
\begin{equation*}
\mathbf{L}_{1}+\mathbf{L}_{2}+\mathbf{L}_{3}+\mathbf{L}_{4}+\mathbf{L}_{5}=1 \tag{3}
\end{equation*}
$$

Control Polygon PH-construction

- A canonical-form quintic PH curve in complex form
embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves

Control Polygon PH-construction

- A canonical-form quintic PH curve in complex form
embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves

Control Polygon PH-construction

* Deportment of Mechbonicol ond Aerospoce Engineering Uniuersity of Caîjornia Davis CA 95616 USA

- A canonical-form quintic PH curve in complex form embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves
- Fixing two control legs, the remaining three can be filled in by a simple algorithm that requires only the solution of a quadratic or quartic equation with complex coefficients.

Control Polygon PH-construction

- A canonical-form quintic PH curve in complex form embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves
- Fixing two control legs, the remaining three can be filled in by a simple algorithm that requires only the solution of a quadratic or quartic equation with complex coefficients.

Control Polygon PH-construction

- A canonical-form quintic PH curve in complex form embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves
- Fixing two control legs, the remaining three can be filled in by a simple algorithm that requires only the solution of a quadratic or quartic equation with complex coefficients.

Control Polygon PH-construction

* Deportment of Mechbonicol ond Aerospoce Engineering Uniuersity of Caîjornia Davis CA 95616 USA

- A canonical-form quintic PH curve in complex form embodies two free complex parameters that must be chosen so as to ensure that its five control-polygon legs satisfy the (1)-(2) constraints that identify quintic PH curves
- Fixing two control legs, the remaining three can be filled in by a simple algorithm that requires only the solution of a quadratic or quartic equation with complex coefficients.

Control Polygon PH-construction

- Several examples illustrate how this approach can be employed in the practical design of planar PH quintics with desired shape features

Hermite problem
4 distinct PH quintics

Assigned initial curvature
$\kappa(0)=\frac{4}{5} \frac{\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right) \cdot \mathbf{k}}{\left|\mathbf{L}_{1}\right|^{3}}$,
${ }_{13}{ }^{\mathbf{2}} \mathbf{2 6}$ distinct PH quintics

symmetric control polygon
2 distinct PH curves

4 distinct PH curves

Control Polygon PH-construction

- Several examples illustrate how this approach can be employed in the practical design of planar PH quintics with desired shape features

Hermite problem
4 distinct PH quintics

Assigned initial curvature
$\kappa(0)=\frac{4}{5} \frac{\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right) \cdot \mathbf{k}}{\left|\mathbf{L}_{1}\right|^{3}}$,
${ }_{13}{ }^{\mathbf{2}} \mathbf{2 6}$ distinct PH quintics

symmetric control polygon
2 distinct PH curves

4 distinct PH curves

Control Polygon PH-construction

- Several examples illustrate how this approach can be employed in the practical design of planar PH quintics with desired shape features

Hermite problem
4 distinct PH quintics

symmetric control polygon

2 distinct PH curves

4 distinct PH curves

Control Polygon PH-modification

a posteriori modification of quintic PH curves:

- intuitive approach of displacing a subset of the control points,

$$
\widetilde{\mathbf{p}}_{k}=\mathbf{p}_{k}+\Delta \mathbf{p}_{k}, \quad k=0, \ldots, 5
$$

the control polygon legs become

$$
\tilde{\mathbf{L}}_{k}=\mathbf{L}_{k}+\Delta \tilde{\mathbf{L}}_{k}, \quad k=1, \ldots, 5
$$

where $\Delta \widetilde{\mathbf{L}}_{k}:=\Delta \mathbf{p}_{k}-\Delta \mathbf{p}_{k-1}$.

- the control polygon legs $\widetilde{\mathbf{L}}_{k}$ must also satisfy the PH-constraints (1)-(2)
\Rightarrow a system of equations that identify the admissible displacements $\Delta \mathbf{p}_{k}$
- for general PH:

2 cubic constraints \Rightarrow at least 2 non-zero displacements to obtain a different PH $\widetilde{\mathbf{r}}(t)$

Control Polygon PH-modification

- $=2$ modified control points \Rightarrow finite number of modified PH quintics

Control Polygon PH-modification

- $=2$ modified control points \Rightarrow finite number of modified PH quintics

$\mathbf{p}_{0}, \mathbf{p}_{5}$
1 (good) solution

$\mathbf{p}_{1}, \mathbf{p}_{2}$
1 (unsatisfactory) solution

$\mathbf{p}_{1}, \mathbf{p}_{4}$
3 solutions - 1 good solution

$\mathbf{p}_{2}, \mathbf{p}_{3}$
4 solutions (1 good)
$\mathbf{p}_{1}, \mathbf{p}_{3}$
3 (uñsatisfactory) solutions

Control Polygon PH-modification

- $=2$ modified control points \Rightarrow finite number of modified PH quintics

$\mathbf{p}_{1}, \mathbf{p}_{3}$
3 (unssatisfactory) solutions

Control Polygon PH-modification

- >2 modified control points
- number of unknowns exceeds the number of constraints
- infinitely-many modifications $\widetilde{\mathbf{r}}(t)$ are possible
\Rightarrow exploit the excess freedoms in optimizing a shape measure for the modified curve

Control Polygon PH-modification

- >2 modified control points
- number of unknowns exceeds the number of constraints
- infinitely-many modifications $\widetilde{\mathbf{r}}(t)$ are possible
\Rightarrow exploit the excess freedoms in optimizing a shape measure for the modified curve
- $\mathbf{p}_{0}, \mathbf{p}_{5}$: fixed in canonical position

Control Polygon PH-modification

- >2 modified control points
- number of unknowns exceeds the number of constraints
- infinitely-many modifications $\widetilde{\mathbf{r}}(t)$ are possible
\Rightarrow exploit the excess freedoms in optimizing a shape measure for the modified curve
- $\mathbf{p}_{0}, \mathbf{p}_{5}$: fixed in canonical position
- 1 fixed interior displacement $\Delta \mathbf{p}_{\ell}$

Control Polygon PH-modification

- >2 modified control points
- number of unknowns exceeds the number of constraints
- infinitely-many modifications $\widetilde{\mathbf{r}}(t)$ are possible
\Rightarrow exploit the excess freedoms in optimizing a shape measure for the modified curve
- $\mathbf{p}_{0}, \mathbf{p}_{5}$: fixed in canonical position
- 1 fixed interior displacement $\Delta \mathbf{p}_{\ell}$
- 3 complex unknown displacement $\Delta \mathbf{p}_{i}, \Delta \mathbf{p}_{j}, \Delta \mathbf{p}_{k}$ by

$$
\min _{\Delta \mathbf{p}_{i}, \Delta \mathbf{p}_{j}, \Delta \mathbf{p}_{k}} F\left(\Delta \mathbf{p}_{i}, \Delta \mathbf{p}_{j}, \Delta \mathbf{p}_{k}\right)
$$subjects to PH constraints

Control Polygon PH-modification

Penalty function:

- expect the shape changes localized to the vicinity of the modified control point \mathbf{p}_{ℓ};
- minimize the distance $\Delta \mathbf{r}$ between $\widetilde{\mathbf{r}}(t)$ and $\mathbf{r}(t)$ after imposing one displacement $\Delta \mathbf{r}(t)=\Delta \mathbf{p}_{i} b_{i}^{5}(t)+\Delta \mathbf{p}_{j} b_{j}^{5}(t)+\Delta \mathbf{p}_{k} b_{k}^{5}(t)$

$$
\min _{\Delta \mathbf{p}_{i}, \Delta \mathbf{p}_{j}, \Delta \mathbf{p}_{k}} \int_{0}^{1}|\Delta \mathbf{r}(t)|^{2} \mathrm{dt}
$$

considering the proportional expression:

Penalty function

$$
\begin{aligned}
F\left(\Delta \mathbf{p}_{i}, \Delta \mathbf{p}_{j}, \Delta \mathbf{p}_{k}\right) & =C_{i i}\left|\Delta \mathbf{p}_{i}\right|^{2}+C_{j j}\left|\Delta \mathbf{p}_{j}\right|^{2}+C_{k k}\left|\Delta \mathbf{p}_{k}\right|^{2} \\
& +2 \operatorname{Re}\left(C_{i j} \Delta \mathbf{p}_{i} \Delta \overline{\mathbf{p}}_{j}+C_{j k} \Delta \mathbf{p}_{j} \Delta \overline{\mathbf{p}}_{k}+C_{k i} \Delta \mathbf{p}_{k} \Delta \overline{\mathbf{p}}_{i}\right)
\end{aligned}
$$

Control Polygon PH-modification

+ PH-constraints for the modified PH curve

2 cubic complex PH-constraints in $\Delta \mathbf{L}_{k}=\Delta \mathbf{p}_{k}-\Delta \mathbf{p}_{k-1}$

$$
\begin{align*}
& 2 \mathbf{L}_{4}\left(\mathbf{L}_{1}+\Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{4}-2 \mathbf{L}_{2}\left(\mathbf{L}_{5}+\Delta \mathbf{L}_{5}\right) \Delta \mathbf{L}_{2} \tag{1}\\
& \quad \quad+\left(\mathbf{L}_{1}+\Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{4}^{2}-\left(\mathbf{L}_{5}+\Delta \mathbf{L}_{5}\right) \Delta \mathbf{L}_{2}^{2}+\mathbf{L}_{4}^{2} \Delta \mathbf{L}_{1}-\mathbf{L}_{2}^{2} \Delta \mathbf{L}_{5}=0 \\
& +\left(3 \mathbf{L}_{2} \mathbf{L}_{3}-2 \mathbf{L}_{1} \mathbf{L}_{4}\right) \Delta \mathbf{L}_{1}+3\left(\mathbf{L}_{1} \mathbf{L}_{3}-2 \mathbf{L}_{2}^{2}+\mathbf{L}_{3} \Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{2} \tag{2}\\
& +3 \mathbf{L}_{2}\left(\mathbf{L}_{1}+\Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{3}-\mathbf{L}_{1}\left(\mathbf{L}_{1}+2 \Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{4}-\left(\mathbf{L}_{4}+\Delta \mathbf{L}_{4}\right)\left(\Delta \mathbf{L}_{1}\right)^{2} \\
& -2\left(3 \mathbf{L}_{2}+\Delta \mathbf{L}_{2}\right)\left(\Delta \mathbf{L}_{2}\right)^{2}+3\left(\mathbf{L}_{1}+\Delta \mathbf{L}_{1}\right) \Delta \mathbf{L}_{2} \Delta \mathbf{L}_{3}=0
\end{align*}
$$

Example 1: data with inflection

Example 1: data with inflection

Example 1: data with inflection

$\times 3$ orr
${ }^{2} \mathrm{CxXX}+$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

inflection near $\mathbf{r}(1)$
$\Delta \mathbf{p}_{4}=0.352+0.354 \mathrm{i}$
$\left|\Delta \mathbf{p}_{4}\right|=0.5$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

inflection near $\mathbf{r}(1)$
$\Delta \mathbf{p}_{4}=0.352+0.354 \mathrm{i}$
$\left|\Delta \mathbf{p}_{4}\right|=0.5$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

$$
\begin{aligned}
& \text { inflection near } \mathbf{r}(1) \\
& \Delta \mathbf{p}_{4}=0.352+0.354 \mathrm{i} \\
& \left|\Delta_{\mathbf{p}_{4}}\right|=0.5 \\
& \mathbf{E q} \cdot(1)-(2)=1 \mathbf{e}-10 \\
& \widetilde{\mathbf{p}}_{1}=\widetilde{\mathbf{p}}_{2}, \quad \widetilde{\mathbf{p}}_{3}=\widetilde{\mathbf{p}}_{4}
\end{aligned}
$$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

inflection near $\mathbf{r}(1)$
$\Delta \mathbf{p}_{4}=0.352+0.354 \mathrm{i}$ $\left|\Delta \mathbf{p}_{4}\right|=0.5$
Eq. (1)-(2) $=1 \mathrm{e}-10$
$\tilde{\mathbf{p}}_{1}=\mathbf{p}_{2}, \quad \mathbf{p}_{3}=\tilde{\mathbf{p}}_{4}$
"large" $\Delta \mathbf{p}_{\ell}$ may result in slow convergence local minimun or degenerate control polygon

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

inflection near $\mathbf{r}(1)$
$\Delta \mathbf{p}_{4}=0.352+0.354 \mathrm{i}$ $\left|\Delta \mathbf{p}_{4}\right|=0.5$
Eq. (1)-(2) $=1 \mathrm{e}-10$
$\tilde{\mathbf{p}}_{1}=\mathbf{p}_{2}, \quad \mathbf{p}_{3}=\tilde{\mathbf{p}}_{4}$
"large" $\Delta \mathbf{p}_{\ell}$ may result in slow convergence local minimun or degenerate control polygon
\Rightarrow sequence of smaller steps, modified PH used as input, in a predictor-corrector scheme, \Rightarrow dependable approach

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5) \quad$ vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5) \quad$ vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

Example 2: data with inflection

Large $\left|\Delta \mathbf{p}_{4}\right|(=0.5)$

vs. sequence of smaller $\left|\Delta \mathbf{p}_{4}\right|(=0.05)$

egular control polygons

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:
vertical

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 3: convex data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.1\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:
22 of 26

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 4: inflectional data

- Sequence of 10 small displacements $\left(\left|\Delta \mathbf{p}_{\ell}\right|=0.05\right)$ along different directions:

Example 5: sequential displacements

- All interior control points are sequentially modified $\left(\left|\Delta \mathbf{p}_{i}\right|=0.2\right)$

Example 5: sequential displacements

- All interior control points are sequentially modified $\left(\left|\Delta \mathbf{p}_{i}\right|=0.2\right)$

Summarizing: we have presented ...

- practical and efficient means for the modification of planar PH quintics through the control points

Summarizing: we have presented ...

- practical and efficient means for the
modification of planar PH quintics through the control points
- the displacement of a single interior control point is considered
- the remaining interior control points are exploited as free parameters to minimize a modified/original PH curves distance
- subject to satisfaction of the PH constraints

Summarizing: we have presented ...

- practical and efficient means for the
modification of planar PH quintics through the control points
- the displacement of a single interior control point is considered
- the remaining interior control points are exploited as free parameters to minimize a modified/original PH curves distance
- subject to satisfaction of the PH constraints
- it works
best for displacements of reasonable magnitude
- larger modifications may also be achieved incrementally
- using successive applications
- the output of each step serving as input for the next step

Summarizing: we have presented ...

- practical and efficient means for the
modification of planar PH quintics through the control points
- the displacement of a single interior control point is considered
- the remaining interior control points are exploited as free parameters to minimize a modified/original PH curves distance
- subject to satisfaction of the PH constraints
- it works
best for displacements of reasonable magnitude
- larger modifications may also be achieved incrementally
- using successive applications
- the output of each step serving as input for the next step
- modifications to more than one of the interior control points can be sequentially implemented:

Summarizing: we have presented ...

- practical and efficient means for the

modification of planar PH quintics through the control points

- the displacement of a single interior control point is considered
- the remaining interior control points are exploited as free parameters to minimize a modified/original PH curves distance
- subject to satisfaction of the PH constraints
- it works
best for displacements of reasonable magnitude
- larger modifications may also be achieved incrementally
- using successive applications
- the output of each step serving as input for the next step
- modifications to more than one of the interior control points can be sequentially implemented:
- the optimization process is sufficiently fast (0.015 sec .) to admit real-time user modification and display of planar quintic PH curves

Summarizing: we have presented ...

- practical and efficient means for the

modification of planar PH quintics through the control points

- the displacement of a single interior control point is considered
- the remaining interior control points are exploited as free parameters to minimize a modified/original PH curves distance
- subject to satisfaction of the PH constraints
- it works
best for displacements of reasonable magnitude
- larger modifications may also be achieved incrementally
- using successive applications
- the output of each step serving as input for the next step
- modifications to more than one of the interior control points can be sequentially implemented:
- the optimization process is sufficiently fast (0.015 sec .) to admit real-time user modification and display of planar quintic PH curves
\Rightarrow a rich set of "neighboring" PH quintics that have the same end points

... spatial case?

- Although it seems natural to seek a generalization of the methodology to spatial PH curves, this is not a trivial task
- no system of control-polygon constraints for the spatial PH quintics is currently known.
- Moreover in the quaternion representation, the spatial PH quintic interpolants to given first-order Hermite data comprise a two-parameter family rather than a discrete set as in the planar case.

... spatial case?

- Although it seems natural to seek a generalization of the methodology to spatial PH curves, this is not a trivial task
- no system of control-polygon constraints for the spatial PH quintics is currently known.
- Moreover in the quaternion representation, the spatial PH quintic interpolants to given first-order Hermite data comprise a two-parameter family rather than a discrete set as in the planar case.

Thanks for the attention!!

... from Arcachon

Happy Birthday Tom!!

