
Optimal linear and non-linear dimensionality reduction

Theory and algorithms

Albert Cohen

Laboratoire Jacques-Louis Lions
Sorbonne Université

Paris

Oslo, 27-06-2024

Collaborators: P. Binev, W. Dahmen, R. DeVore, M. Dolbeault, O. Mula,
G. Petrova, A. Somacal, P. Wojtaszczyk.



Curves and Surfaces 2026

Organized by SMAI-SIGMA

Taking place in St Malo, France, June 2026 (first or second week)

following Chamonix 1990, 1993, 1996; Saint-Malo 1999, 2002;
Avignon 2006, 2010;Paris 2014 ; Arcachon 2018, 2022

Save the date !



Dimensionality reduction - reduced modeling

Approximation of an unknown multivariate function u ∈ V defined on some domain
Ω ⊂ Rd by simpler functions depending on finitely many parameters is used in various
contexts.

Forward simulation : numerical computation of u solution to a given PDE.

Inverse problems : access to limited observation ℓ(u) = (ℓ1(u), . . . , ℓm(u)) ∈ Rm.

Sampling : access to point values u(x1), . . . , u(xm).

Here V is a Banach space equiped with norm ∥ · ∥ = ∥ · ∥V .

Prior information: u ∈ K compact class of V (smoothness class, family of solutions to
parametrized PDEs...).

Computational strategies lead to approximation of u by ũ ∈ Vn that can be described
by n ≤ m parameters (or more generally O(n)).

The set Vn can be a linear or nonlinear space
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Classical choice of approximation spaces.

Linear spaces:

- Algebraic polynomials: Vn = Pn. When d > 1, we may set Vn = Pk with n =
(k+d

d

)
.

- Span of the n first elements {e1, . . . , en} from a given basis (ek )k≥1 of V , for example
trigonometric polynomials.

- Piecewise polynomials, splines or finite elements on a fixed partition of cardinality n.

Nonlinear spaces:

- Rational fractions: Vn =
{

p
q
; p, q ∈ Pn

}
.

- Best n-term / sparse approximation in a basis (ek )k≥1: pick approximation from the
set Vn = {

∑
k∈E ckek : #(E ) ≤ n}.

- splines, finite elements on meshes generated after n step of adaptive refinement
(select and split an element in the current partition).

- Neural networks : functions v : Rd → Rm of the form

v = Ak ◦ σ ◦ Ak−1 ◦ σ ◦ Ak−2 ◦ · · · ◦ σ ◦ A1,

where Aj : Rdj → Rdj+1 is affine and σ is a nonlinear (rectifier) function applied
componentwise, for example σ(x) = RELU(x) = max{x , 0}. Here Vn is the set of such
functions when the total number of parameters does not exceed n.
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Standard questions in approximation theory

For a given family (Vn)n≥0 of such classical spaces, a standard question is the study of
the best approximation error

en(u) = en(u)V = min
v∈Vn

∥u − v∥.

Typically, one tries to understand which properties of u (smoothness, sparsity...)
ensure a certain rate of decay en(u) ≤ Cn−r .

This allows to understand for a given prior model class K the asymptotic behaviour of
dist(K,Vn)V := maxu∈K en(u).

A related standard question is the construction of near best approximations: simple
computational map u 7→ un ∈ Vn such that ∥u − un∥ ≤ Cen(u) for some fixed C ≥ 1.

Optimal dimensionality reduction

A less standard question is that of an optimal choice of Vn.

For a given model class K, can we find a linear or nonlinear space Vn that best
approximate K, that is, make dist(K,Vn)V as small as possible.

Such spaces may in certain cases significantly differ from the classical examples listed
above, and may have no simple description.
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The offline/online paradigm

We are interested in applications where we might need to search for many instances of
u ∈ K:

- Parametrized PDE’s P(u, y) = 0 giving rise to a solution map y 7→ u(y) ∈ V and
manifold K := {u(y) : y ∈ Y }.

- Applications requiring multiple queries of the solution map: optimization/control (y
is deterministic), or uncertainty quantification (y is random) or inverse problems
(identify y from observations of u(y)).

- Or we may want to recover many instances of u in a model class K, from their
observations z = (ℓ1(u), . . . , ℓm(u)).

Offline stage: design a space Vn of moderate dimension n that is optimally taylored to
the class K. This can be computationally intensive but it is only done once.

Online stage: for each required parameter instance y (or.data z), compute an
approximation un(y) (or un) in Vn, by a hopefully fast computation : n numbers to
compute.
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Optimality in linear dimensionality reduction

Kolmogorov n-widths are defined as

dn = dn(K)V := inf
dim(Vn)=n

dist(K,Vn)V , dist(K,Vn)V := max
u∈K

min
v∈Vn

∥u − v∥V ,

The quantity dn(K)V can be viewed as a benchmark/bottleneck for numerical
methods applied to the elements from K that create approximations from linear
spaces: interpolation, projection, least squares, Galerkin methods for solving PDEs...

The optimal space Vn achieving the infimum may not exist (one often assumes it exists
in order to avoid limiting arguments). Its exact construction is usually out of reach.
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Optimality in linear and nonlinear dimensionality reduction

Kolmogorov n-widths are the benchmark for approximation by linear spaces.

dn = dn(K)V := inf
dim(Vn)=n

dist(K,Vn)V , dist(K,Vn)V := max
u∈K

min
v∈Vn

∥u − v∥V ,

or equivalently
dn := inf

E ,R
max
u∈K

∥u − R(E (u))∥V ,

with infimum over all linear recovery maps R : Rn → V and continuous encoding maps
E : V → Rn.

Similar quantities can be defined with other prescriptions on E and R.

R
E point values linear nonlinear

linear rn an dn

nonlinear ρn sn δn
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Resulting quantities

R
E point values linear nonlinear

linear rn an dn

nonlinear ρn sn δn

- an = an(K)V are the approximation numbers: inf maxu∈K ∥u − Lu∥, where the
infimum is over all linear L of rank ≤ n.

- Note that an = dn when V is a Hilbert space. Otherwise an ≥ dn.

- rn and ρn are the sampling numbers: inf maxu∈K ∥u − R(u(x1), . . . , u(xn))∥, there
the infimum is over all choices of sampling points (x1, . . . , xn) and linear or continuous
recovery maps.

- sn are the sensing numbers: inf maxu∈K ∥u −R(ℓ1(u), . . . , ℓn(u))∥, there the infimum
is over all choices of linear functionals ℓ1, . . . , ℓn and continuous recovery maps.

- δn are the manifold widths. Benchmark for all general approximation methods.
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Some variants

One may relax these definitions by imposing that the encoder is only defined on K and
not on the whole of V .

This allows us, for example, to define sampling numbers for spaces such as
V = Lp(Ω), assuming that all functions u ∈ K are continuous, that is, K ⊂ C(Ω).

On the other hand, one may want to strengthen these definitions by asking that the
encoding and recovery map have some stability.

This leads to the notion of stable widths: for L ≥ 1, we define

δn,L := inf
E ,R

max
u∈K

∥u − R(E (u))∥,

where the infimum is taken over all encoding and recovery maps such that

∥E (u) − E (v)∥Z ≤ L∥u − v∥V u, v ∈ V ,

and
∥R(x) − R(y)∥ ≤ L∥x − y∥Z , x , y ∈ Rn,

for some norm ∥ · ∥Z defined on Rn.

Similarly, we may define the stable variants (dn,L, an,L, sn,L) to (an, dn, sn).
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Estimating n-widths

For a given class K of interest, we would like to estimate the above quantities from
above and below.

Estimate from above: compute maxu∈K ∥u − R(E (u))∥V for particular admissible
choices of E and R that are presumed to be near optimal.

Estimate from below is more tricky. We discuss further two possible ways.

For certains classes K and spaces V , all these quantities behave similar as n → ∞.

Example : V = L∞(I ) where I = [0, 1] ⊂ R and

K = U(Lip(I )) = {u : max{∥u∥L∞ , ∥u ′∥L∞ } ≤ 1},

Then

ρn = rn = an = dn = sn = δn =
1

2n
∼ n−1.

Upper bound: use piecewise linear reconstruction from n equispaced points.

General rate n−
s−t
d for V = W t,p(Q) and K = U(W s,p(Q)), with Q = [0, 1]d .

Thus for such prior classes, nonlinear approaches are not beneficial.

For other classes discussed further, one may have δn <<dn.
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Lower bounds: using continuity

Continuity of the encoder E essential in the definition of the nonlinear widths δn.
Indeed, if we drop this assumption, then we would have

δn(K) = inf
D

sup
u∈K

inf
x∈Rn

∥u − D(x)∥,

which is the minimal distance of K to n-dimensional parametrized manifolds.

This quantity is 0 even for n = 1: space filling continuous curves.

Assuming continuity of E , we obtain lower bounds using Borsuk-Ulam theorem: if
W ⊂ V is any n + 1 dimensional space, then any continuous map E from the n-sphere
Sn = ∂BW to Rn admits a point u∗ ∈ Sn such that E (u∗) = E (−u∗).

Thus, if K contains a rescaled ball rBW of an n + 1-dimensional space W , there exists
u∗,−u∗ ∈ K such that R(E (u∗)) = R(E (−u∗)) for any recovery map, and thus

max
u∈K

∥u − R(E (u))∥V ≥ r .

It follows that
δn ≥ bn,

where the Bernstein n-width bn = bn(K)V is defined as the largest r ≥ 0 such that
there exists W ⊂ V of dimension n + 1 with rBW ⊂ K.

For V = L∞(I ) and K = U(Lip(I )) one finds that bn ≥ 1
2n
.
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Lower bounds: Carl’s inequality

Define the entropy numbers εn = εn(K)V as the smallest ε such that K can be
covered by 2n balls of radius ε.

Related to lossy coding : Elements of K can be encoded with n bits up to precision εn.

Carl’s inequality : for all s > 0 one has

(n + 1)sεn ≤ Cs sup
m=0,...,n

(m + 1)sdm, n ≥ 0

In particular
dn <

∼ n−s , n ≥ 0 =⇒ εn <
∼ n−s , n ≥ 0.

For V = L∞(I ) and K = U(Lip(I )) one can prove that εn ≥ cn−1.

Carl’s inequality does not hold for δn but it holds for its stable version δn,L.
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Approximation by neural networks

The family Vn of all neural networks v : Rd → Rm described by at most n parameters
is an instance of nonlinear approximation.

For a given target function u, the search of an approximation un ∈ Vn is usually done
by solving an optimization problem using a large training set of points

un = argminv∈Vn

M∑
i=1

|u(x i ) − v(x i )|2.

This is a non-convex optimization problem in the parameter space, often solved by
stochastic gradient algorithms.

Approximation results by Yarotzki, Shen-Yang-Zhang (2020) for d = 1 and m = 1:
neural networks approximation of functions in Lip(I ) converge in L∞ with rate n−2 !

This means that the parameter selection that defines the encoding map E achieving
such rates cannot be stable or even continuous.
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The power of point value information for linear recovery

Recent results (M. Ullrich, T. Ullrich, Nagel, Krieg, Dolbeault...) reveal that when
V = L2, point value evaluation are enough for optimal rates of linear recovery.

Under mild assumptions on the K, linear sampling number behave as well as n-widths.

an = dn <
∼ n−s ⇐⇒ rn <

∼ n−s .

R
E point values linear nonlinear

linear rn an dn

nonlinear ρn sn δn

inf
E ,R

max
u∈K

∥u − R(E (u))∥V , .
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Point values are generally uneffective for optimal nonlinear recovery: δn<< ρn for
certain classes K.

In DNN refered to as theory to practice gap (Adcock, Grohs, Voigtlaender...)

Achieving the accuracy of nonlinear spaces Vn may requires m >> n point evaluations.



The power of linear information for nonlinear recovery

Cohen-DeVore-Petrova-Wojtaszczyk (2021) : when V is a Hilbert space, linear
measurements are enough for optimal rates of stable nonlinear recovery.

Stable sensing numbers decay similar to stable manifold widths and entropy numbers.
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Conversely, in Hilbert spaces, we establish a direct comparison: with L = 2 and c = 26,
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1. Consider N an εn-net of K with #(N ) = 2n.

2. Johnson-Lindenstrauss linear projection as encoder: E = PW where dim(W ) ≤ cn
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2
∥ui − uj∥V ≤ ∥PW (ui − uj )∥V ≤ ∥ui − uj∥V , ui , uj ∈ N .

3. This gives an exact recovery map R that is 2-Lipschitz from PWN to N .

4. Extend this map from W ∼ Rcn to V with same Lipschitz constant (Kirszbraun).

This recovery procedure is not computationally feasible.
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Estimating n-width of solution manifolds

An instructive example : consider the steady-state elliptic diffusion equation

−div(a∇u) = f , on Ω ⊂ R2, u∂Ω = 0,

with fixed f , and piecewise constant diffusion function a = a(y) having value a + yj on

subdomain Ωj , where y = (y1, . . . , yd ) ∈ Y = [−b, b]d , where 0 < b < a.

How large is the Kolmogorov n-width of K = {u(y) : y ∈ Y } ⊂ V = H1(Ω) ?

Solutions u(y) are bounded in Hs iff s < 3/2 and dn(U(Hs ))H1 ∼ n−(s−1)/2 >
∼ n−1/4.

In fact dn(K)H1 <
∼ exp(−cn1/d )). This follows from the holomorphy of the map

y 7→ u(y) that we can approximate by truncated power series

max
y∈Y

∥∥∥u(y) − ∑
|ν|≤k

uνy
ν
∥∥∥ ≤ C exp(−ck), yν = yν1

1 . . . y
νd
d ,

So K is approximated at this accuracy by Vn = span{uν : |ν| ≤ k}, n =
(k+d

k

)
∼ kd .
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Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay
of Kolmogorov n-width.

Simple example : consider the univariate linear transport equation

∂tu + a∂xu = 0,

with constant velocity a ∈ R and initial condition u0 = u(x , 0) = χ[0,1](x).

Parametrize the solution by the velocity a ∈ [amin, amax] and consider the solution
manifold at final time T = 1,

K = {χ[a,a+1] : a ∈ [amin, amax]}.

It is easily checked that
dn = dn(K)L2 ∼ n−1/2,

while
δn = sn = 0, n ≥ 1 and εn ∼ 2−n/2.
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A multivariate class

More generally consider in Q = [0, 1]d and with s ≥ 1,

K = Ks := {χΩ : Ω ⊂ Q, ∂Ω is Cs regular}.

Can be made a compact set of L2(Q) by imposing a uniform Cs bound on the local
parametrizations of Ω.

One can prove that dn(Ks )L2 ∼ n−
1
2d regardless of how large is s.

On the other hand,

sn(Ks )L2 ∼ δn(Ks )L2 ∼ εn(Ks )L2 ∼ n
− s

2(d−1) .

Open problem: achievable by simple linear measurements and recovery strategies ?

Remark: sampling numbers seem to have intermediate rate ρn ∼ n
− s

2(d−1)+2s .
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Practical realization of optimal reduced models

For classes K such as solution manifolds of parametrized PDEs in Hilbert spaces:
investing some offline computation of a near optimal approximation space Vn can be
highly beneficial for fast online solvers, compared conventional approximation methods
(finite elements, splines).

The reduced basis approach (Maday, Patera,...): Vn = span{u1, . . . , un}, with ui ∈ K.

Greedy selection: given Vk−1 pick next uk such that

∥uk − PVk−1
uk∥ = max

u∈K
∥u − PVk−1

u∥V ,

or in practice ∥uk − PVk−1
uk∥ ≥ γmaxu∈K ∥u − PVk−1

u∥V for fixed γ ∈]0, 1[.
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∼ n−s =⇒ σn <

∼ n−s ,

and
dn <

∼ e−cns =⇒ σn <
∼ e−c̃ns .

Open problem: similar practical realization of rate optimal E and nonlinear R ?

Can be thought as a learning problem over K. DNN auto-encoders ?
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Linear reduced models in forward simulation

One of the objective of reduced modeling is the fast access to approximations of the
solutions to general PDE’s P(u) = 0.

As a basic example, consider the elliptic problem: find u ∈ V such that

a(u, v) = ℓ(v), v ∈ V ,

in a Hilbert space V , under the standard Lax-Milgram assumptions. Equivalently

u = argminv∈V J(v), J(v) :=
1

2
a(v , v) − ℓ(v).

Approximation in a linear reduced model Vn by Galerkin: find un ∈ Vn such that

a(un, v) = ℓ(v), v ∈ Vn ⇐⇒ un = argminv∈Vn
J(v).

Cea’s lemma ensures best approximation: ∥u − un∥ ≤ C minv∈Vn ∥u − v∥.

Computational time: dense n × n linear system with moderate n.

Assembling time: computation of matrix elements a(ϕj , ϕj ) can be the dominant part.
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Nonlinear reduced models and forward simulation

How can we adapt these approaches/results to nonlinear reduced models Vn ?

A systematic approach: for a fixed norm ∥ · ∥Z , minimize the residual

un = argminv∈Vn
∥P(v)∥Z ,

PINN’s methods : use deep neural networks for Vn and the ℓ2 norm on a sufficienly
large training point sets

∑
i |P(v)(x i )|2.

Alternative for elliptic problem: consider un = argminv∈Vn
J(v).

This approximation satisfies Cea’s estimate ∥u − un∥ ≤ C minv∈Vn ∥u − v∥.

All these approaches amount in solving non-convex optimization problems that can be
computationally untractable, even for moderate values of n.

Polynomially mapped manifold (Haasdonk, Farhat, Willcox..): for some fixed k ≥ 1
consider reduced models of the form

Vn :=
{ ∑

|ν|≤k

xνφν : (x1, . . . , xn) ∈ Rn
}
.

The case k = 1 is linear reduced models. When k > 1 we introduce nonlinearity.

Solving minv∈Vn J(v): an n × n polynomial system with coefficients a(φν, φµ).
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Polynomially mapped manifold (Haasdonk, Farhat, Willcox..): for some fixed k ≥ 1
consider reduced models of the form

Vn :=
{ ∑

|ν|≤k

xνφν : (x1, . . . , xn) ∈ Rn
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The case k = 1 is linear reduced models. When k > 1 we introduce nonlinearity.

Solving minv∈Vn J(v): an n × n polynomial system with coefficients a(φν, φµ).
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Linear reduced models and inverse problems

From unknown u ∈ V Hilbert space, we observe

ℓi (u) = ⟨u, ωi ⟩, i = 1, . . . ,m,

or equivalently PW u where W = span{ω1, . . . , ωm} is the measurement space.

Recovery in a linear reduced model space Vn ⊂ V

Can we recover up to the best approximation error en(u) = ∥u − PVnu∥ ?

Best fit (least square) estimator : ũ := argmin{∥PW (u − v)∥ : v ∈ Vn}

Maday-Patera-Penn-Yano (2015): introduce the stability constant

µ = µ(Vn,W ) := max
v∈Vn

∥v∥
∥PW v∥

,

which is the inverse cosine of the angle between Vn and W . Then

∥u − ũ∥ ≤ µen(u)V .

The constant µ is computable (singular value analysis of a cross-grammian).
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A nonlinear generalization

We now would like to recover ũ ≈ u in a nonlinear space Vn from the ℓi (u)

Estimator ũ := argmin{∥PW (u − v)∥ : v ∈ Vn} requires by non-convex optimization.

Cohen-Dolbeault-Mula-Somacal (2022): introduce the stability constant

µ = µ(Vn,W ) := max
v1,v2∈Vn

∥v1 − v2∥
∥PW (v1 − v2)∥

,

Then
∥u − ũ∥ ≤ (1 + 2µ)en(u)V .

Extensions : V Banach space, nonlinear measurement functionals.

The constant µ is sometimes difficult to estimate.

Compressed sensing example: Vn space of n-sparse vectors in V = RN with N >> n.

Control of µ is equivalent to the so-called null-space property.
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We now would like to recover ũ ≈ u in a nonlinear space Vn from the ℓi (u)
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Application: shape recovery from local averages

Recover a characteristic function from the class Ks from cell-averages of sidelength h.

For simplicity, consider here dimension d = 2.

Linear reconstruction by piecewise constants (left) give L2 rate
√
h ∼ n−1/4.

Nonlinear reconstruction by piecewise-linear interfaces.

Expect improved L2 rate h ∼ n−1/2 for s ≥ 2.



A local approach

On each cell T , approximate u by ũ|T = χP |T , where P is a half-plane computed from
the average values of u on a 3× 3 stencil S composed of T and 8 neighboring cells.

u = 1

u = 0

Th

χP = 1

χP = 0

Th

Subcell resolution (1d Harten 1992, 2d Arandiga-Cohen-Donat-Dyn-Matei 2003).

Volume of fluid, ELVIRA (Pilliod-Puckett 1997, Zaleski 1998).

With V2 = {χP |T , P half-plane}, the local approximation error of u ∈ K2 in cells
containing the interface ∂Ω is bounded by

min
v∈V2

∥u − v∥L1(T) ≤ Ch3.

Half plane computed by least-squares fitting of the averages ℓj (u) for j = 1, . . . , 9.
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Stability

The optimal constant can be proved to be

µ = µ(V2,W ) := max
P,Q half-planes

∥χP − χQ∥L1(S)∑9
j=1 |ℓj (χP − χQ )|

=
3

2

This leads to the global second order reconstruction L1 bound: for u ∈ K2

∥u − ũ∥L1 ≤ Ch2,

and for the L2 norm,
∥u − ũ∥L2 ≤ Ch = Cn−1/2.

which is still not the optimal rate n
− s

2(d−1) = n−1.



Stability

The optimal constant can be proved to be

µ = µ(V2,W ) := max
P,Q half-planes

∥χP − χQ∥L1(S)∑9
j=1 |ℓj (χP − χQ )|

=
3

2

This leads to the global second order reconstruction L1 bound: for u ∈ K2
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Cohen-Mula-Somacal (2024): higher order reconstructions by curved interfaces,
treatment of corners...

10 30 10010 20
1/h

10−7
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10−5

10−4

10−3

10−2

‖u
−
ũ
‖ L

1

Piecewise Constant: O(1.0)

OBERA Linear: O(2.0)

ELVIRA: O(2.2)

ELVIRA-WO: O(1.9)

OBERA-W Linear: O(1.9)

AEROS Quadratic: O(3.1)

OBERA Quadratic: O(3.0)

AEROS Quartic: O(4.8)

Convergence for different reconstruction models (estimated rates in parenthesis).



Conclusions

A standard idea: reduce complexity of solving PDE’s and inverse problems searching
the approximation within a finite n-dimensional space.

A less standard idea: optimize the choice of the n-dimensional space. Theory is well
settled. Provably optimal model reduction algorithms are available.

The nonlinear perspective: theoretical pillars are available. Provably optimal nonlinear
model reduction algorithms are still lacking.
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