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Functional case

f :[a, b] — R smooth function

|| - llco max norm on C([a, b]): ||f]lcc = MaXyel[a,b] |f(x)]

Find a polynomial p* € P,, such that

p* = argmin inf ||f — plleo
pEP,

® p* is uniquely determined: the polynomial of the best uniform approximation
(minimax polynomial)
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Theorem (Chebyshev equioscillating theorem)

If f € C([a, b]) then p* is the minimax polynomial of degree < n if and only if there exist
n—+ 2 points on [a, b], a < xp < x1 < -+ < Xpy1 < b, such that

f(xi) = p*(xi) = o(=1)'|f = p*[loc,
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i=0,1,....n+1, o is either —1 or 1.
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Figure: Function f (blue) and its minimax polynomial of degree 3 (orange).

e Construction of p*: Remez algorithm ([Remez 1934])
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Parametric case

® The metric d on C([a, b]): induced by || - || d(f.g) = ||f — g/~
® The metric dy on the space of parametric curves: the Hausdorff distance of images

® Hausdorff distance between curves ¢; and ¢5 is

ace pee, becs ace,

du(ci, c2) = max{sup inf d(a, b), sup inf d(a,b)},

where d is the Euclidean distance
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sup inf d(z,y)
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Computation of dy is difficult and expensive
Even the discrete version is not effficient (quadratic complexity)
Alternative upper bounds are used

Parametric distance and normal distance
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Parametric distance

f : [a, b] — R? is s given parametric curve

r: [c,d] — R? its (polynomial) approximation

® How to compare f(u) and r(t) :

dp(f, p) = inf max ||(Fop)(t)—r(t)l2, p:lc,d] — [a,b], regular
p tE[C,d]

dp is the parametric distance ([Lyche and Mgrken 1994])
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Normal distance

® Take the normal on f at f(u) = (x,y)

® Find the closest intersection with r

e Normal distance dy/(f, r) is the maximum of distances of such pair of points
([Degen 1994])

Figure: Normal distance between f(u) = (x,y). and r
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Parametric Remez’s algorithm

Given f : [a, b] — R?
Require G* interpolation at f(a) and f(b)

Find minimax parametric polynomial p of degree < n (in normal distance dy)

Conjecture: p must equioscillate £ = 2(n — k) — 1 times arround f
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An algorithm:
® Choosea<si<s<---<s5<b

® Repeat:
* Solve p(t;) = F(s;) + (—1)'d unit_normal(f(s;)), i = 1,2,... ¢,
for t1, ts, ..., ts,d and p which fulfills G¥ conditions

® Find smax € [a, b] for which dy(F, p) is attained
® Replace appropriate sk by smax to preserve oscillation

® Until equioscillation
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Quadratic G° example
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Quadratic G° example
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Quadratic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example
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Cubic G° example

23/26



Cubic G° example
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Cubic G° example
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