Optimal uniform approximation by planar parametric polynomials

Aleš Vavpetič and Emil Žagar*
Faculty of mathematics and physics, University of Ljubljana
Institute of mathematics and physics, Ljubljana

MMCS10 2024, June 27, Oslo, Norway

Overview

1. Functional case
2. Parametric case
3. Parametric Remez's algorithm

Functional case

- $f:[a, b] \rightarrow \mathbb{R}$ smooth function
- $\|\cdot\|_{\infty}$ max norm on $\mathcal{C}([a, b]):\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|$
- Find a polynomial $p^{*} \in \mathbb{P}_{n}$, such that

$$
p^{*}=\operatorname{argmin} \inf _{p \in \mathbb{P}_{n}}\|f-p\|_{\infty}
$$

- p^{*} is uniquely determined: the polynomial of the best uniform approximation (minimax polynomial)

Theorem (Chebyshev equioscillating theorem)

If $f \in \mathcal{C}([a, b])$ then p^{*} is the minimax polynomial of degree $\leq n$ if and only if there exist $n+2$ points on $[a, b], a \leq x_{0}<x_{1}<\cdots<x_{n+1} \leq b$, such that

$$
f\left(x_{i}\right)-p^{*}\left(x_{i}\right)=\sigma(-1)^{i}\left\|f-p^{*}\right\|_{\infty}, \quad i=0,1, \ldots, n+1, \quad \sigma \text { is either }-1 \text { or } 1 .
$$

Figure: Function f (blue) and its minimax polynomial of degree 3 (orange).

- Construction of p^{*} : Remez algorithm ([Remez 1934])

Parametric case

- The metric d on $\mathcal{C}([a, b])$: induced by $\|\cdot\|_{\infty}: d(f, g)=\|f-g\|_{\infty}$
- The metric d_{H} on the space of parametric curves: the Hausdorff distance of images
- Hausdorff distance between curves \boldsymbol{c}_{1} and \boldsymbol{c}_{2} is

$$
d_{H}\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=\max \left\{\sup _{\boldsymbol{a} \in \boldsymbol{c}_{1}} \inf _{\boldsymbol{b} \in \boldsymbol{c}_{2}} d(\boldsymbol{a}, \boldsymbol{b}), \sup _{\boldsymbol{b} \in \boldsymbol{c}_{2}} \inf _{\boldsymbol{a} \in \boldsymbol{c}_{1}} d(\boldsymbol{a}, \boldsymbol{b})\right\},
$$

where d is the Euclidean distance

- Computation of d_{H} is difficult and expensive
- Even the discrete version is not effficient (quadratic complexity)
- Alternative upper bounds are used
- Parametric distance and normal distance

Parametric distance

- $\boldsymbol{f}:[a, b] \rightarrow \mathbb{R}^{2}$ is s given parametric curve
- $\boldsymbol{r}:[c, d] \rightarrow \mathbb{R}^{2}$ its (polynomial) approximation
- How to compare $\boldsymbol{f}(u)$ and $\boldsymbol{r}(t)$:

$$
d_{P}(\boldsymbol{f}, \boldsymbol{p})=\inf _{\rho} \max _{t \in[c, d]}\|(\boldsymbol{f} \circ \rho)(t)-\boldsymbol{r}(t)\|_{2}, \quad \rho:[c, d] \rightarrow[a, b], \text { regular }
$$

- d_{P} is the parametric distance ([Lyche and Mørken 1994])

Normal distance

- Take the normal on \boldsymbol{f} at $\boldsymbol{f}(u)=(x, y)$
- Find the closest intersection with \boldsymbol{r}
- Normal distance $d_{N}(\boldsymbol{f}, \boldsymbol{r})$ is the maximum of distances of such pair of points ([Degen 1994])

Figure: Normal distance between $\boldsymbol{f}(u)=(x, y)$. and \boldsymbol{r}

Parametric Remez's algorithm

- Given $\boldsymbol{f}:[a, b] \rightarrow \mathbb{R}^{2}$
- Require G^{k} interpolation at $\boldsymbol{f}(a)$ and $\boldsymbol{f}(b)$
- Find minimax parametric polynomial \boldsymbol{p} of degree $\leq n$ (in normal distance d_{N})
- Conjecture: \boldsymbol{p} must equioscillate $\ell=2(n-k)-1$ times arround \boldsymbol{f}

An algorithm:

- Choose $a<s_{1}<s_{2}<\cdots<s_{\ell}<b$
- Repeat:
- Solve $\boldsymbol{p}\left(t_{i}\right)=\boldsymbol{f}\left(s_{i}\right)+(-1)^{i} d$ unit_normal $\left(\boldsymbol{f}\left(s_{i}\right)\right), i=1,2, \ldots, \ell$, for $t_{1}, t_{2}, \ldots, t_{\ell}, d$ and \boldsymbol{p} which fulfills G^{k} conditions
- Find $s_{\text {max }} \in[a, b]$ for which $d_{N}(\boldsymbol{f}, \boldsymbol{p})$ is attained
- Replace appropriate s_{k} by $s_{\text {max }}$ to preserve oscillation
- Until equioscillation

Quadratic G^{0} example

Quadratic G^{0} example

Quadratic G^{0} example

Cubic G^{0} example

Cubic G^{0} example

Cubic G^{0} example

Cubic G^{0} example

Cubic G^{0} example

Cubic G^{0} example

References

E. Remez (1934), Sur le calcul effectif des polynomes d'approximation de Tchebychef
C. R. Acad. Sci., 1993 199, 337-340
T. Lyche and K. Mørken (1994), A metric for parametric approximation

Curves and surfaces in geometric design (Chamonix-Mont-Blanc, 1993) 311-318
W. L. F. Degen (1994), High accuracy approximation of parametric curves Mathematical methods for curves and surfaces (Ulvik, 1994) 83-93

