Equilibrium states of C*-algebras from number theory Part 1: Quantum statistical mechanical systems and KMS states: introduction and examples

Marcelo Laca

Master Class University of Oslo 4 November 2019 C^* -dynamical system (A, σ)

• A = C*-algebra; observables = self adjoint elements of A

• $\sigma : \mathbb{R} \to \operatorname{Aut}(A)$; the *dynamics* or time evolution on *A*:

 $\sigma_0 = id, \sigma_s \circ \sigma_t = \sigma_{s+t}$ and $t \mapsto \sigma_t(a)$ is norm continuous.

A *state* is a linear functional $\varphi : A \to \mathbb{C}$ such that

 $\varphi(a^*a) \ge 0$ and $\|\varphi\| = 1$ $(=\varphi(1) \text{ if } 1 \in A)$

 $\varphi(\sigma_t(a))$ is the *expectation value* of the observable $a \in A^{sa}$ at time $t \in \mathbb{R}$ when the system is in the fixed state φ . (Heisenberg picture)

▲ロッ ▲圖▶ ▲恵▶ ▲理▶ 三恵 - のへの

• If $A = C_0(\Omega_A)$ every probability μ on Ω_A gives a state φ_μ

$$\varphi_{\mu}(f) = \int_{\Omega_{A}} f \, d\mu$$
 (all states on $C_{0}(\Omega_{A})$ are like this)

If A ⊂ B(H), every unit vector ξ ∈ H gives a state φ_ξ

 $\varphi_{\xi}(a) := \langle a\xi, \xi \rangle$ (not all are quite like this but, ...)

- GNS construction: for every state φ of A there exist
 - a Hilbert space \mathcal{H}_{φ} ,
 - a representation $\pi_{\varphi}: A \rightarrow B(\mathcal{H}_{\varphi})$, and
 - a cyclic unit vector $\xi_{\varphi} \in \mathcal{H}_{\varphi}$ such that

$$\varphi(\mathbf{a}) = \langle \pi_{\varphi}(\mathbf{a})\xi_{\varphi}, \xi_{\varphi} \rangle.$$

(法) ▲ 理 ▶ 二 理

Finite quantum systems (cf. N. Hugenholtz, *C*-algebras and statistical mechanics*, Kingston, 1981)

- $A = Mat_n(\mathbb{C})$, observables = selfadjoint $n \times n$ matrices.
- Every dynamics σ on Mat_n(ℂ) arises from a Hamiltonian H = H* ∈ Mat_n(ℂ) via

$$\sigma_t(a) := e^{itH} a e^{-itH} \qquad a \in \operatorname{Mat}_n(\mathbb{C}), \ t \in \mathbb{R}.$$

H is determined up to an additive constant.

Every state φ of Mat_n(ℂ) arises from a *density matrix Q* Q ≥ 0; Tr Q = 1, via

$$\varphi(a) = \mathsf{Tr}(aQ) \qquad a \in \mathsf{Mat}_n(\mathbb{C}).$$

The correspondence $\varphi \mapsto Q_{\varphi}$ is an isomorphism.

• φ is pure iff Q_{φ} is a rank-one projection.

Finite quantum systems: stationary states, entropy

• A state φ_Q is stationary (i.e. σ -invariant) if

$$\mathsf{Tr}(e^{itH}ae^{-itH}Q) = \mathsf{Tr}(aQ) \qquad a \in \mathsf{Mat}_n(\mathbb{C}), \ t \in \mathbb{R},$$

Since this means $\operatorname{Tr}(a \ e^{-itH}Qe^{itH}) = \operatorname{Tr}(a \ Q)$ for every a, φ is stationary $\iff e^{-itH}Qe^{itH} = Q \iff QH = HQ$.

- φ_Q is a pure stationary state iff Q = projection onto a one-dimensional eigenspace of H.
- The von Neumann entropy of a state is defined by

$$\mathcal{S}(arphi) := -\operatorname{Tr}(\mathcal{Q}_{arphi} \log \mathcal{Q}_{arphi})$$

Then
$$0 \leq S(\varphi) \leq \log n$$
, and
 $S(\varphi)$ is $\begin{cases} 0 \text{ (minimal)} & \text{when } \varphi \text{ is pure} \\ \log n \text{ (maximal)} & \text{when } \varphi = \text{normalized trace.} \end{cases}$

"Pure states have maximal information; the normalized trace, minimal"

- 注意 - 注意 - 注意

Finite quantum systems: variational principle for equilibrium

Let *H* be a Hamiltonian in $Mat_n(\mathbb{C})$, and let φ be a state. The *free energy* of φ at inverse temperature $\beta = 1/T$ is

$$F(\varphi) := -S(\varphi) + \beta \varphi(H),$$

The *Gibbs state* φ_{G} is the state with density

$$Q_G := rac{1}{\mathsf{Tr}(e^{-eta H})}e^{-eta H}.$$

The partition function associated to *H* is $\beta \mapsto \text{Tr}(e^{-\beta H})$.

Variational Principle

The Gibbs state is the unique state minimizing the free energy:

•
$$F(\varphi) \ge -\log \operatorname{Tr}(e^{-\beta H});$$

•
$$F(\varphi) = -\log \operatorname{Tr}(e^{-\beta H}) \iff \varphi = \varphi_G.$$

A B > A B >

The Gibbs state φ_{G} is the unique state on $Mat_{n}(\mathbb{C})$ satisfying

$$\varphi(ab) = \varphi(b \,\sigma_{i\beta}(a)) \qquad a, b \in \operatorname{Mat}_n(\mathbb{C}), \tag{KMS}$$

where $\sigma_{i\beta}(a) := e^{-\beta H} a e^{\beta H}$.

The proof is an exercise in linear algebra: the Gibbs density $Q_G := \frac{1}{\operatorname{Tr}(e^{-\beta H})} e^{-\beta H}$ is the unique density satisfying $\operatorname{Tr}(abQ) = \operatorname{Tr}(be^{-\beta H}ae^{\beta H}Q)$ $a, b \in \operatorname{Mat}_n(\mathbb{C}).$

For finite (and other) systems, the KMS condition above is equivalent to the usual equilibrium condition defined in terms of minimal free energy. [HHW] eventually proposed the KMS condition as *defining* equilibrium for general (A, σ) .

▲ロッ ▲園 ▼ ▲ 恵 ▼ 祖 ▼ 「 恵 」 釣んで

Definition (Haag-Hugenholtz-Winnink, 1967)

A state φ on A satisfies the Kubo-Martin-Schwinger (KMS) condition with respect to σ at inverse temperature $\beta \neq 0$ (φ is a σ -KMS_{β} state), if

 $\varphi(ab) = \varphi(b \sigma_{i\beta}(a))$ $a, b \in A$, with $a \sigma$ -analytic.

Recall:

- a ∈ A is σ-analytic if t → σ_t(a) ∈ A extends to an A-valued entire function z → σ_z(a) ∈ A.
- The σ -analytic elements form a dense *-subalgebra of A.
- More symmetric, and equivalent, is the condition

$$\varphi(\mathbf{a}\mathbf{b}) = \varphi(\sigma_{-i\beta/2}(\mathbf{b})\sigma_{i\beta/2}(\mathbf{a})).$$

The original KMS condition is closer to the boundary condition for Green functions used by Kubo:

(For $\beta > 0$.) The state φ is KMS $_{\beta}$ for σ if for any $a, b \in A$ there exists a continuous function

$$f: \{z \in \mathbb{C} \mid 0 \leq \operatorname{Im} z \leq \beta\} \to \mathbb{C}$$

that is analytic in the open strip $0 < \text{Im } z < \beta$ and satisfies

$$f(t) = \varphi(b\sigma_t(a)), \ f(t+i\beta) = \varphi(\sigma_t(a)b) \text{ for all } t \in \mathbb{R}.$$

This has the advantage of not relying on analytic elements.

▲ 唐 ▶ | ▲ 唐 ▶ |

Properties of KMS states

KMS states have the properties expected from equilibrium, e.g. Stability Passivity Minimality

KMS states are intrinsically related to the Tomita-Takesaki theory in von Neumann algebras.

The KMS condition is an essentially *noncommutative* phenomenon:

Proposition

If A is commutative and has a faithful σ -KMS $_{\beta}$ state for $\beta \neq 0$, then σ is trivial.

Proposition

Suppose φ is a KMS_{β} state and $\beta \neq 0$. Then φ is σ -invariant.

Proof when $1 \in A$: Let b = 1, and let $a \in A$ be analytic. Then $\sigma_z(a)$ is analytic and

$$\varphi(\sigma_z(\mathbf{a})\mathbf{1}) = \varphi(\mathbf{1}\sigma_{z+i\beta}(\mathbf{a})),$$

so the entire function $z \mapsto \varphi(\sigma_z(a))$ has period $(i\beta)$; since $\|\phi(\sigma_t(a))\| \leq \|a\|$ for $t \in \mathbb{R}$, it is also bounded on \mathbb{C} , hence it is constant.

Caveat: the converse is not true, even for finite systems "equilibrium" is strictly stronger than "invariant".

If $\beta = 0$ the KMS₀ condition says φ is a trace (no reference to σ). It is common to require σ -invariance as part of the definition, so

 $(KMS_0 \text{ state}) \iff (\sigma \text{-invariant trace}).$

THE N

- If $\varphi_i \in K_{\beta_i}$, $\beta_i \to \beta$, and $\varphi_i \xrightarrow{w^*} \varphi$ then $\varphi \in K_{\beta_i}$;
- if $\varphi \in K_{\beta}$ then the normal extension $\overline{\varphi}$ of φ to $\pi_{\varphi}(A)''$ is faithful and $\sigma_t^{\overline{\varphi}} \circ \pi_{\varphi} = \pi_{\varphi} \circ \sigma_{-\beta t}$;
- in particular, for $\beta \neq 0$ a state φ with faithful GNS-representation can be a σ -KMS $_{\beta}$ -state for at most one dynamics σ , and then if such a nontrivial dynamics σ is fixed, β is also uniquely determined;
- if A is separable, unital, then K_β is a Choquet simplex in the state space of A, (i.e., K_β is weak*-closed convex and every φ ∈ K_β is the barycenter of a unique probability measure supported on Extr(K_β));
- $\varphi \in K_{\beta}$ is extremal (a pure phase) iff $\pi_{\varphi}(A)''$ is a factor

・ロン ・癒と ・思と ・ 思

Phase transition and symmetry breaking

Phase transition is a change in the physical properties of a system.

Example: transition between the solid, liquid, and gaseous phases.

Phase transitions often (but not always) involve phases with different symmetry. Some intuitive examples are:

- A snowflake is less symmetric than a spherical drop of water.
- Ferromagnets are capable of spontaneous magnetization as magnetic dipoles "align" coherently at low temperatures.

In C*-algebraic terms there are two interpretations: $\begin{cases}
\mathcal{K}_{\beta} \text{ is not a singleton at a given } \beta \text{ (Sakai)} \\
\text{ the nature of } \mathcal{K}_{\beta} \text{ changes as } \beta \text{ goes through a critical value}
\end{cases}$

Spontaneous symmetry breaking occurs when the symmetries of K_{β} change as β changes. Typically (but not necessarily) the symmetry group of K_{β} becomes smaller as the inverse temperature β increases.

Periodic dynamics on the Toeplitz algebra

- A = T := universal C*-algebra of an isometry S;
- σ := periodic dynamics determined by $\sigma_t(S) = e^{it}S$;
- $\{S^m S^{*n} : m, n \ge 0\}$ spans a dense *-subalgebra; and

$$\sigma_t(S^mS^{*n}) = e^{i(m-n)t}S^mS^{*n}$$

• spanning elements are analytic, and the KMS_{β} condition implies $\varphi(S^mS^{*n}) = e^{-m\beta}\varphi(S^{*n}S^m) = e^{-(m-n)\beta}\varphi(S^mS^{*n})$

• For each β , there is at most one KMS $_{\beta}$ state; it is given by

$$\varphi(S^m S^{*n}) = \begin{cases} 0 & \text{for } m \neq n \\ e^{-n\beta} & \text{for } m = n. \end{cases}$$

▲山 // ▲帰 // ★ ほ // ほ // ほ

\exists a KMS_{β} state of (\mathcal{T}, σ) : "dynamical system proof"

A unique KMS_{β} state does exist for each $\beta \ge 0$.

- $\mathcal{T} \cong c \rtimes \mathbb{N}$ where $c \cong \overline{\text{span}} \{ S^n S^{*n} : n \in \mathbb{N} \}$
- Since φ(S^mS^{*n}) = 0 for m ≠ n, a KMS state factors through the conditional expectation Φ : c ⋊ N → c and is determined by a probability measure μ_β on ĉ = N ⊔ {∞}.
- Since $\varphi(S^nS^{*n}) = e^{-eta n}$ the measure μ_eta must satisfy

$$\mu_{\beta}(\{n\}) = \varphi(S^{n}S^{*n}) - \varphi(S^{n+1}S^{*n+1}) = e^{-\beta n} - e^{-\beta(n+1)}$$

- So choose μ_{β} to be geometric: $\mu_{\beta}(\{n\}) := (1 e^{-\beta})e^{-\beta n}$.
- Then the state of ${\mathcal T}$ induced through Φ satisfies

$$\varphi_{\beta}(S^m S^{*n}) = \begin{cases} 0 & \text{for } m \neq n \\ e^{-\beta n} & \text{for } m = n. \end{cases}$$

▲ログ ▲圖 > ▲ 恵 > ▲ 恵 > 三原

KMS states on the Toeplitz algebra: "Hilbert space proof"

A unique KMS_{β} state does exist for each $\beta \ge 0$.

- $\mathcal{T} \cong \mathsf{C}^*$ -algebra of the unilateral shift $S : \delta_n \mapsto \delta_{n+1}$ on $\ell^2(\mathbb{N})$
- Define $H: \delta_n \mapsto n\delta_n$ on $\ell^2(\mathbb{N})$, then
 - the dynamics is given spatially by $\sigma_t = \mathsf{Ad}_{e^{itH}},$ and
 - $e^{-\beta H}$ is trace class for $\beta > 0$.

•
$$Z_{\beta} := \operatorname{Tr}(e^{-\beta H}) = \sum_{n=0}^{\infty} e^{-n\beta} = \frac{1}{1 - e^{-\beta}}.$$

• Define a 'generalized Gibbs state' by $\varphi_{\beta}(x) := \frac{1}{Z_{\beta}} \operatorname{Tr}(x e^{-\beta H}).$

• Then φ_{β} is σ -KMS $_{\beta}$ state, and

$$\varphi_{\beta}(S^{m}S^{*n}) = \frac{1}{Z_{\beta}} \sum_{k} \langle S^{m}S^{*n}e^{-\beta k}\delta_{k}, \delta_{k} \rangle = \begin{cases} 0 & \text{for } m \neq n \\ e^{-n\beta} & \text{for } m = n. \end{cases}$$

• If $\beta = 0$, there is a unique σ -invariant trace; the weak*-lim_{$\beta \to 0^+$} φ_{β} .

イロン 不屈と 不屈と 一度

In the late 80's Bernard Julia and independently Donald Spector proposed an interpretation of the Riemann zeta function as the partition function of a quantum system. For each prime number p there is a particle with creation operator $|p\rangle$ and energy log p. The partition function of the single particle system is

$$Z_{p}(eta) = \sum_{k=0}^{\infty} e^{-keta \log p} = rac{1}{1-p^{-eta}}$$

Assuming the prime numbers behave like bosons and have a common vacuum vector, the system consisting of all primes has partition function equal to the Euler product form of the Riemann zeta function.

$$Z(\beta) = \prod_{p} \frac{1}{1 - p^{-\beta}} = \zeta(\beta)$$

A C*-algebra for the Riemann gas

For each p the creation operator $|p\rangle$ is an isometry $s_p : \delta_{p^k} \mapsto \delta_{p^{k+1}}$ acting on $\ell^2(p^{\mathbb{N}}) = \overline{\operatorname{span}}\{|p\rangle^k \phi : k = 0, 1, 2, \ldots\}$, generating a copy \mathcal{T}_p of \mathcal{T} .

Taken together, these bosonic 'primons' give a tensor product:

$$\bigotimes_{p} \mathcal{T}_{p} \cong \mathcal{T}(\mathbb{N}^{\times})$$

generated by isometries $\otimes_p s_p^{k_p} \cong L_n$ (with $n = \prod_p p^{k_p}$) acting on $\otimes' \ell^2(p^{\mathbb{N}}) \cong \ell^2(\prod'_p p^{\mathbb{N}}) \cong \ell^2(\mathbb{N}^{\times})$ with the tensor product dynamics $\otimes \sigma_t^p \cong \sigma_t$ given by

$$\sigma_t(L_m L_n^*) = (\frac{m}{n})^{it} L_m L_n^* = e^{it \log m/n} L_m L_n^* e^{-it \log m/n}$$

For each $\beta \ge 0$, the product state $\otimes \varphi_{p,\beta}$ is the unique KMS_{β} state but the partition function is Tr($e^{-\beta H}$) = $\zeta(\beta)$, which has a pole at $\beta = 1$.

▲ロショ⊕ ▶ ▲田▶ ▲田▶ 三田 - のへ⊙

Bost and Connes pointed out that the Riemann gas had no interaction and considered the **Hecke pair**

$$P^+_{\mathbb{Z}} := \left(egin{array}{cc} 1 & \mathbb{Z} \\ 0 & 1 \end{array}
ight) \subset \left(egin{array}{cc} 1 & \mathbb{Q} \\ 0 & \mathbb{Q}^*_+ \end{array}
ight) =: P^+_{\mathbb{Q}}$$

Definition

The *Hecke C*-algebra* of Bost and Connes is the C*-algebra $C_{\mathbb{Q}}$ generated by the characteristic functions of double cosets $[\gamma] \in P_{\mathbb{Z}}^+ \backslash P_{\mathbb{Q}}^+ / P_{\mathbb{Z}}^+$ acting on $\ell^2(P_{\mathbb{Z}}^+ \backslash P_{\mathbb{Q}}^+)$ by convolution:

$$(f * g)(\gamma) := \sum_{\gamma_1 \in P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+} f(\gamma \gamma_1^{-1})g(\gamma_1)$$

The addition and multiplication of numbers are both incorporated into this construction.

The Bost-Connes C*-algebra as semigroup crossed product

Alternative description in terms of the ring of integral adeles $\hat{\mathbb{Z}} := \prod_{p} \mathbb{Z}_{p}$.

$$\mathcal{C}_{\mathbb{Q}} \cong C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times} = \overline{\operatorname{span}} \{ \mu_m f \mu_n^* : m, n \in \mathbb{N}^{\times}, \ f \in C(\hat{\mathbb{Z}}) \}$$
$$\sigma_t(\mu_m f \mu_n^*) = (m/n)^{it} \mu_m f \mu_n^*$$

For each unit $u\in \hat{\mathbb{Z}}^*$ there is an irreducible representation

$$\pi_{\mathbf{u}} : C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times} \to \mathcal{B}(\ell^{2}(\mathbb{N}^{\times}))$$
$$\pi_{\mathbf{u}}(f)\delta_{n} = f(n \cdot \mathbf{u})\delta_{n} \qquad \pi_{\mathbf{u}}(\mu_{n}) = L_{n}$$

As before, let $H\delta_n = (\log n)\delta_n$, so that $\sigma_t \sim \operatorname{Ad}_{e^{itH}}$ and $\operatorname{Tr}(e^{-\beta H}) = \zeta(\beta)$ Then the generalized Gibbs state

$$\omega_{\beta,\mathbf{u}}(\cdot) := \frac{1}{\zeta(\beta)} \operatorname{Tr}(\pi_{\mathbf{u}}(\cdot)e^{-\beta H})$$

is a KMS_{β} state for $\beta > 1$.

Theorem (Bost–Connes, '95)

- For each 0 < β ≤ 1 there is a unique KMS_β state of (C_Q, σ). It is an injective type III₁ factor state, invariant under the action of Aut Q/Z.
- Por each 1 < β ≤ ∞ the extremal KMS_β states φ_{β,χ} are parametrized by the complex embeddings χ : Q^{cycl} → C of the maximal cyclotomic extension of Q. These are type I factor states, on which the action of Gal(Q^{cycl}/Q) ≅ Aut Q/Z is free and transitive.

Interpretation function of the system is the Riemann zeta function.

Note: *H*, hence $Tr(e^{-\beta H})$ does not depend on **u** There are group isomorphisms

$$\mathsf{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \mathsf{Gal}(\mathbb{Q}^{cycl}/\mathbb{Q}) \cong \mathsf{Aut}\,\mathbb{Q}/\mathbb{Z} \cong \mathbb{Z}^*$$

 $\chi \mapsto \mathbf{u}$

A phase transition on $(C_r^*(R \rtimes R^{\times}), \sigma^N)$

Consider the semidirect product $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or, more generally, the "ax + b semigroup" $R \rtimes R^{\times}$ of the ring of integers in an algebraic number field. $C_r^*(R \rtimes R^{\times})$ Toeplitz-type C*-algebra generated by isometries:

$$T_{(b,a)}\delta_{(x,y)} = \delta_{(b+ax,ay)}$$
 acting on $\ell^2(R \rtimes R^{\times})$,

with dynamics $\sigma_t(T_{(b,a)}) = [R : aR]^{it} T_{(b,a)}, \quad t \in \mathbb{R}.$

Theorem (Cuntz–Deninger–L, '13; cf. L–Raeburn, '10)

For $\beta > 2$ the KMS_{β} states of $(C_r^*(R \rtimes R^{\times}), \sigma)$ are affinely isomorphic to the tracial states of

$$\mathcal{A} := \bigoplus_{\gamma \in \mathcal{C}\ell_{\mathcal{K}}} C^*(J_{\gamma} \rtimes U_{\mathcal{K}})$$

with J_{γ} an integral ideal representing the ideal class $\gamma \in C\ell_{\mathcal{K}}$.

医骨下 医原下 医原下下 医