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C*-dynamical systems and states

C*-dynamical system (A, o)
o A = C*-algebra; observables = self adjoint elements of A

@ 0:R — Aut(A); the dynamics or time evolution on A:

oo =1id, os00r =0sy+ and t— o¢(a) is norm continuous.

A state is a linear functional ¢ : A — C such that

p(a*a) =0 and |pf|=1 (=¢1)ifleA)

©(o¢(a)) is the expectation value of the observable a € A* at time t € R
when the system is in the fixed state ¢. (Heisenberg picture)
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Basic facts about states:

o If A= Co(Q24) every probability 11 on Q4 gives a state ¢,
ou(f) = f fdu (all states on Cp(Q24) are like this)
Qa

o If Ac B(H), every unit vector { € H gives a state ¢

pe(a) == (ag, &) (not all are quite like this but, ... )

@ GNS construction: for every state  of A there exist

o a Hilbert space H,,
e a representation 7, : A— B(H,), and
e a cyclic unit vector £, € H,, such that

‘F’(a) = <7T<p(a)€wv §¢>-
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Finite quantum systems (cf. N. Hugenholtz, C*-algebras and statistical

mechanics, Kingston, 1981)

e A= Mat,(C), observables = selfadjoint n x n matrices.

e Every dynamics o on Mat,(C) arises from a Hamiltonian
H = H* € Mat,(C) via

o¢(a) 1= et ae=tH a e Mat,(C), teR.
H is determined up to an additive constant.

o Every state ¢ of Mat,(C) arises from a density matrix Q
QR=>=0;TrQ =1, via

v(a) = Tr(aQ) a € Mat,(C).
The correspondence ¢ — @, is an isomorphism.

e ¢ is pure iff Q, is a rank-one projection.
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Finite quantum systems: stationary states, entropy

@ A state pq is stationary (i.e. o-invariant) if
Tr(e™ae™®™MQ) = Tr(aQ)  ae Mat,(C), teR,
Since this means Tr(a e~ 7 Qe™) = Tr(a Q) for every a,
@ is stationary <= e tHQeH = Q «— QH = HQ.

@ (( is a pure stationary state iff Q = projection onto a
one-dimensional eigenspace of H.

@ The von Neumann entropy of a state is defined by
S(p) := —Tr(Q,log Q,)

Then 0 < S(¢) < logn, and

_ 0 (minimal) when ¢ is pure
S(p) is . .
log n (maximal)  when ¢ = normalized trace.

“Pure states have maximal information; the normalized trace, minimal”
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Finite quantum systems: variational principle for equilibrium

Let H be a Hamiltonian in Mat,(C), and let ¢ be a state.
The free energy of ¢ at inverse temperature 8 = 1/T is

F(p) == =5(p) + Be(H),
The Gibbs state @ is the state with density

1
__ Y A
@6 - Tr(ePHY®

The partition function associated to H is 3 — Tr(e=?H).

Variational Principle

The Gibbs state is the unique state minimizing the free energy:

e F(p)= —IogTr(e_’BH);

e F(p) = —IogTr(e_BH) = ¢=pg.
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Finite quantum systems: characterization of Gibbs state

The Gibbs state ¢ is the unique state on Mat,(C) satisfying
p(ab) = p(bojs(a)) a, b € Mat,(C), (KMS)
where g;5(a) := e PHaelH.

The proof is an exercise in linear algebra: the Gibbs density

Q¢ = ﬁe‘ﬁH is the unique density satisfying

Tr(abQ) = Tr(be PHae’M Q) a, b € Mat,(C).
For finite (and other) systems, the KMS condition above is equivalent to
the usual equilibrium condition defined in terms of minimal free energy.

[HHW] eventually proposed the KMS condition as defining equilibrium for
general (A, o).
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KMS condition for general (A, o)

Definition (Haag-Hugenholtz-Winnink, 1967)

A state ¢ on A satisfies the Kubo-Martin-Schwinger (KMS) condition with
respect to o at inverse temperature 5 # 0 (¢ is a 0-KMSg state), if

p(ab) = p(bojs(a)) a,be A, with a o-analytic.

Recall:

@ ac Ais g-analyticif t+— oi(a) € A extends to an A-valued entire
function z — o,(a) € A.

@ The o-analytic elements form a dense *-subalgebra of A.
@ More symmetric, and equivalent, is the condition
@(ab) = p(o_jgp(b)aig(a)).
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KMS condition: original (equivalent) formulation

The original KMS condition is closer to the boundary condition for Green
functions used by Kubo:

(For 8 > 0.)The state ¢ is KMSg for o if for any a, b € A there exists a
continuous function
f:{zeC|0<Imz<p} ->C

that is analytic in the open strip 0 < Im z < 3 and satisfies

f(t) = p(boi(a)), f(t+iB)=(or(a)b) forall teR.
This has the advantage of not relying on analytic elements.
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Properties of KMS states

KMS states have the properties expected from equilibrium, e.g.
Stability
Passivity
Minimality

KMS states are intrinsically related to the Tomita-Takesaki theory in von
Neumann algebras.

The KMS condition is an essentially noncommutative phenomenon:

Proposition

If A is commutative and has a faithful c-KMSg state for 3 # 0, then o is
trivial.
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Sample proof: KMS = stationary

Proposition

—

Suppose ¢ is a KMSg state and 3 # 0. Then ¢ is o-invariant.

Proof when 1 € A: Let b =1, and let a € A be analytic. Then o,(a) is
analytic and
p(oz(a)1) = p(loz1is(a)),
so the entire function z — ¢(0,(a)) has period (i3); since
[o(o(a))| < |a| for t € R, it is also bounded on C, hence it is constant.

Caveat: the converse is not true, even for finite systems “equilibrium” is
strictly stronger than “invariant”.

If 5 =0 the KMSy condition says ¢ is a trace (no reference to o). It is
common to require o-invariance as part of the definition, so
(KMSq state) <= (o-invariant trace).
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The set K3 of KMSgs-states

o If pje K, Bi — B, and @,'L*mp then cpeKﬁ;

o if p € Kg then the normal extension @ of ¢ to m,(A)" is faithful and
of oMy =Ty, 00_gat;

@ in particular, for 8 # 0 a state ¢ with faithful GNS-representation can
be a 0-KMSg-state for at most one dynamics o, and then if such a
nontrivial dynamics o is fixed, 3 is also uniquely determined;

@ if Ais separable, unital, then Kj is a Choquet simplex in the state
space of A, (i.e., Kjs is weak*-closed convex and every ¢ € Kg is the

barycenter of a unique probability measure supported on Extr(Kg));

@ ¢ € Kg is extremal (a pure phase) iff 7,(A)" is a factor
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Phase transition and symmetry breaking

Phase transition is a change in the physical properties of a system.
Example: transition between the solid, liquid, and gaseous phases.

Phase transitions often (but not always) involve phases with different
symmetry. Some intuitive examples are:
@ A snowflake is less symmetric than a spherical drop of water.
@ Ferromagnets are capable of spontaneous magnetization as magnetic
dipoles “align” coherently at low temperatures.
In C*-algebraic terms there are two interpretations:
K3 is not a singleton at a given (3 (Sakai)
the nature of K3 changes as 3 goes through a critical value

Spontaneous symmetry breaking occurs when the symmetries of Kjg
change as 3 changes. Typically (but not necessarily) the symmetry group
of Kg becomes smaller as the inverse temperature /3 increases.
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Periodic dynamics on the Toeplitz algebra

@ A =T := universal C*-algebra of an isometry S;

e o := periodic dynamics determined by ¢;(S) = e'tS;

{§™S*" . m,n > 0} spans a dense *-subalgebra; and

O't(SmS*n) _ ei(m—n)tSmS*n

spanning elements are analytic, and the KMSg condition implies

go(SmS*”) _ e—m,BSO(S*nSm) _ e—(m—n)ﬁ(p(sms*n)

For each f3, there is at most one KMSg state; it is given by

0 for m#n

e " for m=n.

P(STS™) = {
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3 a KMSg state of (7, 0): “dynamical system proof”

A unique KMSg state does exist for each 3 > 0.
@ 7 ~cxN where c ~5pan{S"S5*" : ne N}

@ Since p(§MS*") = 0 for m # n, a KMS state factors through the
conditional expectation ® : ¢ x N — ¢ and is determined by a
probability measure p15 on ¢ = N 1 {o0}.

o Since p(S"S*M) = e the measure g must satisfy

Mﬁ({n}) _ QO(S”S*n) . (p(sn+15*n+l) _ efﬁn . efﬁ(n+1)'
@ So choose g to be geometric: ug({n}) :== (1 — e P)ehn,
@ Then the state of 7 induced through ¢ satisfies

0 for m#n
mcg¥ny __
QDB(S S ) - {e_ﬁn

for m = n.
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KMS states on the Toeplitz algebra: “Hilbert space proof”

A unique KMSg state does exist for each 5 > 0.
e T = C*-algebra of the unilateral shift S : 6, — &,41 on £?(N)
o Define H : 6, — nd, on £?(N), then

o the dynamics is given spatially by 0; = Ad i, and
o e PH is trace class for 8 > 0.

Zg = Tr(e PH) = Yo e " = 1_;3.

Define a ‘generalized Gibbs state’ by ¢g(x) := Ziﬁ Tr(x e PH).

Then ¢g is 0-KMSg state, and

*n 1 mewn  — 0 for m#n
©3(S™S ):752@ $*Me Bkak,5k>={
k

e " for m=n.
o If 3 =0, there is a unique o-invariant trace; the weak*-limg_,o+ ©g.
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Quantum Physics and number theory: The Riemann gas

In the late 80's Bernard Julia and independently Donald Spector proposed
an interpretation of the Riemann zeta function as the partition function of
a quantum system. For each prime number p there is a particle with
creation operator |p) and energy log p. The partition function of the single
particle system is

& 1
_ 2: —kBlogp _
k=0

Assuming the prime numbers behave like bosons and have a common
vacuum vector, the system consisting of all primes has partition function
equal to the Euler product form of the Riemann zeta function.

2 = 11=5 - <)

p
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A C*-algebra for the Riemann gas

For each p the creation operator |p) is an isometry s, : Opk > Opkt1 acting
on (2(pN) = span{|p)*# : k =0,1,2,...}, generating a copy 7, of T

Taken together, these bosonic ‘primons’ give a tensor product:

X Tp = T(N*)

P
generated by isometries ®ps,l§" ~ /[, (with n = Hp pke)
acting on QP (pY) = 62(]_[:) pM) = 2(NX)
with the tensor product dynamics ®of =~ o given by

Ut(LmL:‘;) _ (%)ithL: _ eitlogm/anLﬁe—itlogm/n'

For each 8 > 0, the product state ®y,, 5 is the unique KMSg state but
the partition function is Tr(e™#") = ((3), which has a pole at § = 1.
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The Hecke C*-algebra of Bost and Connes

Bost and Connes pointed out that the Riemann gas had no interaction and
considered the Hecke pair

+._ (1 Z 1 Q) _ o+
PZ'_(01>C<OQ”_; —.PQ
Definition

The Hecke C*-algebra of Bost and Connes is the C*-algebra Cy generated
by the characteristic functions of double cosets [v] € P%\P@/Pg acting

on Ez(Pg\Pé) by convolution:

(Fxg)(n) = ), f(rihen)
mePF\P§

v

The addition and multiplication of numbers are both incorporated into this
construction.
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The Bost—Connes C*-algebra as semigroup crossed product

Alternative description in terms of the ring of integral adeles 7 = l_[p Zp.

Co = C(Z) x N* = span{umfut : mne N*, fe C(Z)}
ae(pmfuy) = (m/n)* pmf 1y
For each unit u € Z* there is an irreducible representation
Tu 1 C(Z) x N* — B(£2(N*))

Tu(F)op = f(n-u)d, Tu(tin) = Ly

As before, let HS, = (log n)d,, so that oy ~ Ad.wm and Tr(e 1) = ¢(B)
Then the generalized Gibbs state

Yo L i (eBH
wgu(-) : C(ﬁ)T(u() )

is a KMSg state for 8 > 1.
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The Bost-Connes phase transition

Theorem (Bost—Connes, '95)

@ For each 0 < B <1 there is a unique KMSg state of (Cg, o). It is an
injective type Ill; factor state, invariant under the action of Aut Q/Z.

@ For each 1 < 3 < o the extremal KMSg states ¢g , are parametrized
by the complex embeddings x : Q¥ — C of the maximal cyclotomic
extension of Q. These are type | factor states, on which the action of
Gal(Q¥ /Q) = Aut Q/Z is free and transitive.

© The partition function of the system is the Riemann zeta function.

Note: H, hence Tr(e™”H) does not depend on u
There are group isomorphisms

Gal(Q?*/Q) ~ Gal(Q¥9/Q) ~ AutQ/Z ~ Z*
X—u
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A phase transition on (C*(R x R*), o)

Consider the semidirect product N x N* or, more generally, the “ax + b
semigroup” R x R* of the ring of integers in an algebraic number field.

CF(R x R*) Toeplitz-type C*-algebra generated by isometries:
Tib,2)0(x,y) = O(btax,ay)  acting on 2(R x R*),

with dynamics  0+(T(p2)) = [R : aR]" Tipay, teR.

Theorem (Cuntz—Deninger—L, '13; cf. L-Raeburn, '10)

For 3 > 2 the KMSg states of (C}(R x R*), o) are affinely isomorphic to
the tracial states of

A= @ C*(J,YN UK)

")/ECEK

with J, an integral ideal representing the ideal class v € Cl.
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