C\*-algebras associated with algebraic actions

#### C\*-algebras associated with algebraic actions

Joachim Cuntz

Abel, August 2015

Topic: Actions by endomorphisms on a compact abelian group H. Most typical examples:

$$H = \mathbb{T}^n$$
  $H = (\mathbb{Z}/n)^{\mathbb{N}}$   $H = \varprojlim_{z \mapsto z^n} \mathbb{T}$ 

We consider an endomorphism  $\alpha$  of H satisfying

- $ightharpoonup \alpha$  is surjective
- $\blacktriangleright$  Ker  $\alpha$  is finite
- ▶  $\bigcup_n \operatorname{Ker} \alpha^n$  is dense in H.

 $\alpha$  preserves Haar measure on H and therefore induces an isometry  $s_{\alpha}$  on  $L^2H$ . Also C(H) act as multiplication operators on  $L^2H$ .

Definition We denote by  $\mathcal{A}[\alpha]$  the sub-C\*-algebra of  $\mathcal{L}(L^2H)$  generated by C(H) together with  $s_{\alpha}$ .

Remark.  $A[\alpha]$  is not the crossed product of C(H) by  $\alpha$ .

The C\*-algebra  $\mathcal{A}[\alpha]$  contains as a natural subalgebra the C\*-algebra  $\mathcal{B}[\alpha]$  generated by C(H) together with all range projections  $s_{\alpha}^n s_{\alpha}^{*\,n}$ . This subalgebra is of UHF- or Bunce-Deddens type and is simple with a unique trace. It can also be described as a crossed product  $\overline{H} \rtimes \hat{H}$ , where  $\hat{H}$  denotes the dual group and  $\overline{H}$  an  $\alpha$ -adic completion of  $\hat{H}$ . Moreover  $\mathcal{A}[\alpha]$  is a crossed product  $\mathcal{B}[\alpha] \rtimes \mathbb{N}$  by the action of  $\alpha$ .

The C\*-algebra  $\mathcal{A}[\alpha]$  contains as a natural subalgebra the C\*-algebra  $\mathcal{B}[\alpha]$  generated by C(H) together with all range projections  $s_{\alpha}^{n}s_{\alpha}^{*n}$ . This subalgebra is of UHF- or Bunce-Deddens type and is simple with a unique trace. It can also be described as a crossed product  $\overline{H} \rtimes \hat{H}$ , where  $\hat{H}$  denotes the dual group and  $\overline{H}$  an  $\alpha$ -adic completion of  $\hat{H}$ . Moreover  $\mathcal{A}[\alpha]$  is a crossed product  $\mathcal{B}[\alpha] \rtimes \mathbb{N}$  by the action of  $\alpha$ .

Theorem (Cuntz-Vershik)  $A[\alpha]$  is simple and purely infinite. It can be described as a universal C\*-algebra with a natural set of generators and relations.

The C\*-algebra  $\mathcal{A}[\alpha]$  contains as a natural subalgebra the C\*-algebra  $\mathcal{B}[\alpha]$  generated by C(H) together with all range projections  $s_{\alpha}^n s_{\alpha}^{*\,n}$ . This subalgebra is of UHF- or Bunce-Deddens type and is simple with a unique trace. It can also be described as a crossed product  $\overline{H} \rtimes \hat{H}$ , where  $\hat{H}$  denotes the dual group and  $\overline{H}$  an  $\alpha$ -adic completion of  $\hat{H}$ . Moreover  $\mathcal{A}[\alpha]$  is a crossed product  $\mathcal{B}[\alpha] \rtimes \mathbb{N}$  by the action of  $\alpha$ .

Theorem (Cuntz-Vershik)  $A[\alpha]$  is simple and purely infinite. It can be described as a universal C\*-algebra with a natural set of generators and relations.

K-theory The K-theory of  $\mathcal{A}[\alpha]$  fits into an exact sequence of the form

$$K_*C^*(\hat{H}) \xrightarrow{1-b(\alpha)} K_*C^*(\hat{H}) \longrightarrow K_*A[\alpha]$$

where the map  $b(\alpha)$  satisfies the equation  $b(\alpha)\alpha_* = N(\alpha)$  with  $N(\alpha) = |\text{Ker } \alpha|$ .

The next question concerns the case where a single endomorphism of H is replaced by a (countable) family of endomorphisms. An especially interesting case arises from the ring R of algebraic integers in a number field K. Here we consider the additive group R and its dual group  $H = \hat{R} \cong \mathbb{T}^n$  and the endomorphisms determined by the elements of the multiplicative semigroup  $R^{\times}$  of R. Again C(H) acts by multiplication on  $L^2H\cong \ell^2R$  and the endomorphisms induce a family of isometries  $s_{\alpha}$  of  $L^2H$ .

The C\*-algebra generated by C(H) together with all the  $s_{\alpha}$  was studied under the name 'ring C\*-algebra' by Cuntz-Li and denoted by  $\mathcal{A}[R]$  (it is related to Bost-Connes systems).

The next question concerns the case where a single endomorphism of H is replaced by a (countable) family of endomorphisms. An especially interesting case arises from the ring R of algebraic integers in a number field K. Here we consider the additive group R and its dual group  $H = \hat{R} \cong \mathbb{T}^n$  and the endomorphisms determined by the elements of the multiplicative semigroup  $R^{\times}$  of R. Again C(H) acts by multiplication on  $L^2H \cong \ell^2R$  and the endomorphisms induce a family of isometries  $s_{\alpha}$  of  $L^2H$ .

The C\*-algebra generated by C(H) together with all the  $s_{\alpha}$  was studied under the name 'ring C\*-algebra' by Cuntz-Li and denoted by A[R] (it is related to Bost-Connes systems).

Theorem (Cuntz-Li) A[R] is simple and purely infinite. It can be described as a universal C\*-algebra with a natural set of generators and relations.

The next question concerns the case where a single endomorphism of H is replaced by a (countable) family of endomorphisms. An especially interesting case arises from the ring R of algebraic integers in a number field K. Here we consider the additive group R and its dual group  $H=\hat{R}\cong\mathbb{T}^n$  and the endomorphisms determined by the elements of the multiplicative semigroup  $R^\times$  of R. Again C(H) acts by multiplication on  $L^2H\cong\ell^2R$  and the endomorphisms induce a family of isometries  $s_\alpha$  of  $L^2H$ .

The C\*-algebra generated by C(H) together with all the  $s_{\alpha}$  was studied under the name 'ring C\*-algebra' by Cuntz-Li and denoted by  $\mathcal{A}[R]$  (it is related to Bost-Connes systems).

Theorem (Cuntz-Li) A[R] is simple and purely infinite. It can be described as a universal C\*-algebra with a natural set of generators and relations.

*K*-theory In order to compute the *K*-theory of A[R] we use a duality result. Assume for simplicity that  $R = \mathbb{Z}$ ,  $K = \mathbb{Q}$ . Then we show that

$$\mathcal{K} \otimes \mathcal{A}[\mathbb{Z}] \cong C_0(\mathbb{R}) \rtimes \mathbb{Q} \rtimes \mathbb{Q}^{\times}$$

From this the K-theory can be computed with the result that  $K_*(A[\mathbb{Z}])$  is a free exterior algebra with one generator for each prime number p.

### Structure of the left regular C\*-algebra $C_{\lambda}^*(R \times R^{\times})$

The C\*-algebra  $\mathcal{A}[R]$  is generated by the natural representation of the semidirect product semigroup  $R \rtimes R^{\times}$  on  $\ell^2 R$ . However it is a natural question to also consider the regular C\*-algebra  $C_{\lambda}^*(R \rtimes R^{\times})$  generated by the left regular representation of  $R \rtimes R^{\times}$  on  $\ell^2(R \rtimes R^{\times})$ .

### Structure of the left regular C\*-algebra $C_{\lambda}^*(R \times R^{\times})$

The C\*-algebra  $\mathcal{A}[R]$  is generated by the natural representation of the semidirect product semigroup  $R \rtimes R^{\times}$  on  $\ell^2 R$ . However it is a natural question to also consider the regular C\*-algebra  $C_{\lambda}^*(R \rtimes R^{\times})$  generated by the left regular representation of  $R \rtimes R^{\times}$  on  $\ell^2(R \rtimes R^{\times})$ .

Remarkably, this C\*-algebra is also purely infinite (though not simple) and can be described by natural generators (the same as before) and relations.

#### Structure of the left regular C\*-algebra $C_{\lambda}^*(R \times R^{\times})$

The C\*-algebra  $\mathcal{A}[R]$  is generated by the natural representation of the semidirect product semigroup  $R \rtimes R^{\times}$  on  $\ell^2 R$ . However it is a natural question to also consider the regular C\*-algebra  $C_{\lambda}^*(R \rtimes R^{\times})$  generated by the left regular representation of  $R \rtimes R^{\times}$  on  $\ell^2(R \rtimes R^{\times})$ .

Remarkably, this C\*-algebra is also purely infinite (though not simple) and can be described by natural generators (the same as before) and relations.

It also carries a natural one-parameter action with an interesting KMS-structure including a symmetry breaking over the class group  $CI_R = \{ \text{ideals of } R \ \} / \ \{ \text{principal ideals} \} \ \text{of } R \ \text{for large inverse temperatures} \ (\text{Cuntz-Deninger-Laca}).$ 

#### *K*-theory

Theorem (Cuntz-Echterhoff-Li) Let  $R^*$  be the group of units in R and  $Cl_R$  the class group. Choose for every ideal class  $\gamma \in Cl_R$  an ideal  $l_\gamma$  of R which represents  $\gamma$ . The K-theory of the left regular C\*-algebra  $C^*_\lambda(R \rtimes R^\times)$  is given by the formula

$$K_*(C_\lambda^*(R \rtimes R^\times)) \cong \bigoplus_{\gamma \in Cl_R} K_*(C_\lambda^*(I_\gamma \rtimes R^*)).$$

This is a special case of the following general theorem. We consider a semigroup P which is a subsemigroup of a group G.

Theorem (Cuntz-Echterhoff-Li) Assume that the following conditions are satisfied:

- 1.  $P \subseteq G$  satisfies the K-theoretic Toeplitz condition;
- 2. The set  $\mathcal{J}_{P \subset G}$  of constructible right *P*-ideals in *G* is independent;
- 3. G satisfies the Baum-Connes conjecture with coefficients.

Then there is a canonical isomorphism

$$K_*(C_\lambda^*P)\cong \bigoplus_{[X]}K_*(C^*(G_X)).$$

The sum is over all [X] in the set of G-orbits in  $\mathcal{I}_{P\subseteq G}\setminus\emptyset$  and  $G_X$  denotes the stabilizer group of [X].

This is a special case of the following general theorem. We consider a semigroup P which is a subsemigroup of a group G.

Theorem (Cuntz-Echterhoff-Li) Assume that the following conditions are satisfied:

- 1.  $P \subseteq G$  satisfies the K-theoretic Toeplitz condition;
- 2. The set  $\mathcal{J}_{P \subset G}$  of constructible right *P*-ideals in *G* is independent;
- 3. G satisfies the Baum-Connes conjecture with coefficients.

Then there is a canonical isomorphism

$$K_*(C_\lambda^*P)\cong \bigoplus_{[X]}K_*(C^*(G_X)).$$

The sum is over all [X] in the set of G-orbits in  $\mathcal{I}_{P\subseteq G}\setminus\emptyset$  and  $G_X$  denotes the stabilizer group of [X].

This theorem can be used to compute the K-theory of  $C^*_{\lambda}P$  for many more semigroups P.



 $C^*$ -algebras of Toeplitz type associated with algebraic number fields. *Math. Ann.*, 355(4):1383–1423, 2013.

Joachim Cuntz and Xin Li.

C\*-algebras associated with integral domains and crossed products by actions on adele spaces.

J. Noncommut. Geom., 5(1):1–37, 2011.

Joachim Cuntz and Anatoly Vershik.

 $C^*$ -algebras associated with endomorphisms and polymorphisms of compact abelian groups.

Comm. Math. Phys., 321(1):157-179, 2013.

Joachim Cuntz, Siegfried Echterhoff, and Xin Li.

On the K-theory of crossed products by automorphic semigroup actions.

Q. J. Math., 64(3):747-784, 2013.

Joachim Cuntz, Siegfried Echterhoff, and Xin Li.

On the K-theory of the  $C^*$ -algebra generated by the left regular representation of an Ore semigroup.

J. Eur. Math. Soc. (JEMS), 17(3):645-687, 2015.