Exotic crossed products and K-theory

Siegfried Echterhoff (joint with Alcides Buss and Rufus Willett)

Westfälische Wilhelms-Universität Münster

Abel Symposium, Norway, August 2015

Motivation

Exotic group algebras

There has been extensive recent work on exotic group algebras

$$C^*_{max}(G) o C^*_{\mu}(G) o C^*_{r}(G)$$

for locally compact groups G by Brown-Guentner, Wirsma and others. They allow the construction of corresponding exotic crossed-products $A \rtimes_{\alpha,\mu} G$ due to Brown-Guenter and Kaliszewski-Landstad-Quigg.

Motivation

Exotic group algebras

There has been extensive recent work on exotic group algebras

$$C^*_{max}(G) o C^*_{\mu}(G) o C^*_{r}(G)$$

for locally compact groups G by Brown-Guentner, Wirsma and others. They allow the construction of corresponding exotic crossed-products $A \rtimes_{\alpha,\mu} G$ due to Brown-Guenter and Kaliszewski-Landstad-Quigg.

Baum-Connes conjecture (Baum-Guentner-Willett 2014)

$$\mu: K^{\operatorname{top}}_*(G; A) \stackrel{\cong}{\longrightarrow} K_*(A \rtimes_{\alpha, r} G)$$

Fails to be true for the "Gromov Monster group" due to failure of "exactness" of $(A, \alpha) \mapsto A \rtimes_{\alpha, r} G$.

Idea: Replace $A \rtimes_{\alpha,r} G$ by the smallest exact Morita compatible crossed product functor $A \rtimes_{\alpha,\epsilon} G$.

Exotic group algebras

Let $C_c(G)$ be equipped with the usual involution and convolution and recall that $C^*_u(G)$ and $C^*_r(G)$ are completions of $C_c(G)$ with respect to

$$\|f\|_u = \sup\{\|U(f)\| : U \text{ a unit. rep. of } G\}$$
 and $\|f\|_r = \|\lambda(f)\|$

with

$$U(f) = \int_G f(t)U_t dt, \quad f \in C_c(G).$$

Exotic group algebras

Let $C_c(G)$ be equipped with the usual involution and convolution and recall that $C^*_u(G)$ and $C^*_r(G)$ are completions of $C_c(G)$ with respect to

$$\|f\|_u = \sup\{\|U(f)\| : U \text{ a unit. rep. of } G\}$$
 and $\|f\|_r = \|\lambda(f)\|$

with

$$U(f) = \int_G f(t)U_t dt, \quad f \in C_c(G).$$

Definition

An exotic group algebra for G is a C*-completion $C^*_{\mu}(G) = \overline{C_c(G)}^{\|\cdot\|_{\mu}}$ such that $\|\cdot\|_u \ge \|\cdot\|_{\mu} \ge \|\cdot\|_r$.

Exotic group algebras

Let $C_c(G)$ be equipped with the usual involution and convolution and recall that $C^*_u(G)$ and $C^*_r(G)$ are completions of $C_c(G)$ with respect to

$$\|f\|_u = \sup\{\|U(f)\| : U \text{ a unit. rep. of } G\}$$
 and $\|f\|_r = \|\lambda(f)\|$

with

$$U(f) = \int_G f(t)U_t dt, \quad f \in C_c(G).$$

Definition

An exotic group algebra for G is a C*-completion $C^*_{\mu}(G) = \overline{C_c(G)}^{\|\cdot\|_{\mu}}$ such that $\|\cdot\|_u \ge \|\cdot\|_{\mu} \ge \|\cdot\|_r$.

Hence, the identity on $C_c(G)$ induces a sequence of surjective *-homom.

$$C^*_u(G) \twoheadrightarrow C^*_\mu(G) \twoheadrightarrow C^*_r(G).$$

Let $B(G) = \{ s \mapsto \langle U_s \xi, \eta \rangle : U \text{ unitary rep. of } G \text{ on } H_U, \xi, \eta \in H_U \}$ the Fourier-Stieltjes algebra of G. Note that

$$B(G) = C^*_u(G)'$$
 via $C^*_u(G) \ni x \mapsto \langle U(x)\xi, \eta \rangle.$

We equipp B(G) with the corresponding weak*-topology.

Let $B(G) = \{s \mapsto \langle U_s \xi, \eta \rangle : U \text{ unitary rep. of } G \text{ on } H_U, \ \xi, \eta \in H_U \}$ the Fourier-Stieltjes algebra of G. Note that

 $B(G) = C^*_u(G)'$ via $C^*_u(G) \ni x \mapsto \langle U(x)\xi, \eta \rangle.$

We equipp B(G) with the corresponding weak*-topology.

Proposition (Kaliszeswki-Landstad-Quigg)

There is a one-to-one correspondence between

• Exotic group algebras $C^*_{\mu}(G)$ of G.

② weak*-closed left- and right translation invariant subspaces *E* of B(G) which contain $B_c(G) = C_c(G) \cap B(G)$.

Let $B(G) = \{s \mapsto \langle U_s \xi, \eta \rangle : U \text{ unitary rep. of } G \text{ on } H_U, \ \xi, \eta \in H_U \}$ the Fourier-Stieltjes algebra of G. Note that

$$B(G) = C^*_u(G)'$$
 via $C^*_u(G) \ni x \mapsto \langle U(x)\xi, \eta \rangle.$

We equipp B(G) with the corresponding weak*-topology.

Proposition (Kaliszeswki-Landstad-Quigg)

There is a one-to-one correspondence between

• Exotic group algebras $C^*_{\mu}(G)$ of G.

② weak*-closed left- and right translation invariant subspaces *E* of B(G) which contain $B_c(G) = C_c(G) \cap B(G)$.

If $C^*_{\mu}(G)$ is given, let $E = C^*_{\mu}(G)' \subseteq C^*_u(G)' = B(G)$.

Conversely: If $E \subseteq B(G)$, then $C_E^*(G) = C_u^*(G)/I_E$ with $I_E = {}^{\perp}E$.

For $p \in [2, \infty]$ let $E_p = \overline{L^p(G) \cap B(G)}^{w*}$ and $E_0 = \overline{C_0(G) \cap B(G)}^{w*}$. We write $C_p^*(G) := C_{E_p}^*(G)$.

For $p \in [2, \infty]$ let $E_p = \overline{L^p(G) \cap B(G)}^{w*}$ and $E_0 = \overline{C_0(G) \cap B(G)}^{w*}$. We write $C_p^*(G) := C_{E_p}^*(G)$.

We always have $C_2^*(G) = C_r^*(G)$ and $C_\infty^*(G) = C_u^*(G)$.

For $p \in [2, \infty]$ let $E_p = \overline{L^p(G) \cap B(G)}^{w*}$ and $E_0 = \overline{C_0(G) \cap B(G)}^{w*}$. We write $C_p^*(G) := C_{E_p}^*(G)$. We always have $C_2^*(G) = C_r^*(G)$ and $C_{\infty}^*(G) = C_u^*(G)$.

Theorem (Brown-Guentner '13, Okayasu '14)

- **(**) G is amenable if and only if $\exists p < \infty$ with $C_p^*(G) = C_u^*(G)$.
- **2** G has the Haagerup property if and only if $C_0^*(G) = C_u^*(G)$.
- Okayasu) If G is discrete and F₂ ⊆ G, then C^{*}_p(G) ≠ C^{*}_q(G) for all p, q ∈ [2,∞] with p < q.</p>

For $p \in [2, \infty]$ let $E_p = \overline{L^p(G) \cap B(G)}^{w*}$ and $E_0 = \overline{C_0(G) \cap B(G)}^{w*}$. We write $C_p^*(G) := C_{E_p}^*(G)$. We always have $C_2^*(G) = C_r^*(G)$ and $C_{\infty}^*(G) = C_u^*(G)$.

Theorem (Brown-Guentner '13, Okayasu '14)

- G is amenable if and only if $\exists p < \infty$ with $C_p^*(G) = C_u^*(G)$.
- 2 G has the Haagerup property if and only if $C_0^*(G) = C_u^*(G)$.
- Okayasu) If G is discrete and F₂ ⊆ G, then $C_p^*(G) \neq C_q^*(G)$ for all p, q ∈ [2,∞] with p < q.</p>

Note: Okayasu's proof uses Haagerup's fundamental result that for all s > 0, the function $\psi : F_2 \to \mathbb{R}; \psi(g) = e^{-s \cdot \text{length}(g)}$ is positive definite!

For $p \in [2, \infty]$ let $E_p = \overline{L^p(G) \cap B(G)}^{w*}$ and $E_0 = \overline{C_0(G) \cap B(G)}^{w*}$. We write $C_p^*(G) := C_{E_p}^*(G)$. We always have $C_2^*(G) = C_r^*(G)$ and $C_{\infty}^*(G) = C_u^*(G)$.

Theorem (Brown-Guentner '13, Okayasu '14)

- G is amenable if and only if $\exists p < \infty$ with $C_p^*(G) = C_u^*(G)$.
- **2** G has the Haagerup property if and only if $C_0^*(G) = C_u^*(G)$.
- Okayasu) If G is discrete and F₂ ⊆ G, then C^{*}_p(G) ≠ C^{*}_q(G) for all p, q ∈ [2,∞] with p < q.</p>

Note: Okayasu's proof uses Haagerup's fundamental result that for all s > 0, the function $\psi : F_2 \to \mathbb{R}; \psi(g) = e^{-s \cdot \text{length}(g)}$ is positive definite! Note also: All $E_p \subseteq B(G)$ as above are ideals in B(G). In general: $E \subseteq B(G)$ is an ideal $\Leftrightarrow s \mapsto s \otimes s : G \to UM(C_E(G) \otimes C_u^*(G))$ integrates to a coaction $\delta_E : C_E^*(G) \to M(C_E^*(G) \otimes C_u^*(G))$. Abel Symposium, Norway, August 2015.

Exotic crossed products

Definition (Baum-Guentner-Willett)

An exotic crossed-product functor is a functor $(A, G, \alpha) \rightarrow A \rtimes_{\alpha,\mu} G$ from the category of G-C*-algebras into the category of C*-algebras with (G-) *-homomorphisms, such that the identity on $C_c(G, A)$ induces morphisms

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G.$$

Exotic crossed products

Definition (Baum-Guentner-Willett)

An exotic crossed-product functor is a functor $(A, G, \alpha) \rightarrow A \rtimes_{\alpha,\mu} G$ from the category of G-C*-algebras into the category of C*-algebras with (G-) *-homomorphisms, such that the identity on $C_c(G, A)$ induces morphisms

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G.$$

Examples: Let $C_E^*(G)$ be given with quot. map $U : C_u^*(G) \to C_E^*(G)$.

BG-crossed products (Brown-Guentner): For $f \in C_c(G, A)$ let

$$\|f\|_{\mathcal{E}_{BG}} = \sup\{\|\rho \rtimes V(f)\| : (\rho, V) \text{ covariant } V \prec U\}.$$

Then

$$(A,\alpha)\mapsto A\rtimes_{\alpha,E_{BG}}G:=\overline{C_{c}(G,A)}^{\|\cdot\|_{E_{BG}}}$$

is functor with $\mathbb{C} \rtimes_{E_{BG}} G = C_E^*(G)$.

KLQ-crossed products (Kaliszewski-Landstad-Quigg): Let $0 \neq E \subseteq B(G)$ be a G-invariant ideal and $U : C_u^*(G) \twoheadrightarrow C_E^*(G)$ the quotient map.

KLQ-crossed products (Kaliszewski-Landstad-Quigg): Let $0 \neq E \subseteq B(G)$ be a G-invariant ideal and $U : C_u^*(G) \twoheadrightarrow C_E^*(G)$ the quotient map.

Consider the "coaction"

$$\widehat{\alpha}_E : A \rtimes_u G \to M(A \rtimes_u G \otimes C_E^*(G))$$
$$a \mapsto i_A(a) \otimes 1, \qquad s \mapsto i_G(s) \otimes U_s.$$

Define $A \rtimes_{E_{KLQ}} G := \overline{C_c(G, A)}^{\|\cdot\|_{E_{KLQ}}}$ with $\|f\|_{E_{KLQ}} = \|\widehat{\alpha}_E(f)\|$.

KLQ-crossed products (Kaliszewski-Landstad-Quigg): Let $0 \neq E \subseteq B(G)$ be a G-invariant ideal and $U : C_u^*(G) \twoheadrightarrow C_E^*(G)$ the quotient map.

Consider the "coaction"

$$\widehat{\alpha}_E : A \rtimes_u G \to M(A \rtimes_u G \otimes C_E^*(G))$$
$$a \mapsto i_A(a) \otimes 1, \qquad s \mapsto i_G(s) \otimes U_s.$$

Define $A \rtimes_{E_{KLQ}} G := \overline{C_c(G,A)}^{\|\cdot\|_{E_{KLQ}}}$ with $\|f\|_{E_{KLQ}} = \|\widehat{\alpha}_E(f)\|$. Then $\mathbb{C} \rtimes_{E_{KLQ}} G \cong i_G \otimes U(C^*_u(G)) \cong U(C^*_E(G)) = C^*_E(G)$

since *E* is an ideal in *B*(*G*), hence $i_G \otimes U \sim U!$

KLQ-crossed products (Kaliszewski-Landstad-Quigg): Let $0 \neq E \subseteq B(G)$ be a G-invariant ideal and $U : C_u^*(G) \twoheadrightarrow C_E^*(G)$ the quotient map.

Consider the "coaction"

$$\widehat{\alpha}_E : A \rtimes_u G \to M(A \rtimes_u G \otimes C_E^*(G))$$
$$a \mapsto i_A(a) \otimes 1, \qquad s \mapsto i_G(s) \otimes U_s.$$

Define $A \rtimes_{E_{KLQ}} G := \overline{C_c(G, A)}^{\|\cdot\|_{E_{KLQ}}}$ with $\|f\|_{E_{KLQ}} = \|\widehat{\alpha}_E(f)\|$.

Then $\mathbb{C} \rtimes_{E_{KLQ}} G \cong i_G \otimes U(C_u^*(G)) \cong U(C_E^*(G)) = C_E^*(G)$ since *E* is an ideal in *B*(*G*), hence $i_G \otimes U \sim U!$

Note: If $F_2 \subseteq G$, there are infinitely many different BG- and KLQ-functors!

The smallest exact Morita compatible functor

Let $\{\rtimes_{\mu} : \mu \in M\}$ be a family of crossed-product functors with ideals

$$I_{\mu} := \ker(A \rtimes_{u} G \to A \rtimes_{\mu} G) \subseteq A \rtimes_{u} G.$$

Put $I_{\ln f \mu} := \overline{\sum_{\mu} I_{\mu}} \subseteq A \rtimes_{u} G$, $A \rtimes_{\ln f \mu} G := (A \rtimes_{\mu} G)/I_{\ln f \mu}$.

The smallest exact Morita compatible functor

Let $\{\rtimes_{\mu} : \mu \in M\}$ be a family of crossed-product functors with ideals

$$I_{\mu} := \ker(A \rtimes_{u} G \to A \rtimes_{\mu} G) \subseteq A \rtimes_{u} G.$$

Put $I_{\ln f \mu} := \overline{\sum_{\mu} I_{\mu}} \subseteq A \rtimes_{u} G$, $A \rtimes_{\ln f \mu} G := (A \rtimes_{\mu} G)/I_{\ln f \mu}$.

Theorem (Baum-Guentner-Willett)

- $(A, \alpha) \rightarrow A \rtimes_{\inf \mu} G$ is a crossed-product functor.
- If all functors \rtimes_{μ} are exact, then so is $\rtimes_{\inf \mu}$.
- If all functors \rtimes_{μ} are Morita compatible, then so is $\rtimes_{\inf \mu}$.

The smallest exact Morita compatible functor

Let $\{\rtimes_{\mu} : \mu \in M\}$ be a family of crossed-product functors with ideals

$$I_{\mu} := \ker(A \rtimes_{u} G \to A \rtimes_{\mu} G) \subseteq A \rtimes_{u} G.$$

Put $I_{\ln f \mu} := \overline{\sum_{\mu} I_{\mu}} \subseteq A \rtimes_{u} G$, $A \rtimes_{\ln f \mu} G := (A \rtimes_{\mu} G)/I_{\ln f \mu}$.

Theorem (Baum-Guentner-Willett)

- $(A, \alpha) \rightarrow A \rtimes_{\inf \mu} G$ is a crossed-product functor.
- If all functors \rtimes_{μ} are exact, then so is $\rtimes_{\inf \mu}$.
- If all functors \rtimes_{μ} are Morita compatible, then so is $\rtimes_{\inf \mu}$.

Corollary (B-G-W)

There exists a smallest exact, Morita compatible crossed-product functor

$$(A,\alpha)\mapsto A\rtimes_{\mathcal{E}} G.$$

Question 1: Suppose G is K-amenable in the sense of Cuntz (like F_2). For which crossed product functors are the canonical quotient maps

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G$$

isomorphisms in K-theory (or KK-equivalences)?

Question 1: Suppose G is K-amenable in the sense of Cuntz (like F_2). For which crossed product functors are the canonical quotient maps

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G$$

isomorphisms in K-theory (or KK-equivalences)?

Notice: This is not always the case! Let G be a non-amenable group and

$$C^*_{\mu}(G) := \lambda \oplus 1_G(C^*_u(G)) \cong C^*_r(G) \oplus \mathbb{C}.$$

The corresponding BG-functor does not have the above property!

Question 1: Suppose G is K-amenable in the sense of Cuntz (like F_2). For which crossed product functors are the canonical quotient maps

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G$$

isomorphisms in K-theory (or KK-equivalences)?

Notice: This is not always the case! Let G be a non-amenable group and

$$C^*_{\mu}(G) := \lambda \oplus 1_G(C^*_u(G)) \cong C^*_r(G) \oplus \mathbb{C}.$$

The corresponding BG-functor does not have the above property!

Question 2: Which crossed product functors allow a descent in KK-theory

$$J_{\mu}: KK^{G}(A, B) \rightarrow KK(A \rtimes_{\mu} G, B \rtimes_{\mu} G)?$$

Does it exist for the minimal exact Morita compatible functor $\rtimes_{\mathcal{E}}$ in the reformulation of the Baum-Connes conjecture by Baum-Guentner-Willett?

Question 1: Suppose G is K-amenable in the sense of Cuntz (like F_2). For which crossed product functors are the canonical quotient maps

$$A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, \mu} G \twoheadrightarrow A \rtimes_{\alpha, r} G$$

isomorphisms in K-theory (or KK-equivalences)?

Notice: This is not always the case! Let G be a non-amenable group and

$$C^*_{\mu}(G) := \lambda \oplus 1_G(C^*_u(G)) \cong C^*_r(G) \oplus \mathbb{C}.$$

The corresponding BG-functor does not have the above property!

Question 2: Which crossed product functors allow a descent in KK-theory

$$J_{\mu}: KK^{G}(A,B) \to KK(A \rtimes_{\mu} G, B \rtimes_{\mu} G)?$$

Does it exist for the minimal exact Morita compatible functor $\rtimes_{\mathcal{E}}$ in the reformulation of the Baum-Connes conjecture by Baum-Guentner-Willett?

Notice: The descent was an important tool for proving that for K-amenable G the quotient map $A \rtimes_{\mu} G \twoheadrightarrow A \rtimes_{r} G$ is a KK-equivalence!

Buss-Echterhoff-Willett ()

Abel Symposium, Norway, August 2015 / 13

Recall that a cycle in $KK^G(A, B)$ consists of a triple (\mathcal{E}_B, Φ, T) in which (\mathcal{E}_B, Φ) is a *G*-equivariant correspondence between (A, α) and (B, β) .

Recall that a cycle in $KK^G(A, B)$ consists of a triple (\mathcal{E}_B, Φ, T) in which (\mathcal{E}_B, Φ) is a *G*-equivariant correspondence between (A, α) and (B, β) . We need an assignment

$$(\mathcal{E}_B, \Phi, T) \mapsto (\mathcal{E}_B \rtimes_{\mu} G, \Phi \rtimes_{\mu} B, \tilde{T})$$

which is functorial for compositions of Kasparov cycles.

Recall that a cycle in $KK^G(A, B)$ consists of a triple (\mathcal{E}_B, Φ, T) in which (\mathcal{E}_B, Φ) is a *G*-equivariant correspondence between (A, α) and (B, β) . We need an assignment

$$(\mathcal{E}_B, \Phi, T) \mapsto (\mathcal{E}_B \rtimes_{\mu} G, \Phi \rtimes_{\mu} B, \tilde{T})$$

which is functorial for compositions of Kasparov cycles.

In particular, we need an assignment $(\mathcal{E}_B, \Phi) \mapsto (\mathcal{E}_B \rtimes_{\mu} G, \Phi \rtimes_{\mu} G)$ s.t.

$$(E_B \otimes_B \mathcal{F}_C) \rtimes_{\mu} G \cong (E_B \rtimes_{\mu} G) \otimes_{B \rtimes_{\mu} G} (\mathcal{F}_C \rtimes_{\mu} G).$$

Recall that a cycle in $KK^G(A, B)$ consists of a triple (\mathcal{E}_B, Φ, T) in which (\mathcal{E}_B, Φ) is a *G*-equivariant correspondence between (A, α) and (B, β) . We need an assignment

$$(\mathcal{E}_B, \Phi, T) \mapsto (\mathcal{E}_B \rtimes_{\mu} G, \Phi \rtimes_{\mu} B, \tilde{T})$$

which is functorial for compositions of Kasparov cycles.

In particular, we need an assignment $(\mathcal{E}_B, \Phi) \mapsto (\mathcal{E}_B \rtimes_{\mu} G, \Phi \rtimes_{\mu} G)$ s.t.

$$(E_B \otimes_B \mathcal{F}_C) \rtimes_{\mu} G \cong (E_B \rtimes_{\mu} G) \otimes_{B \rtimes_{\mu} G} (\mathcal{F}_C \rtimes_{\mu} G).$$

Notation: If $(A, \alpha) \mapsto A \rtimes_{\alpha, \mu} G$ is functorial for correspondences, we call it a correspondence functor.

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

() \rtimes_{μ} is a correspondence functor.

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

- **1** \rtimes_{μ} is a correspondence functor.
- Solution ≥ \rtimes_{μ} is strongly Morita compatible and has the ideal property (i.e., if $I \subseteq A$ is a *G*-invariant ideal, then $I \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.)

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

- \bowtie_{μ} is a correspondence functor.
- Solution ⇒ A is a G-invariant ideal, then $I \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- Solution A_{μ} has the projection property: if *p* ∈ *M*(*A*) is a *G*-invariant projection, then *pAp* $\rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

- \bowtie_{μ} is a correspondence functor.
- Solution ⇒ A is a G-invariant ideal, then $I \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- Solution A_{μ} has the projection property: if *p* ∈ *M*(*A*) is a *G*-invariant projection, then *pAp* $\rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- \rtimes_{μ} is functorial for completely positive maps.

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

- \bowtie_{μ} is a correspondence functor.
- Solution ⇒ A is a G-invariant ideal, then $I \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- Solution A_{μ} has the projection property: if *p* ∈ *M*(*A*) is a *G*-invariant projection, then *pAp* $\rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- \rtimes_{μ} is functorial for completely positive maps.

Application: Every KLQ-functor is a correspondence functor:

Theorem (Buss-E-Willett)

Let \rtimes_{μ} be a crossed-product functor. Then the following are equivalent:

- \bowtie_{μ} is a correspondence functor.
- Solution ⇒ A is a G-invariant ideal, then $I \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- \rtimes_{μ} has the projection property: if $p \in M(A)$ is a *G*-invariant projection, then $pAp \rtimes_{\mu} G \hookrightarrow A \rtimes_{\mu} G$.
- \rtimes_{μ} is functorial for completely positive maps.

Application: Every KLQ-functor is a correspondence functor:

N

Some further results

Theorem (Buss-E-Willett)

- Every correspondence functor admits a KK-descent.
- If \rtimes_{μ} is a correspondence functor and G is K-amenable, then

 $A \rtimes_u G \twoheadrightarrow A \rtimes_\mu G \twoheadrightarrow A \rtimes_r G$ are *KK*-equivalences.

Some further results

Theorem (Buss-E-Willett)

- Every correspondence functor admits a KK-descent.
- If \rtimes_{μ} is a correspondence functor and G is K-amenable, then

 $A \rtimes_u G \twoheadrightarrow A \rtimes_\mu G \twoheadrightarrow A \rtimes_r G$ are *KK*-equivalences.

This applies in particular for all KLQ-functors for *K*-amenable groups, hence to $C_u^*(G) \twoheadrightarrow C_E^*(G) \twoheadrightarrow C_r^*(G)$ for *G*-invariant ideals $E \subseteq G$!

Corollary: If $G = F_2$, then $C_u^*(G) \sim_{KK} C_p^*(G) \sim_{KK} C_r^*(G)$ are KK-equivalences for all $p \in [2, \infty]$.

Some further results

Theorem (Buss-E-Willett)

- Every correspondence functor admits a KK-descent.
- If \rtimes_{μ} is a correspondence functor and G is K-amenable, then

 $A \rtimes_u G \twoheadrightarrow A \rtimes_\mu G \twoheadrightarrow A \rtimes_r G$ are *KK*-equivalences.

This applies in particular for all KLQ-functors for *K*-amenable groups, hence to $C_u^*(G) \twoheadrightarrow C_E^*(G) \twoheadrightarrow C_r^*(G)$ for *G*-invariant ideals $E \subseteq G$! **Corollary:** If $G = F_2$, then $C_u^*(G) \sim_{KK} C_p^*(G) \sim_{KK} C_r^*(G)$ are *KK*-equivalences for all $p \in [2, \infty]$.

Theorem (Buss-E-Willett)

The minimal exact Morita compatible crossed-product functor $\rtimes_{\mathcal{E}}$ of Baum-Guentner-Willett is a correspondence functor (at least if restricted to separable systems). Hence it has a *KK*-descent!

Thank you!