Xin Li

Q.: How to go from dynamical systems to operator algebras?

Q.: How to go from dynamical systems to operator algebras?
A.: Crossed product construction.

- Q.: How to go from dynamical systems to operator algebras?A.: Crossed product construction.
- Q.: Is there a way back???

- Q.: How to go from dynamical systems to operator algebras?A.: Crossed product construction.
- Q.: Is there a way back???
- ▶ More precisely: Given $G \curvearrowright X$, $H \curvearrowright Y$, do we have $C_0(X) \rtimes_r G \cong C_0(Y) \rtimes_r H \Rightarrow G \curvearrowright X \sim H \curvearrowright Y???$

 $G \curvearrowright X$, $H \curvearrowright Y$: topological dynamical systems.

 $G \curvearrowright X$, $H \curvearrowright Y$: topological dynamical systems.

Definition

 $G \curvearrowright X$ and $H \curvearrowright Y$ are conjugate if there exist a homeomorphism $\varphi: X \stackrel{\cong}{\longrightarrow} Y$ and an isomorphism $\rho: G \stackrel{\cong}{\longrightarrow} H$ with $\varphi(g.x) = \rho(g).\varphi(x)$ for all $g \in G$, $x \in X$.

 $G \curvearrowright X$, $H \curvearrowright Y$: topological dynamical systems.

Definition

 $G \curvearrowright X$ and $H \curvearrowright Y$ are conjugate if there exist a homeomorphism $\varphi: X \stackrel{\cong}{\longrightarrow} Y$ and an isomorphism $\rho: G \stackrel{\cong}{\longrightarrow} H$ with $\varphi(g.x) = \rho(g).\varphi(x)$ for all $g \in G$, $x \in X$.

Definition

 $G \curvearrowright X$ and $H \curvearrowright Y$ are continuously orbit equivalent if there exists a homeomorphism $\varphi: X \stackrel{\cong}{\longrightarrow} Y$ together with continuous maps $a: G \times X \to H$ and $b: H \times Y \to G$ such that

 $G \curvearrowright X$, $H \curvearrowright Y$: topological dynamical systems.

Definition

 $G \curvearrowright X$ and $H \curvearrowright Y$ are conjugate if there exist a homeomorphism $\varphi: X \stackrel{\cong}{\longrightarrow} Y$ and an isomorphism $\rho: G \stackrel{\cong}{\longrightarrow} H$ with $\varphi(g.x) = \rho(g).\varphi(x)$ for all $g \in G$, $x \in X$.

Definition

 $G \curvearrowright X$ and $H \curvearrowright Y$ are continuously orbit equivalent if there exists a homeomorphism $\varphi: X \stackrel{\cong}{\longrightarrow} Y$ together with continuous maps $a: G \times X \to H$ and $b: H \times Y \to G$ such that $\varphi(g.x) = a(g,x).\varphi(x)$ and $\varphi^{-1}(h.y) = b(h,y).\varphi^{-1}(y)$.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: topologically free topological dynamical systems. $G \curvearrowright X \sim_{coe} H \curvearrowright Y$ if and only if there is a C^* -isomorphism $\Phi: C_0(X) \rtimes_r G \xrightarrow{\cong} C_0(Y) \rtimes_r H$ with $\Phi(C_0(X)) = C_0(Y)$.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: topologically free topological dynamical systems. $G \curvearrowright X \sim_{coe} H \curvearrowright Y$ if and only if there is a C^* -isomorphism $\Phi: C_0(X) \rtimes_r G \xrightarrow{\cong} C_0(Y) \rtimes_r H$ with $\Phi(C_0(X)) = C_0(Y)$.

- top. free: for all $e \neq g \in G$, $\{x \in X : g.x \neq x\}$ is dense in X.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: topologically free topological dynamical systems. $G \curvearrowright X \sim_{coe} H \curvearrowright Y$ if and only if there is a C^* -isomorphism $\Phi: C_0(X) \rtimes_r G \xrightarrow{\cong} C_0(Y) \rtimes_r H$ with $\Phi(C_0(X)) = C_0(Y)$.

- top. free: for all $e \neq g \in G$, $\{x \in X : g.x \neq x\}$ is dense in X.
- ▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: topologically free topological dynamical systems. $G \curvearrowright X \sim_{coe} H \curvearrowright Y$ if and only if there is a C^* -isomorphism $\Phi: C_0(X) \rtimes_r G \xrightarrow{\cong} C_0(Y) \rtimes_r H$ with $\Phi(C_0(X)) = C_0(Y)$.

- top. free: for all $e \neq g \in G$, $\{x \in X : g.x \neq x\}$ is dense in X.
- ▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.
- Can these arrows be reversed?

Can we reverse the first arrow in

▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.?

Can we reverse the first arrow in

▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.?

▶ Example (Boyle-Tomiyama 1998): For top. transitive topological dynamical systems of the form $\mathbb{Z} \curvearrowright X$ on compact spaces X, Conjugacy \Leftarrow COE.

Can we reverse the first arrow in

▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.?

- ▶ Example (Boyle-Tomiyama 1998): For top. transitive topological dynamical systems of the form $\mathbb{Z} \curvearrowright X$ on compact spaces X, Conjugacy \Leftarrow COE.
- ▶ Counterexamples: Conjugacy $\not\sim$ COE for certain $\mathbb{Z}^n \curvearrowright X$,

Can we reverse the first arrow in

▶ Conjugacy \Rightarrow COE \Leftrightarrow Cartan-isom. \Rightarrow C*-isom.?

- ▶ Example (Boyle-Tomiyama 1998): For top. transitive topological dynamical systems of the form $\mathbb{Z} \curvearrowright X$ on compact spaces X, Conjugacy \Leftarrow COE.
- ▶ Counterexamples: Conjugacy $\not\sim$ COE for certain $\mathbb{Z}^n \curvearrowright X$, and also for certain $\mathbb{F}_n \curvearrowright X$.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems on compact spaces X and Y. Assume $G \curvearrowright X \sim_{coe} H \curvearrowright Y$.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems on compact spaces X and Y. Assume $G \curvearrowright X \sim_{coe} H \curvearrowright Y$.

If G is fin. gen., then so is H, and G and H are quasi-isometric.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems on compact spaces X and Y. Assume $G \curvearrowright X \sim_{coe} H \curvearrowright Y$.

If G is fin. gen., then so is H, and G and H are quasi-isometric.

▶ A. Thom and R. Sauer have shown that for two groups G and H, there exist top. free systems $G \curvearrowright X$, $H \curvearrowright Y$ on compact spaces X and Y with $G \curvearrowright X \sim_{\mathsf{coe}} H \curvearrowright Y$ if and only if G and H are bi-Lipschitz equivalent.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems.

Assume:

▶ X compact, $C(X, \mathbb{Z}) \cong \mathbb{Z} \cdot 1 \oplus N$ as $\mathbb{Z}G$ -modules with $\mathrm{pd}_{\mathbb{Z}G}(N) < \mathrm{cd}(G) - 1$

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems.

Assume:

- lacksquare X compact, $C(X,\mathbb{Z})\cong \mathbb{Z}\cdot 1\oplus N$ as $\mathbb{Z}G$ -modules with $\mathrm{pd}_{\mathbb{Z}G}(N)<\mathrm{cd}(G)-1$
- ▶ G: duality group, H: solvable group.

Theorem

 $G \curvearrowright X$, $H \curvearrowright Y$: top. free systems.

Assume:

- lacksquare X compact, $C(X,\mathbb{Z})\cong \mathbb{Z}\cdot 1\oplus N$ as $\mathbb{Z}G$ -modules with $\mathrm{pd}_{\mathbb{Z}G}(N)<\mathrm{cd}(G)-1$
- ▶ G: duality group, H: solvable group.

Then
$$G \curvearrowright X \sim_{coe} H \curvearrowright Y \Rightarrow G \curvearrowright X \sim_{conj} H \curvearrowright Y$$
.

Theorem

The following systems satisfy COER:

Theorem

The following systems satisfy COER:

▶ $G \curvearrowright X_0^G$, X_0 compact, $|X_0| > 1$, G: solvable duality group;

Theorem

The following systems satisfy COER:

- ▶ $G \curvearrowright X_0^G$, X_0 compact, $|X_0| > 1$, G: solvable duality group;
- ▶ top. free subshift of $G \curvearrowright \{0,...,N\}^G$ whose forbidden words avoid the letter 0, G: solvable duality group;

Theorem

The following systems satisfy COER:

- ▶ $G \curvearrowright X_0^G$, X_0 compact, $|X_0| > 1$, G: solvable duality group;
- ▶ top. free subshift of $G \curvearrowright \{0,...,N\}^G$ whose forbidden words avoid the letter 0, G: solvable duality group;
- chessboards $\mathbb{Z}^2 \curvearrowright X^{(n)}$ with $n \ge 4$ colours.

The End

Thank you!