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Compact quantum groups

Woronowicz: a compact quantum group G is given by
* unital C*-algebra A = C(G)
e coproduct A: A — A® A whichis
* coassociative (A ® t)A = (1@ A)A
e cancellative [A® 1)A(A)| = AR A=[12 A)A(A)]

Unitary representation of G on Hy is

* unitary elementU € B(Hy) ® C(G) s.t. (1 @ A)(U) = UroUss
Example

C(SU4(2)): generated by a and ~ such that

< e ) € Mp(C(SU(2))) = B(C?) ® C(SU,(2)

is a unitary representation.



Compact quantum groups of Lie type

Tensor productrep.: U @V = Uy3Vas € B(Hy ® Hy) @ C(G)
Combinatorial part of the representation theory (fusion ring):

* representation ring R(G) = @u. 1r¢Z[U] from irreducible
decomposition of tensor product reps

* (classical) dimension function d.: R(G) — Z, [U] — dim Hy
G is of Lie type: (R(G),dq) ~ (R(G1),d.) for a compact Lie group G

Example

* SU,(n) by Woronowicz, Faddeev-Reshetikhin-Takhtadzhyan
* (G, for simple cpt Lie group G from Drinfeld-Jimbo quantization

Problem (Woronowicz)

Classify the compact quantum groups of SU(n) type.



Classification for the SU(n)-type

Theorem (Neshveyev-Y., cf. Ohn for n = 3)

The non-Kac cpt quantum groups of SU(n) type are parametrized by:
* 0 < g =e " < 1: deformation quantization parameter,

* T-valued alternating bicharacter on Z"~': Poisson-Lie group
structure on SU(n),

* & € H3(Z/n;T): associativity data on Rep SU,(n)
(Z/n is the Pontrjagin dual of Z(SU,(n))).

Isomorphic quantum groups appear iff these are related by the
automorphism group of the root data (~ 7Z/2).

e Non-Kac: S§% # 1 < h (the Haar state) is not a trace

* Kac case would include the classification of central type factor
groups in SU(n)



Twisted SU,(n) group

Parameter: 7 € j1,(C)"~!, w alternating bicharacter on Z"~!
C[SUZ*]: the universal algebra generated by (v;;)1<i j<n subject to

VijV5 = ( H Tgl)q@?lvilvij (] < l),

Jj<p<l

VijVkj = ( H Tp)qwl-gkvkjvij (7, < k),

i<p<k
Vij Ukl = ( H >< H T, ) kajlvklv” (i>k,j<l),
1<p<k Jj<p<li
( H Tp)w?lvijvkl — ( H Tp>wzivklvzj = (q — q_l)'l}il'l}kj (7, <k j< l),
J<p<l i<p<k
Z ™ |0.‘ (1,...,7[,)00(0(1),...,J(?’L))’Ula(l) ©Ung(n) = L,

oc€ESh

m(o) € {£1,0}" ! (with some rule), w(i,...,in) = [Tpe; Wir,i-



Tannaka-Krein duality
Unitary representations of G ~ rigid C*-tensor category Rep G

Theorem (Woronowicz's Tannaka-Krein duality)

A compact quantum group (C(G), A) can be recovered from:
@ a rigid C*-tensor category C = Rep G
@ tensor functor (fiber functor) C — Hilby, U — Hy.

This can be generalized to the actions of G on C*-algebras
* G-algebras +» (Rep G)-module categories (De Commer-Y.,

Neshveyev)
* braided commutative Yetter-Drinfeld G-algebras
+» tensor functors from Rep G (Neshveyev-Y.)

Example (quantum homogeneous space)

Q. subgrp. H < G~ G ~ C(G/H) corresponds to Rep G — Rep H



Kazhdan-Wenzl deformation scheme

G semisimple compact Lie group

o —

* Rep G, is graded over Z(G,) = Z/(\G) (take central characters)

* T-valued 3-cocycle ® on Z/(\Clll) gives a new associativity
morphisms: for irreducible U, V, W,

UaoV)oW =Uo(VaoW)by ®(xu, Xv, Xw)thyeHy o Hy
~ new C*-tensor category (Rep Gy; ®)

Theorem (Kazhdan-Wenzl, Jordans)

Any semisimple C*-tensor category with the fusion rule of SU(n) is of
the form (Rep SUy(n); ®).

Neshveyev-Y.: 3 CQG realization for (Rep G¢; ®) when the image of ®
is trivial in H3(T'; T) for the maximal torus T' < G



Classifying fiber functors

Maximal Kac quantum subgroup

* I maximal quantum subgroup of Kac type K < G (Vaes)

* T is the maximal Kac quantum subgroup in G, (Tomatsu)

Theorem (Neshveyev-Y.)

Suppose G is coamenable (d.,(U) = fusion norm of [U] € R(G)). Then
any fiber functor F': Rep G — Hilby with dim F(U) = dim Hy factors
through Rep K in an essentially unique way.

* G, (and the CQG realization of (Rep G¢; ®)) is coamenable
« fiber functors on Rep T classified by alt. bichars. on T' ~ Z%¢



Categorical Poisson boundary

* (Longo-Roberts) “intrinsic dimension” d(X) on rigid semisimple
C*-tensor category C

* (N.-Y.) prob. measure p on Irr C ~ new C*-® category P,
®-functor IT: C — P ("Poisson boundary”)

* when C = RepG, (P, 1I) corresponds to lzumi’s noncommutative
Poisson boundary H>(G; )

Theorem (Neshveyev-Y.)

Suppose u defines an ergodic random walk on Irr C. Then Il is the
universal ®-functor F': C — C' such that d(F (X)) = [|[X]l| e, (r(c)))-

* to show d(II(X)) = ||[X]]||: construct type Ill subfactor N C Nx
s.t. d(TI(X))? = statistical dimension, use the relative entropy

e for universality: do “Poisson integral” ©: P — C’, use operator
theory to show the multiplicativity



Isomorphism problems

G ~ G (thatis, (C(G),A) ~ (C(G"),A)) means
* 3 C*-®-equivalence E: RepG — Rep G’
* the fiber functors F': Rep G — Hilby, F': Rep G’ — Hilby are
related by a natural isomorphism F'E ~ F

Theorem (Neshveyev-Y.)

If G is simple, (Rep G4; ®) are mutually nonequivalent for different
® € H3(Z(G),T).

Theorem (Neshveyev-Tuset, Neshveyev-Y.)

If G is simple not of type Doy, (Z(G) is cyclic), the group of
autoequivalences of (Rep G4; ®) is isomorphic to that of the root data.



Tidbits

* quasi-triangular quasi-Hopf algebra argument shows that ®2 is
the obstruction for the existence of braiding on (Rep G; @)

* (X,c)is aunitary half-braiding on X € C = X generates

amenable subcategory (G is coamenable and Kac)

Just. H(G; ) = C < G is coamenable Kac

* @ semisimple cpt Lie grp, ® € H3(G; T) ~ 3 fiber functor F on
(Rep Gy; @) with dim F(U) = dim Hy < @ is trivial in H3(T; T)
(Bichon-Neshveyev-Y.)

* 3-cocycle deformation scheme works more generally (B.-N.-Y.)



