Classification problems on the compact quantum groups of Lie type

Makoto Yamashita

joint work with Sergey Neshveyev (Oslo)

Abel Symposium 2015 MS Finnmarken, August 2015

Compact quantum groups

Woronowicz: a compact quantum group G is given by

- unital C*-algebra A = C(G)
- coproduct $\Delta : A \to A \otimes A$ which is
 - coassociative $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$
 - cancellative $[(A \otimes 1)\Delta(A)] = A \otimes A = [(1 \otimes A)\Delta(A)]$

Unitary representation of G on H_U is

• unitary element $U \in B(H_U) \otimes C(G)$ s.t. $(\iota \otimes \Delta)(U) = U_{12}U_{13}$

Example

 $C(\mathrm{SU}_q(2))$: generated by α and γ such that

$$\begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(C(SU_q(2))) = B(\mathbb{C}^2) \otimes C(SU_q(2))$$

is a unitary representation.

Compact quantum groups of Lie type

Tensor product rep.: $U \oplus V = U_{13}V_{23} \in B(H_U \otimes H_V) \otimes C(G)$

Combinatorial part of the representation theory (fusion ring):

- representation ring $R(G) = \bigoplus_{U \colon \operatorname{Irr} G} \mathbb{Z}[U]$ from irreducible decomposition of tensor product reps
- (classical) dimension function $d_{\text{cl}}: R(G) \to \mathbb{Z}, [U] \mapsto \dim H_U$

G is of Lie type: $(R(G),d_{\mathrm{cl}})\simeq (R(G_1),d_{\mathrm{cl}})$ for a compact Lie group G_1

Example

- ullet $\mathrm{SU}_q(n)$ by Woronowicz, Faddeev-Reshetikhin-Takhtadzhyan
- $\bullet \ G_q$ for simple cpt Lie group G from Drinfeld-Jimbo quantization

Problem (Woronowicz)

Classify the compact quantum groups of $\mathrm{SU}(n)$ type.

Classification for the SU(n)-type

Theorem (Neshveyev-Y., cf. Ohn for n = 3)

The non-Kac cpt quantum groups of $\mathrm{SU}(n)$ type are parametrized by:

- $0 < q = e^{-h} < 1$: deformation quantization parameter,
- \mathbb{T} -valued alternating bicharacter on \mathbb{Z}^{n-1} : Poisson-Lie group structure on $\mathrm{SU}(n)$,
- $\Phi \in H^3(\mathbb{Z}/n; \mathbb{T})$: associativity data on $\operatorname{Rep} \operatorname{SU}_q(n)$ (\mathbb{Z}/n is the Pontrjagin dual of $Z(\operatorname{SU}_q(n))$).

Isomorphic quantum groups appear iff these are related by the automorphism group of the root data ($\simeq \mathbb{Z}/2$).

- Non-Kac: $S^2 \neq \iota \Leftrightarrow h$ (the Haar state) is not a trace
- Kac case would include the classification of central type factor groups in $\mathrm{SU}(n)$

Twisted $SU_q(n)$ group

Parameter: $\tau \in \mu_n(\mathbb{C})^{n-1}$, ω alternating bicharacter on \mathbb{Z}^{n-1} $\mathbb{C}[SU_a^{\tau,\omega}]$: the universal algebra generated by $(v_{ij})_{1 \leq i,j \leq n}$ subject to

$$v_{ij}v_{il} = \left(\prod_{j \le p < l} \tau_p^{-1}\right) q\bar{\omega}_{jl}^2 v_{il} v_{ij} \quad (j < l),$$

$$v_{ij}v_{kj} = \left(\prod_{i \le p < k} \tau_p\right) q\omega_{ik}^2 v_{kj} v_{ij} \quad (i < k),$$

$$v_{ij}v_{kl} = \left(\prod_{i k, j < l),$$

$$\left(\prod_{j \ge p} \tau_p\right) \omega_{il}^2 v_{kl} v_{kl} - \left(\prod_{j \ge p} \tau_p\right) \bar{\omega}_{il}^2 v_{kl} v_{ij} = (q - q^{-1}) v_{il} v_{ki} \quad (i < k, l)$$

$$\left(\prod_{j \leq p < l} \tau_p\right) \omega_{jl}^2 v_{ij} v_{kl} - \left(\prod_{i \leq p < k} \tau_p\right) \bar{\omega}_{ki}^2 v_{kl} v_{ij} = (q - q^{-1}) v_{il} v_{kj} \quad (i < k, j < l),$$

$$\sum_{\sigma \in S_n} \tau^{m(\sigma)} (-q)^{|\sigma|} \bar{\omega}(1, \dots, n) \omega(\sigma(1), \dots, \sigma(n)) v_{1\sigma(1)} \cdots v_{n\sigma(n)} = 1,$$

$$m(\sigma) \in \{\pm 1, 0\}^{n-1}$$
 (with some rule), $\omega(i_1, \dots, i_n) = \prod_{k < l} \omega_{i_k, i_l}$.

Tannaka-Krein duality

Unitary representations of $G \sim \operatorname{rigid} C^*$ -tensor category $\operatorname{Rep} G$

Theorem (Woronowicz's Tannaka-Krein duality)

A compact quantum group $(C(G), \Delta)$ can be recovered from:

- **1** a rigid C^* -tensor category $\mathcal{C} = \operatorname{Rep} G$
- 2 tensor functor (fiber functor) $\mathcal{C} \to \operatorname{Hilb}_f$, $U \mapsto H_U$.

This can be generalized to the actions of G on C^* -algebras

- G-algebras $\leftrightarrow (\operatorname{Rep} G)$ -module categories (De Commer-Y., Neshveyev)
 - braided commutative Yetter-Drinfeld G-algebras \leftrightarrow tensor functors from $\operatorname{Rep} G$ (Neshveyev-Y.)

Example (quantum homogeneous space)

Q. subgrp. $H < G \rightsquigarrow G \curvearrowright C(G/H)$ corresponds to $\operatorname{Rep} G \to \operatorname{Rep} H$

Kazhdan-Wenzl deformation scheme

G semisimple compact Lie group

- Rep G_q is graded over $\widehat{Z(G_q)} = \widehat{Z(G)}$ (take central characters)
- \mathbb{T} -valued 3-cocycle Φ on $\widehat{Z(G_q)}$ gives a new associativity morphisms: for irreducible U,V,W,

$$(U \oplus V) \oplus W \to U \oplus (V \oplus W)$$
 by $\Phi(\chi_U, \chi_V, \chi_W) \iota_{H_U \otimes H_V \otimes H_W}$

 \sim new C*-tensor category (Rep $G_q; \Phi$)

Theorem (Kazhdan-Wenzl, Jordans)

Any semisimple C*-tensor category with the fusion rule of $\mathrm{SU}(n)$ is of the form $(\operatorname{Rep} \mathrm{SU}_q(n); \Phi)$.

Neshveyev-Y.: \exists CQG realization for $(\operatorname{Rep} G_q; \Phi)$ when the image of Φ is trivial in $H^3(\hat{T}; \mathbb{T})$ for the maximal torus T < G

Classifying fiber functors

Maximal Kac quantum subgroup

- \exists maximal quantum subgroup of Kac type K < G (Vaes)
- T is the maximal Kac quantum subgroup in G_q (Tomatsu)

Theorem (Neshveyev-Y.)

Suppose G is coamenable $(d_{\mathrm{cl}}(U) = \text{fusion norm of } [U] \in R(G))$. Then any fiber functor $F \colon \operatorname{Rep} G \to \operatorname{Hilb}_f$ with $\dim F(U) = \dim H_U$ factors through $\operatorname{Rep} K$ in an essentially unique way.

- G_q (and the CQG realization of $(\operatorname{Rep} G_q; \Phi)$) is coamenable
- fiber functors on $\operatorname{Rep} T$: classified by alt. bichars. on $\hat{T} \simeq \mathbb{Z}^{\operatorname{rk} G}$

Categorical Poisson boundary

- (Longo-Roberts) "intrinsic dimension" d(X) on rigid semisimple C*-tensor category $\mathcal C$
- (N.-Y.) prob. measure μ on $\operatorname{Irr} \mathcal{C} \leadsto$ new C^* - \otimes category \mathcal{P} , \otimes -functor $\Pi \colon \mathcal{C} \to \mathcal{P}$ ("Poisson boundary")
- when $\mathcal{C}=\operatorname{Rep} G$, (\mathcal{P},Π) corresponds to Izumi's noncommutative Poisson boundary $H^\infty(\hat{G};\mu)$

Theorem (Neshveyev-Y.)

Suppose μ defines an ergodic random walk on $\operatorname{Irr} \mathcal{C}$. Then Π is the universal \otimes -functor $F \colon \mathcal{C} \to \mathcal{C}'$ such that $d(F(X)) = \|[X]\|_{B(\ell_2(R(\mathcal{C})))}$.

- to show $d(\Pi(X)) = \|[X]\|$: construct type III subfactor $N \subset N_X$ s.t. $d(\Pi(X))^2 =$ statistical dimension, use the relative entropy
- for universality: do "Poisson integral" $\Theta\colon \mathcal{P}\to \mathcal{C}'$, use operator theory to show the multiplicativity

Isomorphism problems

 $G \simeq G'$ (that is, $(C(G), \Delta) \simeq (C(G'), \Delta)$) means

- $\exists \mathsf{C}^* \text{-} \otimes \text{-equivalence } E \colon \operatorname{Rep} G \to \operatorname{Rep} G'$
- the fiber functors $F \colon \operatorname{Rep} G \to \operatorname{Hilb}_f$, $F' \colon \operatorname{Rep} G' \to \operatorname{Hilb}_f$ are related by a natural isomorphism $F'E \simeq F$

Theorem (Neshveyev-Y.)

If G is simple, $(\operatorname{Rep} G_q; \Phi)$ are mutually nonequivalent for different $\Phi \in H^3(\widehat{Z(G)}, \mathbb{T})$.

Theorem (Neshveyev-Tuset, Neshveyev-Y.)

If G is simple not of type D_{2m} (Z(G) is cyclic), the group of autoequivalences of $(\operatorname{Rep} G_q; \Phi)$ is isomorphic to that of the root data.

Tidbits

- quasi-triangular quasi-Hopf algebra argument shows that Φ^2 is the obstruction for the existence of braiding on $(\operatorname{Rep} G_q; \Phi)$
- (X,c) is a *unitary* half-braiding on $X \in \mathcal{C} \Rightarrow X$ generates amenable subcategory (G is coamenable and Kac)
- $\exists \mu \text{ s.t. } H^{\infty}(\hat{G}; \mu) = \mathbb{C} \Leftrightarrow G \text{ is coamenable Kac}$
- G semisimple cpt Lie grp, $\Phi \in H^3(\widehat{G}; \mathbb{T}) \leadsto \exists$ fiber functor F on $(\operatorname{Rep} G_q; \Phi)$ with $\dim F(U) = \dim H_U \Leftrightarrow \Phi$ is trivial in $H^3(\widehat{T}; \mathbb{T})$ (Bichon-Neshveyev-Y.)
- 3-cocycle deformation scheme works more generally (B.-N.-Y.)