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Compact quantum groups
Woronowicz: a compact quantum group G is given by

• unital C∗-algebra A = C(G)

• coproduct∆: A → A⊗A which is
• coassociative (∆⊗ ι)∆ = (ι⊗∆)∆
• cancellative [(A⊗ 1)∆(A)] = A⊗A = [(1⊗A)∆(A)]

Unitary representation of G on HU is
• unitary element U ∈ B(HU )⊗ C(G) s.t. (ι⊗∆)(U) = U12U13

Example
C(SUq(2)): generated by α and γ such that(

α −qγ∗

γ α∗

)
∈ M2(C(SUq(2))) = B(C2)⊗ C(SUq(2))

is a unitary representation.



Compact quantum groups of Lie type
Tensor product rep.: U #⊤ V = U13V23 ∈ B(HU ⊗HV )⊗ C(G)

Combinatorial part of the representation theory (fusion ring):
• representation ring R(G) = ⊕U : IrrGZ[U ] from irreducible
decomposition of tensor product reps

• (classical) dimension function dcl : R(G) → Z, [U ] 7→ dimHU

G is of Lie type: (R(G), dcl) ≃ (R(G1), dcl) for a compact Lie group G1

Example

• SUq(n) by Woronowicz, Faddeev–Reshetikhin–Takhtadzhyan
• Gq for simple cpt Lie group G from Drinfeld–Jimbo quantization

Problem (Woronowicz)
Classify the compact quantum groups of SU(n) type.



Classification for the SU(n)-type

Theorem (Neshveyev–Y., cf. Ohn for n = 3)
The non-Kac cpt quantum groups of SU(n) type are parametrized by:

• 0 < q = e−h < 1: deformation quantization parameter,
• T-valued alternating bicharacter on Zn−1: Poisson–Lie group
structure on SU(n),

• Φ ∈ H3(Z/n;T): associativity data on RepSUq(n)

(Z/n is the Pontrjagin dual of Z(SUq(n))).
Isomorphic quantum groups appear iff these are related by the
automorphism group of the root data (≃ Z/2).

• Non-Kac: S2 ̸= ι ⇔ h (the Haar state) is not a trace
• Kac case would include the classification of central type factor
groups in SU(n)



Twisted SUq(n) group
Parameter: τ ∈ µn(C)n−1, ω alternating bicharacter on Zn−1

C[SUτ,ω
q ]: the universal algebra generated by (vij)1≤i,j≤n subject to
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vijvkl =
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)
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τp
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kivklvij = (q − q−1)vilvkj (i < k, j < l),

∑
σ∈Sn

τm(σ)(−q)|σ|ω̄(1, . . . , n)ω(σ(1), . . . , σ(n))v1σ(1) · · · vnσ(n) = 1,

m(σ) ∈ {±1, 0}n−1 (with some rule), ω(i1, . . . , in) =
∏

k<l ωik,il .



Tannaka–Krein duality
Unitary representations of G ; rigid C∗-tensor category RepG
Theorem (Woronowicz’s Tannaka–Krein duality)
A compact quantum group (C(G),∆) can be recovered from:

..1 a rigid C∗-tensor category C = RepG

..2 tensor functor (fiber functor) C → Hilbf , U 7→ HU .

This can be generalized to the actions of G on C∗-algebras
• G-algebras↔ (RepG)-module categories (De Commer–Y.,
Neshveyev)

• braided commutative Yetter–Drinfeld G-algebras
↔ tensor functors from RepG (Neshveyev–Y.)

Example (quantum homogeneous space)
Q. subgrp. H < G ; G ↷ C(G/H) corresponds to RepG → RepH



Kazhdan–Wenzl deformation scheme

G semisimple compact Lie group
• RepGq is graded over Ẑ(Gq) = Ẑ(G) (take central characters)
• T-valued 3-cocycle Φ on Ẑ(Gq) gives a new associativity
morphisms: for irreducible U, V,W ,

(U #⊤ V ) #⊤ W → U #⊤ (V #⊤ W ) by Φ(χU , χV , χW )ιHU⊗HV ⊗HW

; new C∗-tensor category (RepGq; Φ)

Theorem (Kazhdan–Wenzl, Jordans)
Any semisimple C∗-tensor category with the fusion rule of SU(n) is of
the form (Rep SUq(n); Φ).

Neshveyev–Y.: ∃ CQG realization for (RepGq; Φ) when the image of Φ
is trivial in H3(T̂ ;T) for the maximal torus T < G



Classifying fiber functors

Maximal Kac quantum subgroup

• ∃maximal quantum subgroup of Kac typeK < G (Vaes)
• T is the maximal Kac quantum subgroup in Gq (Tomatsu)

Theorem (Neshveyev–Y.)
Suppose G is coamenable (dcl(U) = fusion norm of [U ] ∈ R(G)). Then
any fiber functor F : RepG → Hilbf with dimF (U) = dimHU factors
through RepK in an essentially unique way.

• Gq (and the CQG realization of (RepGq; Φ)) is coamenable
• fiber functors on RepT : classified by alt. bichars. on T̂ ≃ ZrkG



Categorical Poisson boundary
• (Longo–Roberts) “intrinsic dimension” d(X) on rigid semisimple
C∗-tensor category C

• (N.–Y.) prob. measure µ on Irr C ; new C∗-⊗ category P ,
⊗-functor Π: C → P (“Poisson boundary”)

• when C = RepG, (P,Π) corresponds to Izumi’s noncommutative
Poisson boundary H∞(Ĝ;µ)

Theorem (Neshveyev–Y.)
Suppose µ defines an ergodic random walk on Irr C. Then Π is the
universal ⊗-functor F : C → C′ such that d(F (X)) = ∥[X]∥B(ℓ2(R(C))).

• to show d(Π(X)) = ∥[X]∥: construct type III subfactor N ⊂ NX

s.t. d(Π(X))2 = statistical dimension, use the relative entropy
• for universality: do “Poisson integral” Θ: P → C′, use operator
theory to show the multiplicativity



Isomorphism problems

G ≃ G′ (that is, (C(G),∆) ≃ (C(G′),∆)) means
• ∃ C∗-⊗-equivalence E : RepG → RepG′

• the fiber functors F : RepG → Hilbf , F ′ : RepG′ → Hilbf are
related by a natural isomorphism F ′E ≃ F

Theorem (Neshveyev–Y.)
If G is simple, (RepGq; Φ) are mutually nonequivalent for different
Φ ∈ H3(Ẑ(G),T).

Theorem (Neshveyev–Tuset, Neshveyev–Y.)
If G is simple not of type D2m (Z(G) is cyclic), the group of
autoequivalences of (RepGq; Φ) is isomorphic to that of the root data.



Tidbits

• quasi-triangular quasi-Hopf algebra argument shows that Φ2 is
the obstruction for the existence of braiding on (RepGq; Φ)

• (X, c) is a unitary half-braiding on X ∈ C ⇒ X generates
amenable subcategory (G is coamenable and Kac)

• ∃µ s.t. H∞(Ĝ;µ) = C ⇔ G is coamenable Kac
• G semisimple cpt Lie grp, Φ ∈ H3(Ĝ;T) ; ∃ fiber functor F on
(RepGq; Φ) with dimF (U) = dimHU ⇔ Φ is trivial in H3(T̂ ;T)
(Bichon–Neshveyev–Y.)

• 3-cocycle deformation scheme works more generally (B.–N.–Y.)


