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1) Inverse semigroup crossed products
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Let A < B be a non-degenerate C*-subalgebra of a C*-algebra B.
N(A) :={be B: bAb* € A, b*Abc A} (normalizers)
We say that A< B is a regular C*-inclusion if B = span N(A).

Lem. (Exel 2011)
The family of “noncommutative bisections”:
Bis(B,A) := {M < N(A) : M is a closed linear space AM < M, MA < M}

with operations inherited from B is an inverse semigroup with unit A:
M, N € Bis(B,A) = MN € Bis(B, A)
M e Bis(B,A) = M* e Bis(B, A)
M e Bis(B,A) = MM*M =M
M e Bis(B,A) — M*M< A, MM*< A

1) Each M € Bis(B, A) is naturally a Hilbert A-bimodule.
2) A< Bis regular if and only if > ycgis(g,4) M is dense in B.
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Let A < B be a non-degenerate C*-subalgebra of a C*-algebra B.
N(A) :={be B: bAb* € A, b*Abc A} (normalizers)
We say that A < B is a regular C*-inclusion if B = span N(A).

Lem. (Exel 2011)
The family of “noncommutative bisections”:
Bis(B,A) := {M < N(A) : M is a closed linear space AM < M, MA < M}

with operations inherited from B is an inverse semigroup with unit A:
1) Each M € Bis(B, A) is naturally a Hilbert A-bimodule.

2) A B is regular if and only if ZMeBis(B,A) M is dense in B.

Let S be an inverse semigroup with unit 1. Let A be a C*-algebra.

Def. (Buss, Meyer 2017) = (saturated Fell bundles over S - Sieben, Exel)

An action of S on A by Hilbert bimodules is a semigroup | |,.s & where
1) &; is a Hilbert A-bimodule, for every t € S, and & = A,
2) semigroup multiplication induces isomorph. & ®a Es = & for t,s € S.
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Let G an étale groupoid with locally compact and Hausdorff unit space X.

Ex.1 (Saturated Fell bundles over G - Kumjian 1998)
Let A = (A,)yeg be a saturated Fell bundle over G. Put

S := Bis(G) - the inverse semigroup of open bisections of G

Ay - the space of continuous sections of A vanishing outside U.
Then | | cs Au with operations coming from A is an action of S on Ax.

Ex.2 (Actions on commutative algebras - Buss, Exel 2012)

Actions £ = | |,cs & on A = (o(X) <= line bundles over G
< twisted étale groupoids (G, %)

Def. (Groupoid dual to an action &)

Let £ = | |5 & be an action on A. It induces an action & = (&;)ses

of the inverse semigroup S by partial homeomorphisms on the spectrum A
(for t € S we have & : Dy = Dy« where D; := (&, Epa < A).

A x S - the transformation groupoid for E.
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Let £ = | |,cs & be an action of S on A (we have £F =~ &£« For t € S)

® @;cs &t is a #-algebra equipped with operations induced from &
o A Xy S is a quotient of (—Btes &+ by an ideal generated by “inclusions”,
e.g. if for each t € S we put
Dy := (& Epa< A, le = Uvgm D, < A,

there is a natural isomorphism 0;: & - I; = I, € A.

Def. (Buss, Exel, Meyer) = (Sieben, Exel)
The crossed product A x¢ S is the maximal C*-completion of A x4, S

The reduced crossed product A x; S is the C*-completion of A x4, S
admitting a faithful completely positive map E : A x. S — A” such that

E(&:) = weak- Ii)r\n 0 (&t - 11n) for & € &

where {u)} is an approximate unit for I; (E-weak conditional expectation).
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The reduced crossed product A x¢ S is the C*-completion of A x5, S
admitting a faithful completely positive map E : A xz S — A” such that

E(&:) = weak- Ii/r\n Oe(Ee - ) for & € &

where {u)} is an approximate unit for I (E-weak conditional expectation).

Thm. (Buss, Exel, Meyer) The following conditions are equivalent:

(1) The weak conditional expectation E: A xg S — A” is A-valued

(2) The ideal I+ is complemented in the larger ideal D for all t € S.
Then & = E:Dy = E¢l; (—Bé’tltl is a direct sum of Hilbert bimodules:

E(&) = 0:(&en) §e =& + 5#1 € Etly @gt/tL~

(3) The subset of units A is closed in the dual groupoid A x S.

The action £ = | |,cs &: is closed if the above equivalent conditions hold.
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2) Aperiodic actions
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Let € = | |, &t be a closed action, i.e. & = Ely @ (E¢ly)* for te S.

Def.
€ = | l,es &t is aperiodic if for every t € S the Hilbert bimodule (Eelp)*
satisfies Kishimoto's condition:

vxe(cft/t)J' VO#DQA hereditary |nf{||a X aH ace D+, Ha|| = 1} =0

Thm. Assume A contains an essential ideal which is separable or of Type |

£ is aperiodic < the dual groupoid A % S is effective.

If S is countable, then A x S is effective <= A x S is topologically principal

Thm. If £ is aperiodic then
(1) A detects ideals in A x¢ S 0#J<AXS = JnA#0
(2) Asupports A% S be (Axg S)"\{0} = Jean\foy @ S b
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Thm. (Characterisation of Cartan pairs)

Let A < B be a commutative C*-subalgebra. The following are equivalent:
(1) Ais a Cartan subalgebra of B:
e AC B is regular,
o A is maximal abelian in B,
o there is a faithful conditional expectation E : B > A C B.
(2) A< B is regular and there is a unique faithful conditional
expectation E: B> AC B,
(3) B~ A x,S for a closed and aperiodic action & of an inverse
semigroup S on A by Hilbert bimodules,
(4) B=C}(G,X) for a twist (G,X) of a locally compact Hausdorff,
effective étale groupoid G.
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3) Ideal structure and pure infiniteness
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Let £ = | |,cs &: be a closed action. We put
TE(A) ;= {l < A: &l = I& for all t € S} E-invariant ideals
E|1 = |ses €l is a closed action on /

Elajr = ies Et/(Et1) is a closed action on A/l
For every | € T¢(A) we have an exact sequence

0 1%525% A%S % A/ %S 0

If I € T¢(A) then {

£ is exact if for every | € I¥(A) the following sequence is exact:

015,52 As, § L% A/ %, § -0

Rem. If £ is amenable, i.e. Ax S >~ A x, S, then £ is exact. J

Thm. (ldeal structure)

If £ is exact and residually aperiodic, i.e. £|4/ is aperiodic for every
I € T(A), then Ax, S=J+— JnAeTé(A)is a lattice isomorphism
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Thm. (Pure infiniteness)

Let £ be exact and residually aperiodic, and let F < AT residually
support A. Put B := A %, S. Assume one of the following conditions:

(i) TE(A) is finite;

(i) F consists of projections;
(i) F = AT and the projections in A separate the ideals in 1€ (A).
Then the following statements are equivalent:

© F\{0} consists of elements that are properly infinite in B;

@ B is purely infinite;

© B is purely infinite and Prim B has topological dimension zero;

Q B is purely infinite and has the ideal property;
@ B is strongly purely infinite.
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Let G be an étale locally compact Hausdorff groupoid with unit space X.

Def.
A set V < X is G-infinite if there are open V4, ..., V,, € Bis(G) such that

VZU U V, and r(Vi)nr(Vj) = Jforalli+#j.

V is residually G-infinite if V n F is G|£-infinite for all G-invariant closed F < X.

Cor. (Anantharaman-Delaroche 1997, Brown, Clark, Sierakowski 2016) - minimal case

(Bonicke, Li; Rainone, Sims) - ample case

Assume G is exact, residually effective. Let F be a basis of topology on X.
If there are finitely many G-invariant open sets in X or F consists of
compact open sets, then

every Ve Fis Crg)is
residually G-infinite strongly purely infinite
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4) Dichotomy for simple C*-algebras
with Cartan subalgebras
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Assume that
e AC Bis a Cartan C*-subalgebra;
o the spectrum of A = Gp(X) is totally disconnected;
@ B is simple.
Equivalently, B = C/(G, X) where
@ (G,Y) is a twist of an ample, étale, Hausdorff, effective and minimal
groupoid G with unit space X

Def. (Bonicke, Li; Rainone, Sims)

The type semigroup S(G) of G is the quotient of C.(X,Z)" by the
equivalence relation where: for f, g € C.(X,Z)" we write f ~g g if there
are compact open bisections Vi, ..., V,, € Bis(G) such that

f=2lwy &=y
i i=1

For f,g € C.(X,Z)t we put [f] + [g] = [f + g] and write [f] < [g] if
[f] + [h] = [g] for some he C.(X,Z)*
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Thm. (Purely infinite vs stably finite)

Let B be a SIMPLE C*-algebra which contains a Cartan subalgebra
A of real rank zero. Let G be the groupoid dual to inclusion A < B.

Consider the following conditions:
(i) The semigroup S(G) is purely infinite, ie. 20 < 6 for every 0 € S(G);
(ii) Every non-empty compact open V < X is G-infinite;
(iii) The C*-algebra B is PURELY INFINITE;
)
)

(iv) The C*-algebra B is traceless;
(v) Bis not STABLY FINITE;
(vi) The semigroup S(G) admits no non-trivial state.”

Then (i)=(ii)=(iii)=(iv)<(v)<(vi). If S(G) is almost unperforated,
then (vi)=(i) and all conditions are equivalent.

An abelian semigroup (S, +) is almost unperforated if
Vo.nes Yo<men N < mnp = 0 <17

Bartosz Kwasniewski, University of Biatystok Purely infinite inverse semigroup crossed products



