Purely infinite inverse semigroup crossed products and Cartan pairs

Bartosz Kwaśniewski, University of Białystok

Facets of Irreversibility, Oslo 2017 12 04

joint work with

1) Inverse semigroup crossed products

Let $A \subseteq B$ be a non-degenerate C^* -subalgebra of a C^* -algebra B.

 $N(A) := \{b \in B : bAb^* \subseteq A, b^*Ab \subseteq A\}$ (normalizers)

We say that $A \subseteq B$ is a regular C^* -inclusion if $B = \overline{\text{span }} N(A)$.

Lem. (Exel 2011)

The family of "noncommutative bisections":

 $Bis(B,A) := \{M \subseteq N(A) : M \text{ is a closed linear space } AM \subseteq M, MA \subseteq M\}$ with operations inherited from B is an inverse semigroup with unit A:

$$M, N \in \operatorname{Bis}(B, A) \implies MN \in \operatorname{Bis}(B, A)$$
$$M \in \operatorname{Bis}(B, A) \implies M^* \in \operatorname{Bis}(B, A)$$
$$M \in \operatorname{Bis}(B, A) \implies MM^*M = M$$
$$M \in \operatorname{Bis}(B, A) \implies M^*M \lhd A, \quad MM^* \lhd A$$

1) Each $M \in Bis(B, A)$ is naturally a Hilbert A-bimodule. 2) $A \subseteq B$ is regular if and only if $\sum_{M \in Bis(B,A)} M$ is dense in B. Let $A \subseteq B$ be a non-degenerate C^* -subalgebra of a C^* -algebra B.

 $N(A) := \{ b \in B : bAb^* \subseteq A, b^*Ab \subseteq A \}$ (normalizers)

We say that $A \subseteq B$ is a regular C^* -inclusion if $B = \overline{\text{span }} N(A)$.

Lem. (Exel 2011)

The family of "noncommutative bisections":

 $Bis(B, A) := \{M \subseteq N(A) : M \text{ is a closed linear space } AM \subseteq M, MA \subseteq M\}$

with operations inherited from B is an inverse semigroup with unit A: 1) Each $M \in Bis(B, A)$ is naturally a Hilbert A-bimodule.

2) $A \subseteq B$ is regular if and only if $\sum_{M \in Bis(B,A)} M$ is dense in B.

Let S be an inverse semigroup with unit 1. Let A be a C^* -algebra.

Def. (Buss, Meyer 2017) \equiv (saturated Fell bundles over S - Sieben, Exel)

An action of S on A by Hilbert bimodules is a semigroup $\bigsqcup_{t \in S} \mathcal{E}_t$ where

1) \mathcal{E}_t is a Hilbert A-bimodule, for every $t \in S$, and $\mathcal{E}_1 = A$,

2) semigroup multiplication induces isomorph. $\mathcal{E}_t \otimes_A \mathcal{E}_s \cong \mathcal{E}_{ts}$ for $t, s \in S$.

Let \mathcal{G} an étale groupoid with locally compact and Hausdorff unit space X.

Ex.1 (Saturated Fell bundles over *G* - Kumjian 1998)

Let $\mathcal{A}=(\mathcal{A}_{\gamma})_{\gamma\in\mathcal{G}}$ be a saturated Fell bundle over $\mathcal{G}.$ Put

 $\mathcal{S}:=\mathsf{Bis}(\mathcal{G})$ - the inverse semigroup of open bisections of \mathcal{G}

 A_U - the space of continuous sections of ${\cal A}$ vanishing outside U.

Then $\bigsqcup_{U \in S} A_U$ with operations coming from \mathcal{A} is an action of S on A_X .

Ex.2 (Actions on commutative algebras - Buss, Exel 2012)

Actions $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ on $A = C_0(X) \iff$ line bundles over $\mathcal{G} \iff$ twisted étale groupoids (\mathcal{G}, Σ)

Def. (Groupoid dual to an action \mathcal{E})

Let $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ be an action on A. It induces an action $\widehat{\mathcal{E}} = (\widehat{\mathcal{E}}_t)_{t \in S}$ of the inverse semigroup S by partial homeomorphisms on the spectrum \widehat{A} (for $t \in S$ we have $\widehat{\mathcal{E}}_t : \widehat{D}_t \xrightarrow{\sim} \widehat{D}_{t^*}$ where $D_t := \langle \mathcal{E}_t, \mathcal{E}_t \rangle_A \lhd A$).

 $\widehat{A} \rtimes S$ - the transformation groupoid for $\widehat{\mathcal{E}}$.

Let $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ be an action of S on A (we have $\mathcal{E}_t^* \cong \mathcal{E}_{t^*}$ For $t \in S$)

- $\bigoplus_{t\in S} \mathcal{E}_t$ is a *-algebra equipped with operations induced from \mathcal{E}
- A ⋊_{alg} S is a quotient of ⊕_{t∈S} E_t by an ideal generated by "inclusions",
 e.g. if for each t ∈ S we put

$$D_t := \langle \mathcal{E}_t, \mathcal{E}_t \rangle_A \lhd A, \qquad I_t := \overline{\bigcup_{v \leqslant t, 1} D_v} \lhd A,$$

there is a natural isomorphism $\theta_t \colon \mathcal{E}_t \cdot I_t \xrightarrow{\sim} I_t \subseteq A$.

Def. (Buss, Exel, Meyer) \equiv (Sieben, Exel)

The crossed product $A \rtimes_{\mathcal{E}} S$ is the maximal C^* -completion of $A \rtimes_{\text{alg}} S$ The reduced crossed product $A \rtimes_{\mathcal{E}}^r S$ is the C^* -completion of $A \rtimes_{\text{alg}} S$ admitting a faithful completely positive map $E : A \rtimes_{\mathcal{E}}^r S \to A''$ such that

$$E(\xi_t) = weak - \lim_{\lambda} \theta_t(\xi_t \cdot \mu_\lambda) \quad \text{for } \xi_t \in \mathcal{E}_t$$

where $\{\mu_{\lambda}\}$ is an approximate unit for I_t (*E*-weak conditional expectation).

The **reduced crossed product** $A \rtimes_{\mathcal{E}}^{r} S$ is the C^* -completion of $A \rtimes_{\text{alg}} S$ admitting a faithful completely positive map $E : A \rtimes_{\mathcal{E}}^{r} S \to A''$ such that

$$E(\xi_t) = weak - \lim_{\lambda} \theta_t(\xi_t \cdot \mu_\lambda) \qquad \text{for } \xi_t \in \mathcal{E}_t$$

where $\{\mu_{\lambda}\}$ is an approximate unit for I_t (*E*-weak conditional expectation).

Thm. (Buss, Exel, Meyer) The following conditions are equivalent:

- (1) The weak conditional expectation $E: A \rtimes_{\mathcal{E}}^{r} S \to A''$ is A-valued
- (2) The ideal I_t is complemented in the larger ideal D_t for all $t \in S$. Then $\mathcal{E}_t = \mathcal{E}_t D_t = \mathcal{E}_t I_t \oplus \mathcal{E}_t I_t^{\perp}$ is a direct sum of Hilbert bimodules:

$$E(\xi_t) = \theta_t(\xi_{t,1}) \qquad \qquad \xi_t = \xi_{t,1} + \xi_{t,1}^{\perp} \in \mathcal{E}_t I_t \oplus \mathcal{E}_t I_t^{\perp}.$$

(3) The subset of units \widehat{A} is closed in the dual groupoid $\widehat{A} \rtimes S$.

Def.

The action $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ is closed if the above equivalent conditions hold.

Bartosz Kwaśniewski, University of Białystok

Purely infinite inverse semigroup crossed products

2) Aperiodic actions

Let $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ be a closed action, i.e. $\mathcal{E}_t = \mathcal{E}_t I_t \oplus (\mathcal{E}_t I_t)^{\perp}$ for $t \in S$.

Def.

 $\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$ is aperiodic if for every $t \in S$ the Hilbert bimodule $(\mathcal{E}_t I_t)^{\perp}$ satisfies *Kishimoto's condition*:

$$\forall_{x\in (\mathcal{E}_t I_t)^{\perp}} \;\; \forall_{0\neq D\subseteq \mathcal{A} \; \mathsf{hereditary}} \quad \inf \{ \| a \cdot x \cdot a \| : a \in D^+, \; \|a\| = 1 \} = 0$$

Thm. Assume A contains an essential ideal which is separable or of Type I

 \mathcal{E} is aperiodic \iff the dual groupoid $\widehat{A} \rtimes S$ is effective.

If S is countable, then $\hat{A} \rtimes S$ is effective $\iff \hat{A} \rtimes S$ is topologically principal

Thm. If \mathcal{E} is aperiodic then

(1) A detects ideals in $A \rtimes_{\mathcal{E}}^{r} S$ $0 \neq J \lhd A \rtimes_{\mathcal{E}}^{r} S \Longrightarrow J \cap A \neq 0$ (2) A supports $A \rtimes_{\mathcal{E}}^{r} S$ $b \in (A \rtimes_{\mathcal{E}}^{r} S)^{+} \setminus \{0\} \Longrightarrow \exists_{a \in A^{+} \setminus \{0\}} a \leq b$

Thm. (Characterisation of Cartan pairs)

Let $A \subseteq B$ be a commutative C^* -subalgebra. The following are equivalent:

- (1) A is a **Cartan subalgebra** of B:
 - $A \subseteq B$ is regular,
 - A is maximal abelian in B,
 - there is a faithful conditional expectation $E: B \rightarrow A \subseteq B$.
- (2) $A \subseteq B$ is regular and there is a unique faithful conditional expectation $E: B \rightarrow A \subseteq B$,
- (3) $B \cong A \rtimes_r S$ for a closed and aperiodic action \mathcal{E} of an inverse semigroup S on A by Hilbert bimodules,
- (4) $B \cong C^*_r(\mathcal{G}, \Sigma)$ for a twist (\mathcal{G}, Σ) of a locally compact Hausdorff, effective étale groupoid \mathcal{G} .

 $(1) \iff (4)$

Bartosz Kwaśniewski, University of Białystok

Purely infinite inverse semigroup crossed products

3) Ideal structure and pure infiniteness

Let
$$\mathcal{E} = \bigsqcup_{t \in S} \mathcal{E}_t$$
 be a closed action. We put
 $\mathbb{I}^{\mathcal{E}}(A) := \{I \lhd A : \mathcal{E}_t I = I\mathcal{E}_t \text{ for all } t \in S\}$ \mathcal{E} -invariant ideals
If $I \in \mathbb{I}^{\mathcal{E}}(A)$ then $\begin{cases} \mathcal{E}|_I := \bigsqcup_{t \in S} \mathcal{E}_t I \text{ is a closed action on } I \\ \mathcal{E}|_{A/I} := \bigsqcup_{t \in S} \mathcal{E}_t / (\mathcal{E}_t I) \text{ is a closed action on } A/I \end{cases}$
For every $I \in \mathbb{I}^{\mathcal{E}}(A)$ we have an exact sequence
 $0 \rightarrow I \rtimes S \xrightarrow{\iota \rtimes S} A \rtimes S \xrightarrow{q \rtimes S} A/I \rtimes S \rightarrow 0$

Def.

 \mathcal{E} is exact if for every $I \in \mathbb{I}^{\mathcal{E}}(A)$ the following sequence is exact:

$$0 \to I \rtimes_{\mathsf{r}} S \xrightarrow{\iota \rtimes_{\mathsf{r}} S} A \rtimes_{\mathsf{r}} S \xrightarrow{q \rtimes_{\mathsf{r}} S} A/I \rtimes_{\mathsf{r}} S \to 0$$

Rem. If \mathcal{E} is amenable, i.e. $A \rtimes S \cong A \rtimes_r S$, then \mathcal{E} is exact.

Thm. (Ideal structure)

If \mathcal{E} is exact and **residually aperiodic**, i.e. $\mathcal{E}|_{A/I}$ is aperiodic for every $I \in \mathbb{I}^{\mathcal{E}}(A)$, then $A \rtimes_r S \rhd J \longmapsto J \cap A \in \mathbb{I}^{\mathcal{E}}(A)$ is a lattice isomorphism

Bartosz Kwaśniewski, University of Białystok

Purely infinite inverse semigroup crossed products

Thm. (Pure infiniteness)

Let \mathcal{E} be exact and residually aperiodic, and let $\mathcal{F} \subseteq A^+$ residually support A. Put $B := A \rtimes_r S$. Assume one of the following conditions: (i) $\mathbb{I}^{\mathcal{E}}(A)$ is finite;

(ii) \mathcal{F} consists of projections;

(iii) $\mathcal{F} = A^+$ and the projections in A separate the ideals in $\mathbb{I}^{\mathcal{E}}(A)$.

Then the following statements are equivalent:

- $\mathcal{F} \setminus \{0\}$ consists of elements that are properly infinite in B;
- B is purely infinite;
- So B is purely infinite and Prim B has topological dimension zero;
- Is purely infinite and has the ideal property;
- *B* is strongly purely infinite.

R

Let \mathcal{G} be an étale locally compact Hausdorff groupoid with unit space X.

Def.

A set $V \subseteq X$ is \mathcal{G} -infinite if there are open $V_1, ..., V_n \in \mathsf{Bis}(\mathcal{G})$ such that

$$V = \bigcup_{i=1}^n s(V_i), \quad \overline{\bigcup_{i=1}^n r(V_i)} \subsetneq V, \quad \text{and} \quad r(V_i) \cap r(V_j) = \emptyset \text{ for all } i \neq j.$$

V is residually *G*-infinite if $V \cap F$ is $\mathcal{G}|_{F}$ -infinite for all *G*-invariant closed $F \subseteq X$.

Cor. (Anantharaman-Delaroche 1997, Brown, Clark, Sierakowski 2016) - minimal case (Bönicke, Li; Rainone, Sims) - ample case

Assume \mathcal{G} is exact, residually effective. Let \mathcal{F} be a basis of topology on X. If there are finitely many \mathcal{G} -invariant open sets in X or \mathcal{F} consists of compact open sets, then

$$\left(\begin{array}{c} \text{every } V \in \mathcal{F} \text{ is} \\ \text{residually } \mathcal{G}\text{-infinite} \end{array}\right) \Longrightarrow \left(\begin{array}{c} C_r^*(\mathcal{G}) \text{ is} \\ \text{strongly purely infinite} \end{array}\right)$$

4) Dichotomy for simple *C**-algebras with Cartan subalgebras

Assume that

- $A \subseteq B$ is a Cartan C^{*}-subalgebra;
- the spectrum of $A = C_0(X)$ is totally disconnected;
- B is simple.

Equivalently, $B = \mathsf{C}^*_\mathsf{r}(\mathcal{G}, \Sigma)$ where

 (G, Σ) is a twist of an ample, étale, Hausdorff, effective and minimal groupoid G with unit space X

Def. (Bönicke, Li; Rainone, Sims)

The type semigroup $S(\mathcal{G})$ of \mathcal{G} is the quotient of $C_c(X,\mathbb{Z})^+$ by the equivalence relation where: for $f, g \in C_c(X,\mathbb{Z})^+$ we write $f \sim_{\mathcal{G}} g$ if there are compact open bisections $V_1, ..., V_n \in Bis(\mathcal{G})$ such that

$$f = \sum_{i=1}^{n} 1_{s(V_i)}, \qquad g = \sum_{i=1}^{n} 1_{r(V_i)}.$$

For $f, g \in C_c(X, \mathbb{Z})^+$ we put [f] + [g] = [f + g] and write $[f] \leq [g]$ if [f] + [h] = [g] for some $h \in C_c(X, \mathbb{Z})^+$

Thm. (Purely infinite vs stably finite)

Let *B* be a **SIMPLE** *C*^{*}-algebra which contains a Cartan subalgebra *A* of real rank zero. Let *G* be the groupoid dual to inclusion $A \subseteq B$. Consider the following conditions:

- (i) The semigroup $S(\mathcal{G})$ is purely infinite, i.e. $2\theta \leq \theta$ for every $\theta \in S(\mathcal{G})$;
- (ii) Every non-empty compact open $V \subseteq X$ is \mathcal{G} -infinite;
- (iii) The C^* -algebra B is **PURELY INFINITE**;
- (iv) The C*-algebra B is traceless;
- (v) B is not **STABLY FINITE**;

(vi) The semigroup $S(\mathcal{G})$ admits no non-trivial state.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi). If $S(\mathcal{G})$ is almost unperforated, then (vi) \Rightarrow (i) and all conditions are equivalent.

An abelian semigroup (S, +) is almost unperforated if $\forall_{\theta,\eta\in S} \forall_{0 < m < n} n\theta \leq m\eta \implies \theta \leq \eta$