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Path spaces of directed graphs

Directed graphs and their paths

By a (directed) graph we mean a quadruple E = (E0,E1, r , s),
where:

E0 is the set of vertices,
E1 is the set of edges,
s : E1 → E0 is the source map,
r : E1 → E0 is the range map.

A path α on E is a sequence (finite or infinite) of edges
α = α1 . . . αn(. . .) such that r(αi) = s(αi+1) ∀i .
A vertex v ∈ E0 is called a sink if |s−1(v)| = 0 and an infinite
emitter if |s−1(v)| =∞.
The set of all finite paths is denoted by E∗ and the set of all infinite
paths by E∞.
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Path spaces of directed graphs

Path spaces

Graphs with no sinks and no infinite emitters - the space of all
infinite paths with the product topology. (Kumjian, Pask, Raeburn,
Renault - 1997)
Arbitrary graphs - the space of all finite and infinite paths, with a
certain topology. (Paterson - 2002 / Farthing, Muhly, Yeend - 2005)
Arbitrary graphs - the boundary path space, which consists of all
infinite paths together with finite paths that ends in sinks and
infinite emitters. (Paterson - 2002 / Farthing, Muhly, Yeend - 2005)
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Path spaces of directed graphs

An inverse semigroup point of view

One can define an inverse semigroup with zero from a graph.
The set of idempotents E is a semilattice with zero.
There are bijections between the following sets:

The set of all finite and infinite paths.
The set of semicharacters preserving zero of E .
The set of filters in E .

The topology is the one coming from {0,1}E .

(Paterson - 2002 / Farthing, Muhly, Yeend - 2005 / Exel 2008)
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Path spaces of directed graphs

The tight spectrum

The set of tight filters is the closure of the set of ultrafilters and is
called the tight spectrum. (Exel - 2008)
Ultrafilters correspond to infinite paths and finite paths that end in
a sink.
Tight filters which are not ultrafilters correspond to paths that end
in an infinite emitter.
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The boundary path space of a labelled space

Labelled spaces

A labelled space is a triple (E,L,B) where E is a graph,
L : E1 → A is a labelling map and B is a family of subsets of E0

satisfying certain conditions.
The C*-algebra associated to a labelled space contains
projections pA for each A ∈ B subject to the relations
pA∩B = pApB, pA∪B = pA + pB − pA∩B and p∅ = 0, for every
A,B ∈ B. (Bates, Pask - 2007)
One can define an inverse semigroup in such a way that the tight
spectrum is homeomorphic to the spectrum of the diagonal
C*-subalgebra. (Boava, de C., Mortari - 2017)
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The boundary path space of a labelled space

The boundary path space of a labelled space

To describe the tight spectrum, we need a labelled path together
with a family of ultrafilters, each in a different boolean algebra, but
satisfying certain compatibility conditions.
Ultrafilters consists of the generalization of the infinite paths and
paths ending in a sink.
Tight filters also include the generalization of paths ending in a
infinite emitter.

(Boava, de C., Mortari - 2017)
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Topological graphs

Topological graphs

Topological graphs are directed graphs E in which E0 and E1 are
locally compact Hausdorff spaces, s is a continuous map and r is
a local homeomorphism. (Katsura - 2004)
We change the boundary space in order to accommodate the
topology. For that, we need the following subspaces of E0.

E0
sink =

{v ∈ E0 | there is a neighbourhood U of v such that s−1(U) = ∅}.
E0

inf =

{v ∈ E0 | s−1(U) is not compact for all neighbourhoods U of v}.
E0

sg = E0
sink ∪ E0

inf .

Gilles de Castro (UFSC) Boundary path spaces Facets 2017 8 / 17



Topological graphs

Topological graphs

Topological graphs are directed graphs E in which E0 and E1 are
locally compact Hausdorff spaces, s is a continuous map and r is
a local homeomorphism. (Katsura - 2004)
We change the boundary space in order to accommodate the
topology. For that, we need the following subspaces of E0.

E0
sink =

{v ∈ E0 | there is a neighbourhood U of v such that s−1(U) = ∅}.
E0

inf =

{v ∈ E0 | s−1(U) is not compact for all neighbourhoods U of v}.
E0

sg = E0
sink ∪ E0

inf .

Gilles de Castro (UFSC) Boundary path spaces Facets 2017 8 / 17



Topological graphs

The boundary space of a topological graph

The boundary space of a topological graph ∂E is the set of all
infinite paths and finite paths that ends in a element of E0

sg . (Yeend
- 2007)
There is a topology on ∂E given by a basis of the form
Z (U) ∩ Z (K )c , for U ⊆ E∗ open and K ⊆ E∗ compact, where Z (A)
is called a cylinder set and represents the set of all paths with
beginning in A ⊆ E∗. (Yeend - 2007)
Can we recover the boundary path space using inverse
semigroups? More specifically, can we recover it from a certain
semilattice?
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Topological graphs

Revisiting the case of discrete graphs

The semilattice of idempotents in a graph inverse semigroup can
be seen as cylinder sets in the space of all paths ordered by
inclusion.
In general, the topology on E∗ ∪ E∞ given by the cylinder sets is
not the same as considering them as semicharacters.
To correct it, we take the patch topology, which is the coarsest
topology that contains the original one and the co-compact
topology coming from it.
We then consider only the tight filters to arrive at the boundary
path space. (More about this in a moment.)
This does not work for an arbitrary topological graphs because the
original topology is lost in the process.
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Topological graphs

Some techniques in pointless topology

We work with frames (locales) instead of topological spaces.
There is a duality if we restrict to certain subcategories.
Frames can be presented used generators and relations. If one
starts with a semilattice, we only need join relations.
We can impose new relations in a frame F to arrive at a new
frame G. If the F is the topology on a set X , then G defines a
subspace Y (although G may not be isomorphic to the induced
topology on Y ).
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Topological graphs

Revisiting the case of discrete graphs II

The relation
pv =

∑
s(e)=v

ses∗e

if v ∈ E0 is not a sink nor a infinite emitter defining the graph
C*-algebra can be seen as imposing that

Z (v) =
⋃

s(e)=v

Z (e)

in the set of all paths.
Notice that for v as above, v ∈ Z (v), but v /∈ Z (e) for all e ∈ E1 if
we consider all paths, however v /∈ ∂E so that the above equality
of cylinder sets is true in the boundary path space.
This is the same relation one arrives when considering the tight
spectrum.
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Topological graphs

Back to topological graphs

Start with the semilattice of cylinders Z (U), for U ⊆ E∗ open,
ordered by inclusion.
Use the topologies on E0 and E1 to define relations and arrive at a
frame.
This frame corresponds to the set of all paths with a basis for
topology given by {Z (U)}.
Take the patch topology.
Impose some new relations.
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Topological graphs

For A ⊆ s(E1) open, we define a “covering” of A as a finite family
of pairwise disjoint open subsets of E1, {B1, . . . ,Bk}, such that for
each i = 1, . . . , k , r |Bi is as homeomorphism, Bi is relatively
compact, and

s−1(A) =
k⋃

i=1

Bi .

Let U ⊆ En be such that r(U) ⊆ s(E1), we define the new relations
as

Z (U) ∩ Z (K )c =
k⋃

i=1

Z (U × Bi) ∩ Z (K )c

whenever {B1, . . . ,Bk} is a covering of r(U).
At the end, one arrives at the boundary path space with the
correct topology.

Gilles de Castro (UFSC) Boundary path spaces Facets 2017 14 / 17



Topological graphs

For A ⊆ s(E1) open, we define a “covering” of A as a finite family
of pairwise disjoint open subsets of E1, {B1, . . . ,Bk}, such that for
each i = 1, . . . , k , r |Bi is as homeomorphism, Bi is relatively
compact, and

s−1(A) =
k⋃

i=1

Bi .

Let U ⊆ En be such that r(U) ⊆ s(E1), we define the new relations
as

Z (U) ∩ Z (K )c =
k⋃

i=1

Z (U × Bi) ∩ Z (K )c

whenever {B1, . . . ,Bk} is a covering of r(U).
At the end, one arrives at the boundary path space with the
correct topology.

Gilles de Castro (UFSC) Boundary path spaces Facets 2017 14 / 17



Topological graphs

For A ⊆ s(E1) open, we define a “covering” of A as a finite family
of pairwise disjoint open subsets of E1, {B1, . . . ,Bk}, such that for
each i = 1, . . . , k , r |Bi is as homeomorphism, Bi is relatively
compact, and

s−1(A) =
k⋃

i=1

Bi .

Let U ⊆ En be such that r(U) ⊆ s(E1), we define the new relations
as

Z (U) ∩ Z (K )c =
k⋃

i=1

Z (U × Bi) ∩ Z (K )c

whenever {B1, . . . ,Bk} is a covering of r(U).
At the end, one arrives at the boundary path space with the
correct topology.

Gilles de Castro (UFSC) Boundary path spaces Facets 2017 14 / 17



Topological graphs

An inverse semigroup from a topological graph

Definition

For a topological graph E, we define the inverse semigroup S(E) to be
the inverse semigroup with zero generated by elements eA for
A ∈ Ω(E0) and elements xM for M ∈ Ω(E1) such that r |M is a
homeomorphism, satisfying the relations:

1 e∅ = x∅ = 0,

2 eAeB = eA∩B,
3 eAxM = xM∩s−1(A),

4 xMeA = xM∩r−1(A),

5 x∗MxN = er(M∩N).
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the inverse semigroup with zero generated by elements eA for
A ∈ Ω(E0) and elements xM for M ∈ Ω(E1) such that r |M is a
homeomorphism, satisfying the relations:

1 e∅ = x∅ = 0,

2 eAeB = eA∩B,
3 eAxM = xM∩s−1(A),

4 xMeA = xM∩r−1(A),

5 x∗MxN = er(M∩N).
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Topological graphs

To be done

Show that the idempotents of S(E) are related to cylinder sets.
Find a concrete model for S(E), or prove, for example, that for
A,B ∈ Ω(E0), if A 6= B then eA 6= eB.
Find an action of S(E) on ∂E.
Prove that Yeend’s groupoid is isomorphic to the groupoid of
germs of the above action.
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Topological graphs

Thank you!
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