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Introduction

Suppose C is a k-linear ribbon category and M an oriented 3-manifold. The C-skein module SkC(M) of
M is a k-vector space which we will introduce in these notes. It gives a way to “spread out” or “integrate”
C over the 3-manifold M .

If G is an algebraic group and we denote by LocG(M) = Hom(π1(M), G)/G the character variety of the
3-manifold, SkRep(G)(M) ∼= O(LocG(M)), the algebra of polynomial functions on the character variety. We
can also consider the category Repq(G) of representations of the quantum group. So, SkRepq(G)(M) can be

viewed as the space of “quantum” functions on LocG(M).
The goal of these lectures is to introduce skein modules and explain how they are related to many

interesting algebras appearing in the theory of quantum groups. Towards the end we will also mention a
relationship between the theory of skein modules and 3-dimensional TQFTs introduced by Reshetikhin and
Turaev (formalising and generalizing the Chern–Simons TQFT).

1. Ribbon categories

1.1. Definition. Throughout these notes we fix a ground field k. All categories and all functors will be
k-linear. Let us first recall the notion of a dual object in a monoidal category.

Definition 1.1. Let C be a monoidal category and x ∈ C. We say x∨ ∈ C is the left dual to x if we are
given morphisms ev : x⊗ x∨ → 1 and coev : 1→ x∨ ⊗ x such that the composites

x
id⊗coev−−−−−→ x⊗ x∨ ⊗ x ev⊗id−−−−→ x

and

x∨
coev⊗id−−−−−→ x∨ ⊗ x⊗ x∨ ⊗ x→ id⊗ evx∨

are equal to the identity. Similarly one can define right duals. A monoidal category C is rigid if every object
admits a right and a left dual.

Remark 1.2. In the axioms of duality we have omitted some obvious unitors and associators. We will not
mention them in the notes to simplify the presentation.

Definition 1.3. A ribbon category is a category C together with the following structure:

• Monoidal structure specified by a tensor functor ⊗ : C×C→ C and an associator Φx,y,z : x⊗(y⊗z) (−→
x⊗ y)⊗ z for x, y, z ∈ C.

• Braided structure specified by σx,y : x⊗ y ∼−→ y ⊗ x for x, y ∈ C.

• Ribbon element specified by θ : x
∼−→ x for x ∈ C satisfying θx⊗y = (θx ⊗ θy) ◦ σy,x ◦ σx,y and

(θx)∨ = θx∨

We will also assume that EndC(1) = k.

The main example of ribbon categories is provided by categories of locally finite representations of quantum
groups associated to reductive groups. We will discuss these examples in section 1.3.
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1.2. Graphical calculus. An important way to think about ribbon categories is in terms of their graphical
calculus. Let C be a category. A morphism f : x→ y is called a coupon and will be drawn as follows.

Composition of morphisms f : x→ y and g : y → z is given by vertical stacking.

=

If C is a monoidal category, the tensor product of morphisms f : x → y and g : z → w is drawn by
horizontal stacking.

=

If C is a braided monoidal category, the braiding σx,y : x⊗ y → y ⊗ x is drawn as a braid.

If C is a ribbon category, we draw strands as ribbons. Given a picture before, we obtain a ribbon picture
by endowing the strands with the “blackboard framing”.

The ribbon element θx : x→ x is drawn as a 360◦ twist in the ribbon.

The duality of objects is given by reversing the orientation of the arrow. The coevaluation and evaluation
maps for the duality are drawn as follows.

We can summarize this discussion as follows. Given a ribbon category C we can draw a C-labeled ribbon
graph Γ in the 3-ball B3 with objects x1, . . . , xn ending on the lower hemisphere and y1, . . . , ym ending on the
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upper hemisphere. Then we can evaluate the graph Γ in C to obtain a morphism x1⊗· · ·⊗xn → y1⊗· · ·⊗ym.
This assignment behaves well with respect to isotopies and compositions of ribbon graphs.

1.3. Categories of representations of quantum groups. Let G be a split connected reductive algebraic
group over the field k. Let H ⊂ G be a maximal torus. Let Λ = Hom(H,Gm) be the weight lattice and
Λ∨ = Hom(Gm, H) the coweight lattice.

Example 1.4. Consider G = SLn. The subgroup H ⊂ SLn of diagonal matrices is a maximal torus. The
weight lattice is Λ ∼= Zn−1.

Choose a nonzero element q ∈ k. We denote by Uq(g) the Lusztig form of the quantum group. It has the
following generators:

• Cartan generators Kµ for µ ∈ Λ∨.

• Divided power generators E
(r)
i , F

(r)
i for each simple root αi and an integer r ≥ 1.

One should think that E
(r)
i =

Er
i

[r]! , where the quantum integer is defined to be

[r] =
qr − q−r

q − q−1

and the quantum factorial is

[r]! =

r∏
i=1

[i].

If q is not a root of unity, then [r] 6= 0 and so it is enough to consider the generators Ei as E
(r)
i can be

recovered from the above formula. However, if q2r = 1, then E
(r)
i is not obtained from Ei and instead we

obtain a new relation Eri = 0. We refer to [Lus10, Chapter 3] for more details on Uq(g).

Definition 1.5. Repq(G) is the category of Λ-graded vector spaces

V =
⊕
λ∈Λ

Vλ

equipped with a Uq(g)-module structure satisfying the following properties:

• For v ∈ Vλ we have Kµv = q〈λ,µ〉v for 〈−,−〉 the canonical pairing between Λ and Λ∨.
•

E
(r)
i : Vλ → Vλ+rαi , F

(r)
i : Vλ → Vλ−rαi .

• For fixed v ∈ V and i there is an r such that E
(r)
i v = F

(r)
i v = 0.

Let Repfd
q (G) ⊂ Repq(G) be the subcategory of finite-dimensional representations.

Remark 1.6. If q is not a root of unity, finite-dimensional representations V of Uq(g) carry a grading by Λ

such that Kµ acts on the weight λ space by ±q〈λ,µ〉. If V is such that the Kµ-eigenvalues are q〈λ,µ〉, one says
that V is a type I representation. So, Repq(G) is the category of locally finite (union of finite-dimensional)
type I representations. Note that if q is a root of unity, a Λ-grading on a finite-dimensional Uq(g)-module
might not exist.

The category Repq(G) has simple objects whose isomorphism classes are labeled by dominant weights
λ ∈ Λ. We denote the correspond representations by L(λ) ∈ Repq(G).

To introduce a braiding on Repq(G) we need to choose an extra data. Choose an integer d, a d-th root

q1/d ∈ C of q and a symmetric bilinear form B : Λ× Λ→ 1
dZ such that

B(αi, αj) = αi · αj .

Remark 1.7. If G is simple, the minimal such choice of d is given by the determinant of the Cartan matrix.
For instance, for G = SLn it is d = n.

Remark 1.8. If G is semisimple, B is unique if it exists, since the simple roots span h∗ = Λ⊗Z C, the dual
of the Cartan subalgebra.
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Lusztig [Lus10, Chapter 32] introduces a braided monoidal structure on Repq(G) as follows. Consider
V,W ∈ Repq(G). The braiding consists of the following three pieces:

• Define

Π: V ⊗W −→ V ⊗W

so that for v ∈ Vλ and w ∈Wµ we have

Π(v ⊗ w) = q−B(λ,µ)v ⊗ w.

• Let τ : V ⊗W →W ⊗ V be the map v ⊗ w 7→ w ⊗ v given by the flip of tensor factors.
• Θ ∈ Uq(g)⊗̂Uq(g) is the quasi R-matrix .

Example 1.9. For G = SL2 we have

Θ =

∞∑
n=0

(−1)nq−n(n−1)/2(q − q−1)n[n]!F (n) ⊗ E(n).

Note that it depends on q1/2.

The braiding is

σV,W = Θ ◦Π ◦ τ : V ⊗W −→W ⊗ V.

Next, to introduce a ribbon element we choose a homomorphism φ : Λ→ Z/2 such that φ(αi). Consider
V ∈ Repq(G). The ribbon structure introduced in [ST09] consists of the following three pieces:

• Define

J : V −→ V

so that for v ∈ Vλ we have

J(v) = qB(λ,λ)/2+(λ,ρ)v,

where ρ ∈ Λ is the half-sum of positive roots (the Weyl vector).
• Define

Φ −→ V

so that for v ∈ Vλ we have

Φ(v) = (−1)φ(λ)v.

• Tw0 ∈ Ûq(g) is the quantum Weyl group action by the longest element w0 ∈W of the Weyl group.

Example 1.10. For G = SL2 we have

Tw0
(v) =

∑
a,b,c≥0, a−b+c=B(λ,αi)

(−1)bqac−bE(a)F (b)E(c)v,

where v ∈ Vλ.

The ribbon element is

θV = Φ ◦ (J ◦ Tw0
)−2 : V −→ V.

Proposition 1.11. For L(λ) ∈ Repq(G) the simple representation with highest weight λ ∈ Λ the ribbon

element θL(λ) is given by multiplication by the scalar (−1)〈2λ,ρ
∨〉+α(λ)qB(λ,λ)+2(λ,ρ).

So, in this way we obtain a ribbon structure on Repfd
q (G).
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1.4. Semisimplified representation category. For q a root of unity the category Repq(G) is not semisim-

ple. One can obtain a semisimple category in the following way. Suppose q2 is a primitive `’th root of unity.
Let Reptilt

q (G) ⊂ Repfd
q (G) be the subcategory of tilting modules. It turns out the ribbon structure on

Repfd
q (G) restricts to one on Reptilt

q (G).

Example 1.12. A tilting module for the quantum SL2 is a direct summand of L(1)⊗n, where L(1) is the
irreducible two-dimensional representation.

Definition 1.13. let C be a ribbon category. A morphism f : x→ y in C is negligible if for every g : y → x
one has tr(f ◦ g) = 0.

For x, y ∈ C we denote by N(x, y) ⊂ HomReptilt
q (G)(x, y) the subspace of negligible morphisms.

Definition 1.14. The semisimplification Repss
q (G) of Repq(G) is the category with the same objects as

Reptilt
q (G) and with morphisms given by

HomRepss
q (G)(x, y) = HomReptilt

q (G)(x, y)/N(x, y).

Proposition 1.15. Repss
q (G) is a semisimple ribbon category such that the projection functor Reptilt

q (G)→
Repss

q (G) is ribbon.

It turns out that the semisimplification for the categories of representations of quantum groups has a
certain nondegeneracy property.

Definition 1.16. A ribbon category C is modular if it is semisimple, has finitely many isomorphism classes
of simple objects and the following condition holds:

• (modularity) If x ∈ C is such that σy,x ◦ σx,y = idx⊗y for every y ∈ C, then x is a direct sum of a
number of copies of the unit 1 ∈ C.

It turns out that Repss
q (G) is modular for good roots of unity.

Example 1.17. It is shown in [Bru00] that the category Repss
q (SLn) for q = exp(zπi/`) is modular if, and

only if, gcd(z, n`) = 1.

2. Skein modules

2.1. Skein modules.

Definition 2.1. Suppose C is a ribbon category and M an oriented 3-manifold. The skein module SkC(M)
is the k-vector space spanned by isotopy classes of C-ribbon graphs in M modulo the following relation:

• (skein relation) Given two C-labeled ribbon graphs Γ1,Γ2 in M which coincide outside of a 3-ball
B3 ⊂M and which evaluate to the same morphism in C are declared to be equivalent.

There is a distinguished element DistM ∈ SkC(M) corresponding to the empty ribbon graph.

Example 2.2. Consider G = SL2 with the ribbon structure on Repfd
q (SL2) determined by φ = 0. Then

SkSL2
(M) is the k-vector space spanned by isotopy classes of framed unoriented links in M modulo the

following local relations:

〈 〉 = q1/2〈 〉+ q−1/2〈 〉

〈 〉 = −(q + q−1)〈∅〉.

In this way we obtain the Kauffman bracket skein algebra introduced in [Prz91; Tur91].

Remark 2.3. Above we have described in simpler terms the skein module. Such a description was possible
due to a simple “generators-and-relations” description of Repq(SL2) in terms of graphical calculus. An
analogous graphical calculus is known in the following cases:

• For G = SL3,Sp4,G2 [Kup96].
• For G = SLn [Sik05; CKM14].
• For G = Sp2n [Bod+21].
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Proposition 2.4. Suppose C is a ribbon category. Then the map k → SkS3(C) given by the inclusion of the
distinguished element is an isomorphism.

The main example we will consider in these notes is C = Repfd
q (G), so we denote

SkG(M) = SkRepfd
q (G)(M).

In this notation we suppress q, the choice of the bilinear form B and the choice of the homomorphism φ.

Example 2.5. Consider C = Repfd
q (SL2) with the ribbon structure determined by φ = 0. Suppose K ⊂ S3 is

a framed oriented knot. Then it defines an element [K] ∈ SkSL2(S3) which corresponds to the ribbon graph

where we label K by the two-dimensional irreducible representation L(1) ∈ Repfd
q (SL2). Then the image of

[K] under the isomorphism SkSL2
(S3) ∼= k is the Kauffman bracket invariant of K. Rescaling by a simple

factor involving the writhe of the knot we obtain the Jones polynomial of K.

The following is an important theorem (proved in [Tur91; BFK99]) which gives a way to think about
SkG(M).

Theorem 2.6. Suppose q = 1 and M is connected. Then SkG(M) ∼= O(LocG(M)), the space of polynomial
functions on the character variety LocG(M) = Hom(π1(M), G)/G of the 3-manifold M .

So, SkG(M) for a general q is a quantum version of the character variety LocG(M). The following result
(proved in [GJS19], previously conjectured by Witten) shows that the skein module for generic q becomes
simpler.

Theorem 2.7. If q is not a root of unity, then SkG(M) is finite-dimensional.

Example 2.8. Suppose q is not a root of unity and Σ is a Riemann surface of genus g. Then it was shown in
[GM18; DW20] that

dim SkSL2
(Σ× S1) = 22g+1 + 2g − 1.

2.2. Skein categories. Previously we have introduced skein modules, k-vector spaces, associated to 3-
manifolds. Now we will introduce a k-linear category associated to a surface Σ.

Definition 2.9. Let C be a ribbon category and Σ an oriented surface. The skein category SkCatC(Σ) is
defined as follows:

• Its objects are collections of points of Σ equipped with a nonzero tangent vector labeled by objects
of C.

• The space of morphisms from one labeling of Σ to another labeling of Σ is the space spanned by
C-labeled ribbon graphs in Σ × [0, 1] intersecting the boundary transversely, whose endpoints at
Σ × {0} and at Σ × {1} give the source and target labelings of the morphisms, modulo the skein
relations in Σ× (0, 1).

• Composition of morphisms is given by stacking along the [0, 1] direction.

As for skein modules, there is a distinguished object DistΣ ∈ SkCatC(Σ) corresponding to the empty
labeling of Σ. We have the following statement which implies that SkCatG(Σ) can be thought of as a
quantization of the character variety.

Remark 2.10. It is shown in [Coo19] that SkCatC(Σ) is the factorization homology∫
Σ

C

of C over Σ in the sense of [AF15].

Proposition 2.11. Suppose q = 1 and Σ is connected. Then EndSkCatG(Σ)(DistΣ) ∼= O(LocG(Σ)).

The following statement follows from the well-definedness of the evaluation map for ribbon categories.

Proposition 2.12. Let D be the disk. The functor C → SkCatC(D) given by sending an object x to the
origin of D labeled by x and a morphism f : x→ y to the vertical skein with a coupon f is an equivalence.
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If the surface Σ is connected equipped with a basepoint p ∈ Σ, the natural functor C→ SkCatC(Σ) given
by sending x ∈ C to the point p ∈ Σ labeled by x is essentially surjective.

Proposition 2.13. Let S2 be the 2-sphere. The functor C → SkCatC(S2) given by sending an object x to
the origin of S2 labeled by x is a quotient where we set σy,x ◦σx,y = idx⊗y : x⊗ y → x⊗ y for every x, y ∈ C.

Definition 2.14. The endomorphism algebra EndSkCatC(Σ)(DistΣ) is the skein algebra of Σ.

By definition the skein algebra is Sk(Σ× (0, 1)) as a vector space with the multiplication given by stacking
in the (0, 1) direction.

2.3. Modules over categories.

Definition 2.15. Let C be a category. A (left) C-module is a functor Cop → Vect to the category of vector

spaces. The category of all C-modules is denoted by Ĉ.

Example 2.16. Let A be an algebra. Let C be the category with a unique object ∗ and EndC(∗) = A. Then
a C-module is the same as an A-module.

Example 2.17. Suppose q is not a root of unity. Then ̂Repfd
q (G) ∼= Repq(G).

There is a natural fully faithful Yoneda functor C→ Ĉ which sends x ∈ C to the functor HomC(−, x). It is

an analog of the regular representation of an algebra. If C is a ribbon category, Ĉ inherits a natural braided

monoidal (in fact, balanced) structure such that C→ Ĉ is braided monoidal.
We can combine skein modules and skein categories in the following way.

Definition 2.18. Let M be an oriented 3-manifold with boundary Σ. The skein module SkC(M) is the
functor SkCatC(Σ)op → Vect which sends a labeling of Σ to the k-vector space spanned by C-labeled ribbon
graphs in M ending on the given labeling modulo skein relations in the interior of M .

Remark 2.19. SkCatC(∅) = ∗ is the one-object category and a functor ∗ → Vect is the same as a vector
space. So, if M has no boundary we recover the previous definition of the skein module.

2.4. Reflection equation algebra.

Definition 2.20. Suppose C is a ribbon category. The reflection equation algebra F ∈ Ĉ is the object

defined by the following universal property. For V ∈ Ĉ the space Hom
Ĉ

(F, V ) consists of maps Kx : x→ x⊗V
for every x ∈ C compatible with morphisms f : x→ y.

In particular, the universal property gives us maps Kx : x → x ⊗ F. The object F was introduced in

[LM94; Lyu95] where it was equipped with the structure of a braided Hopf algebra in Ĉ:

• The unit 1→ F is given by K1.
• The product m : F ⊗ F → F is defined so that the composite

x⊗ y Kx⊗Ky−−−−−→ x⊗ F ⊗ y ⊗ F
id⊗σF,y⊗id
−−−−−−−→ x⊗ y ⊗ F ⊗ F

id⊗m−−−→ x⊗ y ⊗ F

is Kx⊗y.

• The counit ε : F → 1 is defined so that x
Kx−−→ x⊗ F

id⊗ε−−−→ x is the identity.
• The coproduct is KF : F → F ⊗ F.

The name “reflection equation algebra” has the following origin. Suppose F : Ĉ → Vect is a monoidal
functor. Then we have universal K-matrices Kx ∈ F (F) ⊗ End(F (x)) for every x ∈ C. For x, y ∈ C

let R ∈ End(F (x) ⊗ F (y)) be the image of the braiding in C under F . Then for x, y ∈ C we obtain the
reflection equation [DKM03]

R21K1R12K2 = K2R21K1R12

in F (F)⊗ End(F (x)⊗ F (y)).
So, F is the universal receptacle for solutions of the reflection equation.

Example 2.21. Suppose C = Repfd
q (G) and q is not a root of unity. Then Ĉ = Repq(G). The reflection

equation algebra F ∈ Repq(G) is usually denoted by Oq(G) ∈ Repq(G). It is a quantization of G equipped
with the adjoint action of G on itself.
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Recall the notion of the Drinfeld center.

Definition 2.22. Let C be a monoidal category. The Drinfeld center ZDr(C) is the category of pairs
(z, τ), where z ∈ C and τx : x⊗ z → z ⊗ x is a natural isomorphism satisfying standard compatibilities.

The following was shown in [BBJ18].

Proposition 2.23. Let Ann be the annulus. There is an equivalence of categories

̂SkCatC(Ann) ∼= LModF(Ĉ) ∼= ZDr(Ĉ).

Explicitly, a functor F : SkCatC(Ann) → Vect is the same as a functor F : C → Vect equipped with a
compatible family of isomorphisms F (x ⊗ y) ∼= F (y ⊗ x) for x, y ∈ C coming from wrapping y around the
center of the annulus.

2.5. Alekseev–Grosse–Schomerus algebras. We now want to describe skein categories for arbitrary
surfaces. We will use the following general formalism. Suppose C is a monoidal category and A,B ∈ C are
two algebras. To specify an algebra structure on A⊗B we need to define an isomorphism B ⊗A→ A⊗B
(the cross relation) satisfying some obvious compatibilities.

Definition 2.24. The algebra H of quantum differential operators is H = F ⊗ F ∈ Ĉ with the cross
relation f : F ⊗ F → F ⊗ F defined by the commutative diagram

x⊗ F
K⊗id//

σ−1

��

x⊗ F ⊗ F
id⊗f // x⊗ F ⊗ F

σ⊗id

��
F ⊗ x id⊗K // F ⊗ x⊗ F

Example 2.25. Suppose C = Repfd
q (G) and q is not a root of unity. Then H ∈ Repq(G) is usually denoted

by Dq(G) ∈ Repq(G). It is the algebra of quantum differential operators considered in [BK06; VV10]. It is
a quantization of G×G equipped with its action of G by simultaneous conjugation.

The following algebras were introduced by Alekseev, Grosse and Schomerus [AGS96].

Definition 2.26. The genus g AGS algebra is Hg = H⊗g ∈ Ĉ, the braided tensor product of the algebras
H.

The following is proven in [BBJ18].

Proposition 2.27. Let Σ be a surface of genus g with one boundary component. There is an equivalence of
categories

̂SkCatC(Σ) ∼= LModHg
(Ĉ).

Example 2.28. Consider the case g = 1, so that Σ = T 2 \D. The mapping class group of Σ is SL2(Z) and

therefore it acts on the category LModH(Ĉ). As explained in [BJ17], it can be explicitly described in terms
of the Fourier transform for quantum differential operators.

3. Topological quantum field theories

In this section we explain a relationship between skein modules and 3-dimensional TQFTs introduced by
Reshetikhin and Turaev [RT91].
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3.1. TQFTs. Let us briefly recall the structure of 3-dimensional TQFTs. Broadly speaking, it is given by
the following assignments:

• To a closed oriented surface Σ we assign a vector space Z(Σ). For the empty surface we assign the
ground field k and for a disjoint union we assign the tensor product.

• To a compact oriented 3-manifold M with boundary decomposed as Σ−
∐

Σ+ we assign a linear
map

Z(M) : Z(Σ−) −→ Z(Σ+).

Diffeomorphisms of M relative to the boundary give rise to equal maps. In the case M is closed we
get a map k → k, i.e. a number.

Given a modular tensor category C Reshetikhin and Turaev have constructed such invariants ZWRT of
surfaces and 3-manifolds. Our goal will be to explain how these invariants are related to skein modules.

A large source of modular tensor categories is given by Repss
q (G) for appropriate roots of unity.

3.2. TQFTs from skein modules. The construction explained in this section is due to Walker [Wal].
Throughout this section we fix a modular tensor category C.

The first fact is that the skein module SkC(M) dramatically simplifies if C is modular.

Proposition 3.1. Suppose C is a modular tensor category and M a closed oriented 3-manifold. Then
SkC(M) is one-dimensional.

This fact has the following implication.

Proposition 3.2. Suppose Σ is a closed oriented surface and M1,M2 are two compact oriented 3-manifolds
with boundary Σ. Then

SkC(M1) ∼= SkC(M2)⊗ SkC(M1

∐
Σ

M2).

So, for every oriented surface Σ we may canonical associate a projective space P(SkC(M)), where M is
any bounding 3-manifold. These spaces can be easily computed to be

SkC(M) ∼= HomC(1,F⊗g),

where g is the genus.

Proposition 3.3. There is an isomorphism SkC(M) ∼= ZWRT (Σ).

Remark 3.4. If we fix Σ, the left-hand side is well-defined up to tensoring with a line. Similarly, the space of
states ZWRT (Σ) is not canonically associated to Σ due to a framing anomaly of the corresponding TQFT.

If M is a closed oriented 3-manifold and W is a bounding 4-manifold Walker constructs an isomorphism

ZCY (W ) : SkC(M) −→ k.

Remark 3.5. if M is empty, then SkC(∅) = k and ZCY (W ) coincides with the Crane–Yetter state sum of W
as defined in [CKY97].

Proposition 3.6. Let M be a closed oriented 3-manifold and W a bounding 4-manifold. Then the value of
ZCY (W ) on DistM ∈ SkC(M) coincides with ZWRT (M).

Recently a 3-dimensional TQFT was constructed from non-semisimple modular tensor categories (for
instance, the category of representations of the small quantum group at a good root of unity), see e.g. [De
+19]. It would be interesting to relate those invariants to skein modules.
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