Weak amenability and \tilde{A}_2 -geometry

Online workshop: *C**-algebras and geometry of semigroups and groups

Mikael de la Salle joint work with Stefan Witzel (Giessen) and Jean Lécureux (Orsay) March 26 2021

CNRS, École Normale Supérieure de Lyon

Table of content

Approximation properties

 \tilde{A}_2 buildings

Local harmonic analysis in $\tilde{\emph{A}}_2\text{-buildings}$

Approximation properties

Approximation properties for C^* -algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $\operatorname{id}: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown: $B(\ell_2)$ (Szankowski).

Approximation properties for C^* -algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $\operatorname{id}: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown : $B(\ell_2)$ (Szankowski).

A fascinating open question

Find an **explicit and natural** separable Banach space without AP.

Candidates in the 1970's:

- $C_{\lambda}^*(F_2)$
- C*(F₂)
- $C_{\lambda}^*(\mathrm{SL}_3(\mathbf{Z}))$

Approximation properties for C^* -algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $\operatorname{id}: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown : $B(\ell_2)$ (Szankowski).

A fascinating open question

Find an **explicit and natural** separable Banach space without AP.

Candidates in the 1970's:

- $\mathcal{C}^*_{\lambda}(F_2)$ No : Haagerup 1979
- C*(F₂) Still open
- $C_{\lambda}^*(\mathrm{SL}_3(\mathbf{Z}))$ Still open.

Haagerup's work on approximation properties

Theorem (Haagerup 79)

 $C_{\lambda}^{*}(F_{2})$ has the AP (even MAP).

Proof relies heavily on the geometry of the tree (Cayley graph).

4

Haagerup's work on approximation properties

Theorem (Haagerup 79)

 $C_{\lambda}^{*}(F_{2})$ has the AP (even MAP).

Proof relies heavily on the geometry of the tree (Cayley graph). It proves more: it has OAP and even CBAP with constant 1.

A C^* -algebra A has the Operator Space AP (OAP) if there is a net of finite rank operators such that $T_i \otimes \operatorname{id}$ converges pointwise (iff unif. on compacta) to id on $A \otimes \mathcal{K}(\ell_2)$.

Def : A has CBAP if moreover $\sup_i \|T_i \otimes id\| \le C < \infty$. And inf $C = \Lambda_{cb}(A)$.

4

Haagerup's diagonal averaging trick

A notation : if $\varphi : G \to \mathbf{C}$ is a function

$$\|\varphi\|_{\operatorname{cp}} := \inf\{\sup_{g,h} \|\xi(g)\|_{\ell_2} \|\eta(h)\|_{\ell_2}) \mid \varphi(g^{-1}h) = \langle \xi(h), \eta(g) \rangle \}.$$

Theorem (Haagerup + many other)

For a discrete group G, $C^*_{\lambda}(G)$ has CBAP with constant $\leq C$ if and only if G is weakly amenable with constant $\leq C$: there is a net $\varphi_i \colon G \to \mathbf{C}$ of finite support such that $\lim_i \varphi_i(g) = 1$ for all g and $\sup_i \|\varphi_i\|_{cb} \leq C$.

Used a lot, to show:

- (Haagerup, de Cannière, Cowling) A simple connected Lie group is weakly amenable iff ${\rm rk}_R(G) \le$ 1.
- (Ozawa) Gromov-hyperbolic groups are weakly amenable.
- (Mizuta + Guentner-Higson) Groups acting on finite dim CAT(o) cube complex.

\tilde{A}_2 buildings

\tilde{A}_2 buildings, 1

Definition (formal, see later for better)

A (locally finite) \tilde{A}_2 building X is a 2-dimensionnal simply connected simplicial complex whose link is the incidence graph of a (finite) projective space.

From now on, X will always denote a locally finite \tilde{A}_2 building.

(Here) finite projective space. Take k a (finite) field, $P^2k:=k^3\setminus\{0\}/k^*$. It contains points and lines. Incidence relation $p\sim\ell$ if p belongs to ℓ .

Example : if $F = \mathbf{Q}_p$ and $\mathcal{O} = \mathbf{Z}_p$ or $\mathbf{F}_p((t))$ and $\mathcal{O} = \mathbf{F}_p[[T]]$ then $G/K := \mathrm{PGL}_3(F)/\mathrm{PGL}_3(\mathcal{O})$ with edges $gK \sim hK$ if $\|g^{-1}h\| \|h^{-1}g\| = p$ (+ fill triangles) is an \tilde{A}_2 building.

There are many other "exotic" examples, whose automorphism group is in general countable (Radu), sometimes trivial but sometimes quite large (Ronan, Kantor, Radu...).

Approximation properties for \tilde{A}_2 -lattices.

Today's Theorem (Lécureux-dlS-Witzel 20+)

Let G be discrete group acting by isometries on a locally finite \tilde{A}_2 building. Assume that the action is cocompact and with finite stabilizers. Then G is not weakly amenable.

A few remarks:

- More generally, $C_{\lambda}^{*}(G)$ does not have *OAP*; neither does $L_{p}(\mathcal{L}G)$ for $p \notin \left[\frac{4}{3}, 4\right]$.
- This generalizes previous results for lattices in ${\rm SL}_3({\it F})$ by Haagerup 86 and Lafforgue-dlS 11, and gives a geometric proof of these results.
- This is one of the outcomes of a broader project where we try to develop harmonic analysis on \tilde{A}_2 buildings. Other outcomes include strong property (T) or vanishing of ℓ_p -cohomology.

\tilde{A}_2 -building, 2

Recall

Definition

An \tilde{A}_2 building is a 2-dimensionnal simply connected simplicial complex whose link is the incidence graph of a finite projective space.

The way we think of it: a kind of 2-dimensionnal tree, obtained by pasting in a tree-like structure infinitely many copies of a \mathbf{R}^2 tesselated by equilateral triangles.

To connect with standard terminology: \mathbf{R}^2 = appartments; equilateral triangles = chambers.

R² tesselated by equilateral triangles...

... arranged in a tree-like way

FIGURE 1 – A fragment of an \tilde{A}_2 building for q=2 (picture by Greg Kuperberg)

Parameter q of a building : q + 1 is the number of triangles to which every edge belongs.

Harmonic analysis on an \tilde{A}_2 building, after Cartwright-Młotkowski 94

11

- Relative position of a pair $(x, y) \in X$ is given by $\sigma(x,y)=\lambda\in \mathbb{N}^2$.
- The distance d(x, y) is $\lambda_1 + \lambda_2$.
- · Define the sphere $S_{\lambda}(x)$

$$\{y \in X \mid \sigma(x,y) = \lambda\}.$$

• $A_{\lambda} \in B(\ell_2(X))$ the

•
$$A_{\lambda} \in B(\ell_2(X))$$
 the averaging operator $A_{\lambda}f(x) = \frac{1}{|S_{\lambda}|} \sum_{y \in S_{\lambda}(x)} f(y)$

Harmonic analysis on an \tilde{A}_2 building 2

Theorem (Cartwright-Młotkowski 94)

The *-algebra generated by $\{A_{\lambda} \mid \lambda \in \mathbf{N}^2\}$ is commutative.

It is a generalization of the (Hecke) algebra of K-biinvariant functions on $G = \mathrm{SL}_3(F)$.

Philosophy: in our generality, there is no *G* and no *K* (so no Gelfand pair!), but the spectrum of the Gelfand pair is there somewhere hidden.

Later : Cartwright-Mantero-Steger-Zappa compute explicitely the spectrum of the universal representation of the above commutative *-algebra. Consequence : \tilde{A}_2 groups have property (T).

Harmonic analysis on an \tilde{A}_2 building 2

Theorem (Cartwright-Młotkowski 94)

The *-algebra generated by $\{A_{\lambda} \mid \lambda \in \mathbb{N}^2\}$ is commutative.

It is a generalization of the (Hecke) algebra of K-biinvariant functions on $G = \mathrm{SL}_3(F)$.

Philosophy: in our generality, there is no *G* and no *K* (so no Gelfand pair!), but the spectrum of the Gelfand pair is there somewhere hidden.

Later : Cartwright-Mantero-Steger-Zappa compute explicitely the spectrum of the universal representation of the above commutative *-algebra. Consequence : \tilde{A}_2 groups have property (T).

Our contribution : developp **local** tools to further perform harmonic analysis on *X*.

Local harmonic analysis in

 \tilde{A}_2 -buildings

Two main ingredients

- Local harmonic analysis : finite volume, fine analysis.
- Global analysis: exploring the whole building at large scales using the local analysis.

Two main ingredients

- · Local harmonic analysis: finite volume, fine analysis.
- Global analysis: exploring the whole building at large scales using the local analysis.

Strongly inspired by Vincent Lafforgue, who introduced these two ingredients for $\mathrm{SL}_3(F)$. In that case, the ingredients become

- Harmonic analysis in the maximal compact subgroup K.
- Exploration of the whole symmetric space G/K using distorted copies of K, exploit hyperbolicity transverse to the flats.

Two main ingredients

- · Local harmonic analysis: finite volume, fine analysis.
- Global analysis: exploring the whole building at large scales using the local analysis.

Strongly inspired by Vincent Lafforgue, who introduced these two ingredients for $SL_3(F)$. In that case, the ingredients become

- Harmonic analysis in the maximal compact subgroup K.
- Exploration of the whole symmetric space G/K using distorted copies of K, exploit hyperbolicity transverse to the flats.

Difficulty: there is no locally compact group, typically vertex stabilizers in $\operatorname{Aut}(X)$ are trivial!

A finite-volume geometric object : biaffine Hemlslev planes

Classical object: an affine plane = a projective plane without a line and all points incident to it.

We introduce : a biaffine place = a projective plane without an incident pair (p, ℓ) and all lines/points adjacent to them.

A biaffine Hemlslev plane = a similar object but on the ℓ_1 spheres in X.

Averaging operators on biaffine Hemlslev planes

If p,ℓ is a point at distance n from the origin in a biaffine Hemslev plane, we define

$$(p,\ell)_o = \max\{s \mid (op_s\ell_s) \text{ is a regular triangle.}$$

Averaging operator : $T_s f(p) = \mathbb{E}[f(\ell) \mid (p, \ell)_o = s]$.

Main result $||T_s - T_{s+1}||_{L^2 \to L^2} \le Cq^{-\frac{s}{2}}$.

The main technical result

Assume G acts nicely on X. Let $\psi: X \times X \to \mathbf{C}$ be a G-invariant Schur multiplier (that is $\psi(x,y) = \langle \xi_x, \eta_y \rangle$ for bounded functions $\xi, \eta: X \to \ell_2$).

Then for every $x \in X$, there is $\psi_{\infty}(x) \in \mathbf{C}$ such that

$$\left|\frac{1}{|\Gamma_{\mathsf{X}}|}\sum_{\mathsf{X}\in\mathsf{X}/\Gamma}\left|\psi_{\infty}(\mathsf{X})-\frac{1}{|\mathsf{S}_{\lambda}(\mathsf{X})|}\sum_{\mathsf{y}\in\mathsf{S}_{\lambda}(\mathsf{X})}\psi(\mathsf{X},\mathsf{y})\right|\leq Cq^{-|\lambda|/2}\|\psi\|_{cb}.$$