On the existence of bases in the orbit of unitary group representations

Ulrik Enstad Online workshop: C*-algebras and geometry of groups and semigroups 31st March 2021

 Let π: G → U(H_π) be an irreducible, unitary group representation of a locally compact group G on a Hilbert space H_π.

- Let π: G → U(H_π) be an irreducible, unitary group representation of a locally compact group G on a Hilbert space H_π.
- Given a discrete subset Γ of G and a vector η ∈ H_π, we are interested in the Γ-indexed family

$$\pi(\Gamma)\eta = (\pi(\gamma)\eta)_{\gamma\in\Gamma}.$$

- Let π: G → U(H_π) be an irreducible, unitary group representation of a locally compact group G on a Hilbert space H_π.
- Given a discrete subset Γ of G and a vector η ∈ H_π, we are interested in the Γ-indexed family

$$\pi(\Gamma)\eta = (\pi(\gamma)\eta)_{\gamma\in\Gamma}.$$

Problem

Given Γ and η as above, what can we say about the "spanning" and "linear independence" properties of the family $\pi(\Gamma)\eta$ in \mathcal{H}_{π} ?

- Let π: G → U(H_π) be an irreducible, unitary group representation of a locally compact group G on a Hilbert space H_π.
- Given a discrete subset Γ of G and a vector η ∈ H_π, we are interested in the Γ-indexed family

$$\pi(\Gamma)\eta = (\pi(\gamma)\eta)_{\gamma\in\Gamma}.$$

Problem

Given Γ and η as above, what can we say about the "spanning" and "linear independence" properties of the family $\pi(\Gamma)\eta$ in \mathcal{H}_{π} ?

Intuition: For π(Γ)η to "span" H_π, Γ must be "sufficiently dense", and for π(Γ)η to be "linearly independent", Γ must be "sufficiently sparse".

 An orthonormal basis (e_j)_{j∈J} is characterized by the following two properties:

- An orthonormal basis (e_j)_{j∈J} is characterized by the following two properties:
 - Parseval's identity:

$$orall \xi \in \mathcal{H}$$
: $\sum_{j \in J} |\langle \xi, e_j \rangle|^2 = \|\xi\|^2.$

- An orthonormal basis (e_j)_{j∈J} is characterized by the following two properties:
 - Parseval's identity:

$$\forall \xi \in \mathcal{H} : \sum_{j \in J} |\langle \xi, e_j \rangle|^2 = \|\xi\|^2.$$

• Orthonormality:

$$orall (c_j)_j \in \ell^2(J): \quad \Big\| \sum_{j \in J} c_j e_j \Big\|^2 = \| (c_j)_j \|_2^2.$$

- Deforming Parseval's identity and orthonormality, we get the following definitions:
 - Parseval's identity:

$$\langle \xi \in \mathcal{H} : \sum_{j \in J} |\langle \xi, e_j \rangle|^2 = \|\xi\|^2.$$

• Orthonormality:

$$orall (c_j)_j \in \ell^2(J): \quad \Big\| \sum_{j \in J} c_j e_j \Big\|^2 = \| (c_j)_j \|_2^2.$$

- Deforming Parseval's identity and orthonormality, we get the following definitions:
 - $(e_j)_j$ is a frame if there exist A, B > 0 such that

$$\forall \xi \in \mathcal{H}: \quad A \|\xi\|^2 \leq \sum_{j \in J} |\langle \xi, e_j \rangle|^2 \leq B \|\xi\|^2.$$

• Orthonormality:

$$orall (c_j)_j \in \ell^2(J): \quad \Big\| \sum_{j \in J} c_j e_j \Big\|^2 = \| (c_j)_j \|_2^2.$$

- Deforming Parseval's identity and orthonormality, we get the following definitions:
 - $(e_j)_j$ is a frame if there exist A, B > 0 such that

$$\forall \xi \in \mathcal{H}: \quad A \|\xi\|^2 \leq \sum_{j \in J} |\langle \xi, \mathbf{e}_j \rangle|^2 \leq B \|\xi\|^2.$$

• $(e_j)_j$ is a Riesz sequence if there exist A, B > 0 such that

$$orall (c_j)_j \in \ell^2(J): \quad A \| (c_j)_j \|_2^2 \leq \Big\| \sum_{j \in J} c_j e_j \Big\|^2 \leq B \| (c_j)_j \|_2^2.$$

- Deforming Parseval's identity and orthonormality, we get the following definitions:
 - $(e_j)_j$ is a frame if there exist A, B > 0 such that

$$\forall \xi \in \mathcal{H}: \quad A \|\xi\|^2 \leq \sum_{j \in J} |\langle \xi, \mathbf{e}_j \rangle|^2 \leq B \|\xi\|^2.$$

• $(e_j)_j$ is a Riesz sequence if there exist A, B > 0 such that

$$orall (c_j)_j \in \ell^2(J): \quad A \| (c_j)_j \|_2^2 \leq \Big\| \sum_{j \in J} c_j e_j \Big\|^2 \leq B \| (c_j)_j \|_2^2.$$

• $(e_j)_j$ is a *Riesz basis* if it is both a frame and a Riesz sequence.

1. Let $G = \mathbb{R}^{2d} \cong \mathbb{R}^d \times \mathbb{R}^d$ and let $\pi \colon \mathbb{R}^{2d} \to \mathcal{U}(L^2(\mathbb{R}^d))$ be the Heisenberg representation given by

 $\pi(x,\omega)\xi(t) = e^{2\pi i\omega \cdot t}\xi(t-x) \text{ for } (x,\omega) \in \mathbb{R}^{2d} \text{ and } \xi \in L^2(\mathbb{R}^d).$

1. Let $G = \mathbb{R}^{2d} \cong \mathbb{R}^d \times \mathbb{R}^d$ and let $\pi \colon \mathbb{R}^{2d} \to \mathcal{U}(L^2(\mathbb{R}^d))$ be the Heisenberg representation given by

$$\pi(x,\omega)\xi(t) = e^{2\pi i\omega \cdot t}\xi(t-x) \quad \text{for } (x,\omega) \in \mathbb{R}^{2d} \text{ and } \xi \in L^2(\mathbb{R}^d).$$

2. π is a σ -projective representation:

$$\pi(x,\omega)\pi(x',\omega')=e^{-2\pi i x \cdot \omega'}\pi(x+x',\omega+\omega'),$$

with associated 2-cocycle $\sigma((x, \omega), (x', \omega')) = e^{-2\pi i x \cdot \omega'}$.

1. Let $G = \mathbb{R}^{2d} \cong \mathbb{R}^d \times \mathbb{R}^d$ and let $\pi \colon \mathbb{R}^{2d} \to \mathcal{U}(L^2(\mathbb{R}^d))$ be the Heisenberg representation given by

$$\pi(x,\omega)\xi(t) = e^{2\pi i\omega \cdot t}\xi(t-x) \quad \text{for } (x,\omega) \in \mathbb{R}^{2d} \text{ and } \xi \in L^2(\mathbb{R}^d).$$

2. π is a σ -projective representation:

$$\pi(x,\omega)\pi(x',\omega')=e^{-2\pi i x \cdot \omega'}\pi(x+x',\omega+\omega'),$$

with associated 2-cocycle $\sigma((x, \omega), (x', \omega')) = e^{-2\pi i x \cdot \omega'}$.

3. In this context, families $(\pi(\gamma)\eta)_{\gamma\in\Gamma}$ for $\eta\in L^2(\mathbb{R}^d)$ and a discrete subset $\Gamma\subseteq\mathbb{R}^{2d}$ are known as Gabor systems, and have been extensively studied in Gabor analysis.

1. Let $G = A \times \widehat{A}$ for a locally compact abelian group A and let $\pi: G \to \mathcal{U}(L^2(A))$ be the Heisenberg representation given by

 $\pi(x,\omega)\xi(t)=\omega(t)\xi(x^{-1}t) \ \, \text{for} \ \, (x,\omega)\in {\mathcal G}\times \widehat{{\mathcal G}} \ \, \text{and} \ \, \xi\in L^2({\mathcal A}).$

2. π is a σ -projective representation:

$$\pi(x,\omega)\pi(x',\omega')=\overline{\omega'(x)}\pi(xx',\omega\omega'),$$

with associated 2-cocycle $\sigma((x, \omega), (x', \omega')) = \overline{\omega'(x)}$.

3. In this context, families $(\pi(\gamma)\eta)_{\gamma\in\Gamma}$ for $\eta\in L^2(A)$ and a discrete subset $\Gamma\subseteq G\times\widehat{G}$ are known as Gabor systems, and have been extensively studied in Gabor analysis.

For the rest of the talk, we assume that G is a unimodular, second countable, locally compact group, and that π is a σ-projective, irreducible, unitary representation of G which is square-integrable, i.e., there exist nonzero ξ, η ∈ H_π such that

$$\int_{\mathcal{G}} |\langle \xi, \pi(x) \eta \rangle|^2 \, \mathrm{d} x < \infty.$$

For the rest of the talk, we assume that G is a unimodular, second countable, locally compact group, and that π is a σ-projective, irreducible, unitary representation of G which is square-integrable, i.e., there exist nonzero ξ, η ∈ H_π such that

$$\int_{\mathcal{G}} |\langle \xi, \pi(x)\eta
angle|^2 \, \mathsf{d} x < \infty.$$

• Under these assumptions, the following orthogonality relations hold for all $\xi, \xi', \eta, \eta' \in \mathcal{H}_{\pi}$:

$$\int_{\mathcal{G}} \langle \xi, \pi(x) \eta \rangle \overline{\langle \xi', \pi(x) \eta' \rangle} \, \mathsf{d} x = d_\pi^{-1} \langle \xi, \xi' \rangle \overline{\langle \eta, \eta' \rangle}.$$

.

For the rest of the talk, we assume that G is a unimodular, second countable, locally compact group, and that π is a σ-projective, irreducible, unitary representation of G which is square-integrable, i.e., there exist nonzero ξ, η ∈ H_π such that

$$\int_{\mathcal{G}} |\langle \xi, \pi(x)\eta
angle|^2 \, \mathsf{d} x < \infty.$$

• Under these assumptions, the following orthogonality relations hold for all $\xi, \xi', \eta, \eta' \in \mathcal{H}_{\pi}$:

$$\int_{\mathcal{G}} \langle \xi, \pi(x) \eta \rangle \overline{\langle \xi', \pi(x) \eta' \rangle} \, \mathrm{d} x = d_\pi^{-1} \langle \xi, \xi' \rangle \overline{\langle \eta, \eta' \rangle}.$$

 The number d_π is called the formal dimension of π and depends on the choice of Haar measure on G.

A lattice in G is a discrete subgroup Γ with finite covolume vol(G/Γ).

A lattice in G is a discrete subgroup Γ with finite covolume vol(G/Γ).

Theorem (Romero–Van Velthoven 2020)

With π a σ -projective unitary representation of G as before, let Γ be a lattice in G. Then the following hold for $\eta \in \mathcal{H}_{\pi}$:

- 1. If $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} , then $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence for \mathcal{H}_{π} , then $d_{\pi} \operatorname{vol}(G/\Gamma) \geq 1$.
- 3. If $\pi(\Gamma)\eta$ is a Riesz basis for \mathcal{H}_{π} , then $d_{\pi} \operatorname{vol}(G/\Gamma) = 1$.

A lattice in G is a discrete subgroup Γ with finite covolume vol(G/Γ).

Theorem (Romero–Van Velthoven 2020)

With π a σ -projective unitary representation of G as before, let Γ be a lattice in G. Then the following hold for $\eta \in \mathcal{H}_{\pi}$:

- 1. If $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} , then $d_{\pi}\operatorname{vol}(G/\Gamma) \leq 1$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence for \mathcal{H}_{π} , then $d_{\pi} \operatorname{vol}(G/\Gamma) \geq 1$.
- 3. If $\pi(\Gamma)\eta$ is a Riesz basis for \mathcal{H}_{π} , then $d_{\pi} \operatorname{vol}(G/\Gamma) = 1$.
 - The density theorem has a long history for the Heisenberg representation of ℝ^{2d}.

1. If e.g. $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$, does there exist $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} ?

- 1. If e.g. $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$, does there exist $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} ?
- 2. Not always: Counter-examples can be found e.g. in the representation theory of $SL_2(\mathbb{R})$.

- 1. If e.g. $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$, does there exist $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} ?
- 2. Not always: Counter-examples can be found e.g. in the representation theory of $SL_2(\mathbb{R})$.
- An element γ ∈ Γ is called σ-regular if σ(γ, γ') = σ(γ', γ) whenever γγ' = γ'γ. We say that (Γ, σ) satisfies Kleppner's condition if every nontrivial σ-regular conjugacy class is infinite.

- 1. If e.g. $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$, does there exist $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} ?
- 2. Not always: Counter-examples can be found e.g. in the representation theory of $SL_2(\mathbb{R})$.
- An element γ ∈ Γ is called σ-regular if σ(γ, γ') = σ(γ', γ) whenever γγ' = γ'γ. We say that (Γ, σ) satisfies Kleppner's condition if every nontrivial σ-regular conjugacy class is infinite.

Romero–Van Velthoven (2020)

If (Γ, σ) satisfies Kleppner's condition, there exists $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame if and only if $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$. Analagous statements hold for Riesz sequences and Riesz bases.

Characterization of existence

Theorem (Bekka, 2004)

Let G be a unimodular, second countable, locally compact group and let π be a square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \langle \eta, \pi(y^{-1}\gamma y)\eta \rangle \, \mathrm{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is finite, and $\phi(\gamma) = 0$ otherwise. Then:
Theorem (Bekka, 2004)

Let G be a unimodular, second countable, locally compact group and let π be a square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \langle \eta, \pi(y^{-1}\gamma y)\eta \rangle \, \mathrm{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is finite, and $\phi(\gamma) = 0$ otherwise. Then:

1. There exists $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame if and only if $\delta_e - \phi$ is positive definite.

Theorem (E.)

Let G be a unimodular, second countable, locally compact group with 2-cocycle σ and let π be a σ -projective, square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \overline{\sigma(\gamma, y)} \sigma(y, \gamma) \langle \eta, \pi(y^{-1}\gamma y) \eta \rangle \, \mathsf{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is σ -regular and finite, and $\phi(\gamma) = 0$ otherwise. Then:

Theorem (E.)

Let G be a unimodular, second countable, locally compact group with 2-cocycle σ and let π be a σ -projective, square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \overline{\sigma(\gamma, y)} \sigma(y, \gamma) \langle \eta, \pi(y^{-1}\gamma y) \eta \rangle \, \mathsf{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is σ -regular and finite, and $\phi(\gamma) = 0$ otherwise. Then:

1. $\exists \eta \in \mathcal{H}_{\pi}$: $\pi(\Gamma)\eta$ is a frame iff $\delta_e - \phi$ is σ -positive definite.

Theorem (E.)

Let G be a unimodular, second countable, locally compact group with 2-cocycle σ and let π be a σ -projective, square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \overline{\sigma(\gamma, y)} \sigma(y, \gamma) \langle \eta, \pi(y^{-1}\gamma y) \eta \rangle \, \mathsf{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is σ -regular and finite, and $\phi(\gamma) = 0$ otherwise. Then:

1. $\exists \eta \in \mathcal{H}_{\pi}$: $\pi(\Gamma)\eta$ is a frame iff $\delta_e - \phi$ is σ -positive definite.

2. $\exists \eta \in \mathcal{H}_{\pi}$: $\pi(\Gamma)\eta$ is a Riesz sequence iff $\phi - \delta_e$ is σ -positive definite.

Theorem (E.)

Let G be a unimodular, second countable, locally compact group with 2-cocycle σ and let π be a σ -projective, square-integrable, irreducible, unitary representation of G. Let Γ be a lattice in G. Let $\eta \in \mathcal{H}_{\pi}$ be a unit vector. Define a function $\phi \in \ell^{\infty}(\Gamma)$ by

$$\phi(\gamma) = \frac{d_{\pi}}{|C_{\gamma}|} \int_{G/\Gamma_{\gamma}} \overline{\sigma(\gamma, y)} \sigma(y, \gamma) \langle \eta, \pi(y^{-1}\gamma y) \eta \rangle \, \mathsf{d}(y\Gamma_{\gamma})$$

if the conjugacy class C_{γ} is σ -regular and finite, and $\phi(\gamma) = 0$ otherwise. Then:

1. $\exists \eta \in \mathcal{H}_{\pi}$: $\pi(\Gamma)\eta$ is a frame iff $\delta_e - \phi$ is σ -positive definite.

2. $\exists \eta \in \mathcal{H}_{\pi}$: $\pi(\Gamma)\eta$ is a Riesz sequence iff $\phi - \delta_e$ is σ -positive definite.

3.
$$\exists \eta \in \mathcal{H}_{\pi}$$
: $\pi(\Gamma)\eta$ is a Riesz basis iff $\phi = \delta_e$.

 $\bullet\,$ With ϕ as on the last slide, we have

$$\phi(e) = d_{\pi} \operatorname{vol}(G/\Gamma).$$

Hence we recover the density theorem.

• With ϕ as on the last slide, we have

 $\phi(e) = d_{\pi} \operatorname{vol}(G/\Gamma).$

Hence we recover the density theorem.

• If

$$\phi = d_{\pi} \operatorname{vol}(G/\Gamma) \delta_{e}$$

then the condition $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$ (resp. $d_{\pi} \operatorname{vol}(G/\Gamma) \geq 1$) is sufficient for the existence of a frame (resp. Riesz sequence) $\pi(\Gamma)\eta$ for some $\eta \in \mathcal{H}_{\pi}$.

• With ϕ as on the last slide, we have

 $\phi(e) = d_{\pi} \operatorname{vol}(G/\Gamma).$

Hence we recover the density theorem.

• If

$$\phi = d_{\pi} \operatorname{vol}(G/\Gamma) \delta_{e}$$

then the condition $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$ (resp. $d_{\pi} \operatorname{vol}(G/\Gamma) \geq 1$) is sufficient for the existence of a frame (resp. Riesz sequence) $\pi(\Gamma)\eta$ for some $\eta \in \mathcal{H}_{\pi}$.

• If (Γ, σ) satisfies Kleppner's condition, then $\phi = d_{\pi} \operatorname{vol}(G/\Gamma)\delta_e$.

• With ϕ as on the last slide, we have

 $\phi(e) = d_{\pi} \operatorname{vol}(G/\Gamma).$

Hence we recover the density theorem.

• If

$$\phi = d_{\pi} \operatorname{vol}(G/\Gamma) \delta_{e}$$

then the condition $d_{\pi} \operatorname{vol}(G/\Gamma) \leq 1$ (resp. $d_{\pi} \operatorname{vol}(G/\Gamma) \geq 1$) is sufficient for the existence of a frame (resp. Riesz sequence) $\pi(\Gamma)\eta$ for some $\eta \in \mathcal{H}_{\pi}$.

• If (Γ, σ) satisfies Kleppner's condition, then $\phi = d_{\pi} \operatorname{vol}(G/\Gamma)\delta_e$.

Corollary (E.)

If G is abelian and (G, σ) satisfies Kleppner's condition, then $\phi = d_{\pi} \operatorname{vol}(G/\Gamma) \delta_e.$

Twisted group von Neumann algebras

1. Let Γ be a discrete group with 2-cocycle σ . The σ -twisted left regular representation λ_{σ} of Γ on $\ell^2(\Gamma)$ is given by

 $\lambda_{\sigma}(\gamma)f(\gamma') = \sigma(\gamma,\gamma^{-1}\gamma')f(\gamma^{-1}\gamma') \text{ for } \gamma,\gamma'\in \Gamma \text{ and } f\in \ell^2(\Gamma).$

1. Let Γ be a discrete group with 2-cocycle σ . The σ -twisted left regular representation λ_{σ} of Γ on $\ell^2(\Gamma)$ is given by

$$\lambda_{\sigma}(\gamma)f(\gamma') = \sigma(\gamma,\gamma^{-1}\gamma')f(\gamma^{-1}\gamma') \text{ for } \gamma,\gamma'\in \Gamma \text{ and } f\in \ell^2(\Gamma).$$

2. The σ -twisted group von Neumann algebra of Γ is

$$\mathsf{L}(\mathsf{\Gamma},\sigma) = \{\lambda_{\sigma}(\gamma) : \gamma \in \mathsf{\Gamma}\}''.$$

1. Let Γ be a discrete group with 2-cocycle σ . The σ -twisted left regular representation λ_{σ} of Γ on $\ell^2(\Gamma)$ is given by

$$\lambda_{\sigma}(\gamma)f(\gamma') = \sigma(\gamma,\gamma^{-1}\gamma')f(\gamma^{-1}\gamma') \text{ for } \gamma,\gamma'\in \Gamma \text{ and } f\in \ell^2(\Gamma).$$

2. The σ -twisted group von Neumann algebra of Γ is

$$\mathsf{L}(\mathsf{\Gamma},\sigma) = \{\lambda_{\sigma}(\gamma) : \gamma \in \mathsf{\Gamma}\}''.$$

The action of Γ on H_π via π|_Γ extends to give H_π the structure of a left Hilbert L(Γ, σ)-module.

• If $\pi(\Gamma)\eta$ is a frame, then the operator $C \colon \mathcal{H}_{\pi} \to \ell^{2}(\Gamma)$ given by $C\xi = (\langle \xi, \pi(\gamma)\eta \rangle)_{\gamma \in \Gamma}$

is bounded and injective, with closed range. It also intertwines $\pi|_{\Gamma}$ and $\lambda_{\sigma}|_{\Gamma}.$

• If $\pi(\Gamma)\eta$ is a frame, then the operator $C \colon \mathcal{H}_{\pi} \to \ell^{2}(\Gamma)$ given by $C\xi = (\langle \xi, \pi(\gamma)\eta \rangle)_{\gamma \in \Gamma}$

is bounded and injective, with closed range. It also intertwines $\pi|_{\Gamma}$ and $\lambda_{\sigma}|_{\Gamma}.$

 Conversely, if C: H_π → ℓ²(Γ) is an isometry that intertwines π|_Γ and λ_σ|_Γ, then π(Γ)η is a frame, where η = Pδ_e (P projection of ℓ²(Γ) onto H_π).

• If $\pi(\Gamma)\eta$ is a frame, then the operator $C \colon \mathcal{H}_{\pi} \to \ell^{2}(\Gamma)$ given by $C\xi = (\langle \xi, \pi(\gamma)\eta \rangle)_{\gamma \in \Gamma}$

is bounded and injective, with closed range. It also intertwines $\pi|_{\Gamma}$ and $\lambda_{\sigma}|_{\Gamma}.$

- Conversely, if C: H_π → ℓ²(Γ) is an isometry that intertwines π|_Γ and λ_σ|_Γ, then π(Γ)η is a frame, where η = Pδ_e (P projection of ℓ²(Γ) onto H_π).
- Conclusion: There exists a frame π(Γ)η for some η ∈ H_π if and only if H_π is a subrepresentation of ℓ²(Γ). This extends to an inclusion of Hilbert L(Γ, σ)-modules: H_π ≤ ℓ²(Γ).

• If $\pi(\Gamma)\eta$ is a frame, then the operator $C \colon \mathcal{H}_{\pi} \to \ell^{2}(\Gamma)$ given by $C\xi = (\langle \xi, \pi(\gamma)\eta \rangle)_{\gamma \in \Gamma}$

is bounded and injective, with closed range. It also intertwines $\pi|_{\Gamma}$ and $\lambda_{\sigma}|_{\Gamma}.$

- Conversely, if C: H_π → ℓ²(Γ) is an isometry that intertwines π|_Γ and λ_σ|_Γ, then π(Γ)η is a frame, where η = Pδ_e (P projection of ℓ²(Γ) onto H_π).
- Conclusion: There exists a frame π(Γ)η for some η ∈ H_π if and only if H_π is a subrepresentation of ℓ²(Γ). This extends to an inclusion of Hilbert L(Γ, σ)-modules: H_π ≤ ℓ²(Γ).
- Hilbert modules over finite von Neumann algebras are entirely determined by their center-valued dimension: H_π ≤ ℓ²(Γ) if and only if cdim H_π ≤ cdim ℓ²(Γ) = I.

Additional regularity of η

• So far, we have only considered the question of when there exists $\eta \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame.

- So far, we have only considered the question of when there exists η ∈ H_π such that π(Γ)η is a frame.
- Often, one wants additional regularity of η , e.g., through decay and/or smoothness of the matrix coefficients of η .

- So far, we have only considered the question of when there exists η ∈ H_π such that π(Γ)η is a frame.
- Often, one wants additional regularity of η , e.g., through decay and/or smoothness of the matrix coefficients of η .
- Set

$$\mathcal{H}^1_{\pi} = \Big\{ \xi \in \mathcal{H}_{\pi} : \int_{\mathcal{G}} |\langle \xi, \pi(x) \xi \rangle| \, \mathrm{d} x < \infty \Big\}.$$

- So far, we have only considered the question of when there exists η ∈ H_π such that π(Γ)η is a frame.
- Often, one wants additional regularity of η , e.g., through decay and/or smoothness of the matrix coefficients of η .
- Set

$$\mathcal{H}^1_{\pi} = \Big\{ \xi \in \mathcal{H}_{\pi} : \int_{\mathcal{G}} |\langle \xi, \pi(x) \xi \rangle| \, \mathsf{d} x < \infty \Big\}.$$

 What can we say about existence of a frame of the form π(Γ)η for some η ∈ H¹_π?

• Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

Theorem (Feichtinger–Kaiblinger 2002)

Let Γ be a lattice in \mathbb{R}^{2d} , and let $\eta \in \mathcal{H}^1_{\pi}$. Then the following hold:

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

Theorem (Feichtinger–Kaiblinger 2002)

Let Γ be a lattice in \mathbb{R}^{2d} , and let $\eta \in \mathcal{H}^1_{\pi}$. Then the following hold:

1. If $\pi(\Gamma)\eta$ is a frame, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$.

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

Theorem (Feichtinger–Kaiblinger 2002)

Let Γ be a lattice in \mathbb{R}^{2d} , and let $\eta \in \mathcal{H}^1_{\pi}$. Then the following hold:

- 1. If $\pi(\Gamma)\eta$ is a frame, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) > 1$.

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

Theorem (Feichtinger–Kaiblinger 2002)

Let Γ be a lattice in \mathbb{R}^{2d} , and let $\eta \in \mathcal{H}^1_{\pi}$. Then the following hold:

- 1. If $\pi(\Gamma)\eta$ is a frame, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) > 1$.

Consequently, there are no Riesz bases of the form $\pi(\Gamma)\eta$ for $\eta\in\mathcal{H}^1_{\pi}.$

- Let π be the Heisenberg representation of $G = \mathbb{R}^{2d}$.
- The space \mathcal{H}^1_{π} is in this setting known as the Feichtinger algebra.

Theorem (Feichtinger–Kaiblinger 2002)

Let Γ be a lattice in \mathbb{R}^{2d} , and let $\eta \in \mathcal{H}^1_{\pi}$. Then the following hold:

- 1. If $\pi(\Gamma)\eta$ is a frame, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence, then $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) > 1$.

Consequently, there are no Riesz bases of the form $\pi(\Gamma)\eta$ for $\eta \in \mathcal{H}^1_{\pi}.$

• Generalizes to locally compact abelian groups A with noncompact identity component (E., Jakobsen, Luef, Omland).

Converses to the Balian–Low Theorem

Theorem (Jakobsen-Luef 2018)

Let $\Gamma = M\mathbb{Z}^{2d}$ be a lattice in \mathbb{R}^{2d} for $M \in GL_{2d}(\mathbb{R})$ such that the matrix $M^t JM$ contains at least one irrational entry. Here J denotes the standard symplectic $2n \times 2n$ matrix. Then the following hold:

Converses to the Balian–Low Theorem

Theorem (Jakobsen-Luef 2018)

Let $\Gamma = M\mathbb{Z}^{2d}$ be a lattice in \mathbb{R}^{2d} for $M \in GL_{2d}(\mathbb{R})$ such that the matrix $M^t JM$ contains at least one irrational entry. Here J denotes the standard symplectic $2n \times 2n$ matrix. Then the following hold:

1. If $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$, then there exists $\eta \in \mathcal{H}^1_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame.

Converses to the Balian–Low Theorem

Theorem (Jakobsen-Luef 2018)

Let $\Gamma = M\mathbb{Z}^{2d}$ be a lattice in \mathbb{R}^{2d} for $M \in GL_{2d}(\mathbb{R})$ such that the matrix $M^t JM$ contains at least one irrational entry. Here J denotes the standard symplectic $2n \times 2n$ matrix. Then the following hold:

- 1. If $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$, then there exists $\eta \in \mathcal{H}^1_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame.
- 2. If $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) > 1$, then there exists $\eta \in \mathcal{H}^1_{\pi}$ such that $\pi(\Gamma)\eta$ is a Riesz sequence.
Converses to the Balian–Low Theorem

Theorem (Jakobsen-Luef 2018)

Let $\Gamma = M\mathbb{Z}^{2d}$ be a lattice in \mathbb{R}^{2d} for $M \in GL_{2d}(\mathbb{R})$ such that the matrix $M^t JM$ contains at least one irrational entry. Here J denotes the standard symplectic $2n \times 2n$ matrix. Then the following hold:

- 1. If $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) < 1$, then there exists $\eta \in \mathcal{H}^1_{\pi}$ such that $\pi(\Gamma)\eta$ is a frame.
- 2. If $\operatorname{vol}(\mathbb{R}^{2d}/\Gamma) > 1$, then there exists $\eta \in \mathcal{H}^1_{\pi}$ such that $\pi(\Gamma)\eta$ is a Riesz sequence.
 - Frames π(Γ)η with η ∈ H¹_π can be interpreted as single generators of Rieffel's Heisenberg module over C*(Γ, σ) ≅ A_Θ, Θ = M^tJM.

Beyond the lattice case

 State of the art: Discrete subsets Γ ⊆ G without any group structure.

Beyond the lattice case

- State of the art: Discrete subsets Γ ⊆ G without any group structure.
- Suppose G is compactly generated. We define the lower and upper Beurling densities of Γ to be

$$D^{-}(\Gamma) = \liminf_{r \to \infty} \inf_{x \in G} \frac{|\Gamma \cap B_r(x)|}{\mu(B_r(x))},$$
$$D^{+}(\Gamma) = \limsup_{r \to \infty} \sup_{x \in G} \frac{|\Gamma \cap B_r(x)|}{\mu(B_r(x))},$$

where the balls $B_r(x)$ are defined using a choice of word metric on G.

Beyond the lattice case

- State of the art: Discrete subsets Γ ⊆ G without any group structure.
- Suppose G is compactly generated. We define the lower and upper Beurling densities of Γ to be

$$D^{-}(\Gamma) = \liminf_{r \to \infty} \inf_{x \in G} \frac{|\Gamma \cap B_r(x)|}{\mu(B_r(x))},$$

$$D^{+}(\Gamma) = \limsup_{r \to \infty} \sup_{x \in G} \frac{|\Gamma \cap B_r(x)|}{\mu(B_r(x))},$$

where the balls $B_r(x)$ are defined using a choice of word metric on G.

• If Γ is a lattice in G, then $D^{-}(\Gamma) = D^{+}(\Gamma) = 1/\operatorname{vol}(G/\Gamma)$.

Density and Balian–Low Theorems for irregular point sets

Density and Balian–Low Theorems for irregular point sets

Theorem (Führ–Gröchenig–Haimi–Klotz–Romero 2017)

Let G be a compactly generated, locally compact group with polynomial growth, and let π be a square-integrable, irreducible, unitary representation of G. Let $\Gamma \subseteq G$ be discrete and $\eta \in \mathcal{H}_{\pi}$. Then:

- 1. If $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Gamma) \geq d_{\pi}$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence for \mathcal{H}_{π} , then $D^+(\Gamma) \leq d_{\pi}$.

Density and Balian–Low Theorems for irregular point sets

Theorem (Führ–Gröchenig–Haimi–Klotz–Romero 2017)

Let G be a compactly generated, locally compact group with polynomial growth, and let π be a square-integrable, irreducible, unitary representation of G. Let $\Gamma \subseteq G$ be discrete and $\eta \in \mathcal{H}_{\pi}$. Then:

- 1. If $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Gamma) \geq d_{\pi}$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence for \mathcal{H}_{π} , then $D^+(\Gamma) \leq d_{\pi}$.

Theorem (Gröchenig–Romero–Van Velthoven 2019)

Let G be a homogeneous Lie group and let π be a square-integrable, irreducible, unitary representation of G. Let $\Gamma \subseteq G$ be discrete and $\eta \in \mathcal{H}^1_{\pi}$. Then:

- 1. If $\pi(\Gamma)\eta$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Gamma) > d_{\pi}$.
- 2. If $\pi(\Gamma)\eta$ is a Riesz sequence for \mathcal{H}_{π} , then $D^+(\Gamma) < d_{\pi}$.

References

- B. Bekka: Square-integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl. 10 (2004), no. 4, 325–349.
- 2. U. Enstad: The density theorem for projective representations via twisted group von Neumann algebras, preprint, arXiv:2103.14467.
- H. Führ, K. Gröchenig, A. Haimi, A. Klotz, J. L. Romero: Sampling and interpolation in reproducing kernel Hilbert spaces, J. Lond. Math. Soc. (2) 96 (2017), no. 3, 663–686.
- K. Gröchenig, J. L. Romero, J. T. van Velthoven: Balian-Low Type theorems on homogeneous groups, Anal. Math. 46 (2020), no. 3, 483–515.
- M. S. Jakobsen, F. Luef: Duality of Gabor frames and Heisenberg modules, J. Noncommut. Geom. 14 (2020), no. 4, 1445–1550.
- 6. J. L. Romero, J. T. van Velthoven: *The density theorem for discrete series representations restricted to lattices*, preprint, arXiv:2003.08347.