Conjugacy and dynamics in tree almost automorphism groups joint with Waltraud Lederle, UCLouvain

Gil Goffer

Weizmann Institute

Online workshop at UiO, March 29, 2021

Tree almost automorphisms

Tree automorphism: bijection between vertices and edges preserving adjacency

Tree almost automorphism: (Equivalence class of) bijection between trees, *outside a finite set*

 $aAut(\mathcal{T})$: the group of almost automorphisms of the tree \mathcal{T} t.d.l.c. group with a natural topology, $Aut(\mathcal{T}) \leq aAut(\mathcal{T})$ open

There is an obvious action $\operatorname{Aut}(\mathcal{T}) \curvearrowright \partial \mathcal{T}$, can consider $\operatorname{aAut}(\mathcal{T}) \leq \operatorname{Homeo}(\partial \mathcal{T})$.

If \mathcal{T} is regular, $aAut(\mathcal{T})$ is called **Neretin's group**. It was defined by Neretin in the 90s.

Theorem Neretin's group is

- 1. simple, [Kapoudjian]
- 2. compactly generated, (Higman–Thompson, Caprace–De Medts)
- 3. has no lattices. (Bader–Caprace–Gelander–Mozes)

Theorem (Tits)

Tree automorphisms come in three different types:

- ▶ elliptic: fixing a vertex,
- ▶ inversion: flipping an edge,
- **translation:** translating along a bi-infinite line.

In aAut(T), elements may show "mixed" behaviour - i.e, behave differently over different areas of $\partial {\cal T}$

Theorem (Le Boudec – Wesolek)

Tree almost automorphisms come in two different types. The following are equivalent for $g \in aAut(\mathcal{T})$:

- 1. $\overline{\langle g \rangle}$ is compact,
- 2. g can be represented as $\mathcal{T} \setminus \mathcal{T} \to \mathcal{T} \setminus \mathcal{T}$,
- 3. some power of g is an elliptic tree automorphism,

These are called **elliptic**. The other elements are called **translations**.

The translations show "**mixed**" behaviour, and therefore we wish to decompose them into **hyperbolic** and **elliptic** components.

Definition Let $g \in aAut(\mathcal{T})$. The **stable area** of g is "where g looks elliptic": $St(g) := \{x \in \partial \mathcal{T} \mid \forall \text{ nbhd } U \text{ of } x \exists B \subset U \exists n > 0 \colon g^n(B) = B\}.$

St(g) is clopen.

Definition $g \in aAut(\mathcal{T})$ is hyperbolic if $g|_{St(g)} = id$.

Weizmann Institute

Every $g \in aAut(\mathcal{T})$ has a unique decomposition $g = g_e g_h = g_h g_e$ with g_e elliptic, g_h hyperbolic and $supp(g_e) \cap supp(g_h) = \emptyset$.

- Proposition (Goffer–L.) Let $g, h \in aAut(\mathcal{T})$. Then, g is conjugate to h if and only if 1. g_e is conjugate to h_e ,
 - 2. g_h is conjugate to h_h ,
 - 3. either $\operatorname{supp}(g) = \operatorname{supp}(h) = \partial \mathcal{T}$ or $\operatorname{supp}(g), \operatorname{supp}(h) \neq \partial \mathcal{T}$.

Example

Conjugacy and dynamics in tree almost automorphism groups

Weizmann Institute

Theorem (Gawron – Nekrashevych – Sushchansky) In Aut(T):

- Two translations are conjugate if and only if they have the same translation length.
 In particular, their conjugacy class is open.
- ► Two elliptic elements, or two inversions, are conjugate if and only if the labelled trees ⟨g⟩\T with label ℓ([v]) = |[v]| are isomorphic as labeled trees. This labeled tree is called orbital type.

For elliptic elements: we generalize conjugacy in $Aut(\mathcal{T})$

Theorem (Goffer – L.)

Two elliptic elements in $aAut(\mathcal{T})$ are conjugate if and only if their **orbital types** $\langle g \rangle \setminus (\mathcal{T} \setminus T)$ are isomorphic as labeled forests, outside a finite set.

As for hyperbolic elements: we generalize conjugacy in **Thompson's** V.

Endow ${\mathcal T}$ with a **plane order**: For every vertex, a total order on its children.

Definition The **Higman–Thompson group** *V* is

 $V := \{g \in \mathsf{aAut}(\mathcal{T}) \mid \text{ a representative of } g \text{ preserves the plane order} \}.$

Belk and Matucci give an algorithm to determine conjugacy in V. Given a tree pair φ representing an element $g \in V$, they successively perform on φ three types of reductions, to obtain a finite diagram called the **reduced BM-diagram**.

Theorem (Belk-Matucci)

The BM-diagram fully determines the conjugacy class of g.

The Conjugacy problem

We denote leaves of a finite tree T by $\mathcal{L}T$.

Theorem (Goffer-L.)

Let $g, h \in aAut(\mathcal{T})$ be hyperbolic elements such that there exist revealing pairs $\varphi, \psi \colon \mathcal{T} \setminus T_1 \to \mathcal{T} \setminus T_2$ with $g|_{\mathcal{L}T_1} = h|_{\mathcal{L}T_1}$. Then, g and h are conjugate.

Namely, a hyperbolic $aAut(\mathcal{T})$ element is conjugate to every sufficiently close Higman-Thompson element.

Corollary (Goffer-L.)

The conjugacy class of a hyperbolic element g is closed. It is open if and only if $supp(g) = \partial T$.

Difference between conjugacy in V and hyperbolics in aAut(T):

- In aAut(\mathcal{T}), we start with a revealing pair.
- ► If no Type II can be done anymore, we can also do Type I*:

Forget about the plane order, there is no difference between the following:

Call the result the *-reduced BM-diagram for g.

Theorem (Goffer-L.)

Two hyperbolic tree almost automorphisms are conjugate if and only if they have isomorphic *-reduced BM-diagrams.

Corollary

A hyperbolic element is conjugate to a translation in Aut(T) if and only if its *-reduced BM-diagram looks as follows.

Conclusion

"Algorithm" to determine the conjugacy class:

- 1. Check whether $\operatorname{supp}(g) = \partial \mathcal{T}$
- 2. Calculate the decomposition $g = g_e g_h$
- 3. Form the (almost) orbital type of g_e
- 4. Find a revealing pair for g_h
- 5. Determine the *-reduced BM-diagram of this revealing pair

Questions?