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The set of dyadic rationals is Z[1/2] := {5 : m € Z,n € N}.
Thompson's group V is the group of bijections g on [0,1) for
which there exist tg, ..., tx € Z[1/2] and ng, ..., nkx € Z such that
0=ty <- <tx=1and g|y.y,,) is linear with derivative 2, for
i=0,...,k—1

The following is an example of an element of V:
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Thompson's group T is the subgroup of V consisting of bijections
which, identifying [0,1) with S!, are homeomorphisms on S?.
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Thompson's group F is the subgroup of T consisting of bijections
which are homeomorphisms on [0, 1). Example:
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Note that F = {g € T : g(0) = 0}.
Famous open problem: Is F amenable?



Given a group I and 7: [ — U(#H) a unitary representation, let
C:(F) = span{n(g) : g € T'}.

If o is another unitary representation of I', we say that 7 is weakly
contained in o (m < o) if ||w(a)|| < ||o(a)|| for every a € CI'. This
is equivalent to the existence of a x-homomorphism

Cx(I') — CX(T) such that o(g) — m(g) for every g.

We say that 7 is weakly equivalent to o if T <o and 0 < 7

(m~ o).

Given a unitary representation 7, we have that C*(I') is simple iff
for every o such that ¢ < m, it holds that o ~ 7.

That is, CX(I') is simple iff 7 is " weakly irreducible”.



Example (Quasi-regular representation)

Let A be a subgroup of a group I'. Denote by Ar/p the unitary
representation of I' defined by

Ar/a(g): 2(T/N) = £2(T/N)
OnA > Oghn

If A = {e}, this is the usual left regular representation Ar.

Given groups A1y < Ay < T, we have that Ar/p, < Ar/p, iff Apis
co-amenable in Ay, in the sense that the action Ay ~ Ay/A;
admits invariant mean. If we take A; = {e}, we conclude that A
is amenable iff Ar/p, < Ar.

A trace on a unital C*-algebra A is a unital positive linear
functional ¢: A — C such that ¢(ab) = ¢(ba) for every a, b € A.
We have that C}_(I') always admits a trace given by

7(a) = (ade, 0e). Moreover, this trace is faithful (in the sense that
7(a*a) =0 = a=0). This is called the canonical trace.



For quasi-regular representations, the situation is much different:

Example (Haagerup, Olesen)

Let X :=Z[1/2]N[0,1). Then X is V-invariant. Let

7: V — B(£2(X)) be given by m(g)dx = dgx. Then

C;;‘F(F) - C;flT(T) C CX(V) = Oz (in particular, CX(V) is simple
and admits no traces).

Since the action of T on X is transitive, we have that |1 = Ay /r
(and likewise 7 is a quasi-regular representation of V).

V.

Recently, there has been a lot of progress in understanding when
C;. () is simple and when it admits a unique trace, although it
can be difficult to determine these properties for individual
examples. For example, it was shown by (Haagerup, Olesen) and
(Le Boudec, Matte Bon) that Thompson's group F is
non-amenable iff C5_(T) is simple.

Our initial goal was to give a conceptual explanation for why
Cx(V) is simple and has no traces, and then decide these
properties for C/”{T/F(T). We were able to do this for certain
unitary rerpesentations coming from dynamical systems.



Boundary actions

Let X be a compact Hausdorff space and I ~ X.
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Given g €T, let Fix, = {x € X : gx = x};
Given x € X, let Ty ={g €T : gx = x} and

% :={g el : gfixes an open neighborhood of x}.

One can show that % < T,. The action is:
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minimal if, Vx € X, Tx = X;

faithful if, Vg € '\ {e}, Fixg C X;

topologically free if, Vg € '\ {e}, int Fixy = ;

strongly proximal if, given p, v € Prob(X), there is a net
(gi) C T such that lim gju = lim gjv.

a boundary if it is minimal and strongly proximal (in this case,
we say that X is a [-boundary);

an extreme boundary if, given C C X closed and U C X
non-empty and open, there is g € ' such that g(C) C U. It
was shown by Glasner that extreme boundary implies
boundary.



Example (Le Boudec, Matte Bon)

The action of T on S! is an extreme boundary action.
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Given a group T, there is a [-boundary, denoted by Orl" and called
the Furstenberg boundary of ', which is " universal”, in the sense
that, given another I-boundary X, there is a [-equivariant
continuous map 9l — X.



Given C*-algebras A and B, we say a linear map ¢: A — B is
completely positive if for every n € N the extension
(M : M,(A) — My(B) is positive.
Example:
@ Any x-homomorphism is completely positive.
@ If Ais unital and ¢: A — B is linear positve, and either A or
B are abelian, then ¢ is completely positive.



Given a group I, a -C*-algebra A is a unital C*-algebra endowed
with an action ' ~ A by automorphisms.
A [-map between -C*-algebras A and B is a [-equivariant unital
and completely positive map ¢: A — B.
We say A is -injective if, given a [-equivariant injective unital
x-homomorphism ¢: B — C and a -map ¢: B — A, there is a
-map ¢: C — A such that p o) = ¢:
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Notice that, if A is [-injective, given another [-C*-algebra B,
there is at least one -map ¢: B — A:
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Theorem (Kalantar, Kennedy)
Given a group T,
@ C(Ogr) is T-injective;

@ The only T-map vp: C(OrT) — C(OfT) is Id¢(a.r) (rigidity).

Corollary (Kalantar, Kennedy)

Let X be a I'-boundary. There is a unique I -equivariant map
bx: Oel — X and a unique T-map 1. C(X) — C(OfI).
Moreover, 1) is given by ¢(f) = f o by, for f € C(X).
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Applying Ofl for investigating traces

Given a unitary representation 7w: [ — B(H,), we have that both
Cx(T') and B(Hr) can be seen as I'-C*-algebras with action given
by g.a:=m(g)ar(g™?).

A trace 7: CX(I) — C is a I-map, since 7(7(g)ar(g 1)) = 7(a).
Furthermore, 7 can be seen as taking values into C(9fT):

Ci(T) — C(9eT)
ar— T(a)lc(aFr)

Conversely, any I'-map ¢: C(I') — C(9gl') whose image consists
of constant functions arises from a trace.



Applying Ofl for simplicity

Fix 7 a unitary representation of I.

Suppose there is a unique -map ¢: CX(I') — C(9gl) which is,

moreover, faithful.

Given a surjective *-homomorphism p: C*(I') — B, we have that

B can also be seen as a -C*-algebra, via

g.b=p(m(g))bp(r(g~1)) and, in this way, p is a -map.

By l-injectivity, there is a -map ¢: B — C(9fT):
G()——8B — C(0fT)

Then ¢ o p =1). Since v is faithful, we conclude that p is injective.
Therefore, CX(T') is simple.

Given a -C*-algebra A, a boundary map is a '-map

P A— C(OfIN).

Theorem (Kennedy)

Cx.(T) is simple iff C{_(I') admits a unique boundary map.




Definition
Let [ ~ X, where X is a compact space. A groupoid
representation of (I', X) is a pair (7, p) such that:
Q@ 7: [ — B(H,) is a unitary representation;
@ p: C(X) — B(Hx) is a [-equivariant unital *-homomorphism;
Q 7(g)p(f) =p(f), VgeTl,fe C(X)with suppf C intFixg.
In this case, we also say that 7 is a groupoid representation of I
(relative to X).

Given an action [ ~ X, one can associate to it an étale (not
necessarily Hausdorff) groupoid G (groupoid of germs). The term
"groupoid representation” from the definition above comes from
the fact that these representations are in one-to-one
correspondence with representations of C*(G).



Proposition
Let T ~ X, where X is a compact space. The following are

groupoid representations:
(i) Fixx € X and H < T is such that T < H < T,. The pair

(Ar/H;Px) is a groupoid representation, where
Py: C(X) — B(£2(T/H)) (Poisson map) is given by:
Pu(f): C3(T/H) — (T /H)
5gH — f(gx)égH.

(i) The pair (ky, p), where v is a o-finite quasi-invariant measure
on X, k, is the Koopman representation of I on L?(X,v) and

p: C(X) — B(L?(X,v)) is the representation by
multiplication operators.




Theorem

Let X be a '-boundary and 7 a groupoid representation of I.
Then there is a unique I-map 1. CX(I') — C(OfgT).
Furthermore, Y(7(g)) = 1—————~ forallg €T.

T by M(intFixg)
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Corollary

Let X be a faithful [-boundary and 7 a groupoid representation of
. Then CX(I') admits a trace if and only if X is topologically free.




Example

Since we defined T as a group of homeomorphisms on S!, it is
clear that T ~ S% is fatifhul.
On the other hand, the action is not topologically free:

Recall that F = {g € T : g(1) =1} (i.e., F = T1). Therefore,

C5_,_(T) does not admit traces.
T/F




Given a group I, let Sub(I") be the set of subgroups of I' endowed
with the Chabauty topology (coming from Sub(I') c {0,1}").
Given a group I acting on a compact space X, let

Stab®: X — Sub(T") be the map x — 2. Denote by X{ the points
on which Stab? is continuous. Then:

0 X0 = (Ugerﬁint Fixg>c;
@ if I is countable, then X{ is dense in X;

@ XY = X <= the groupoids of germs of the action is
Hausdorff.



Consider T ~ S' and let g € T be as follows:

Note that 1 € JdintFixg. It is easy to see that

(S1)3 =S\ {e* : 6 € Z[1/2]}.

Corollary

| A

Let X be a T-boundary and x € X. If x € X§, then C;‘r/ro (N is

simple.

A

Our next goal is to show that this result may fail if x & X$.



Let I' be a group acting on a set X. Given g €T, let

suppg = {x € X : gx # x}.

The following fact is behind the proof by Haagerup and Olesen
that A7 A A7k

Proposition

Let T be a group acting on a set X and mx: [ — B(£2(X)) the
associated unitary representation. Given g, h € [, we have that

suppg Nsupph =0 < (1 —mx(g))(1 —mx(h)) = 0.

This is a useful tool for studying weak containment in the following
way: Suppose we have two actionsonsets T ~ X and T ~ Y. If
there are g, h € I such that

suppx g Nsuppx h = () # suppy g Nsuppy h, then Ty £ 7x.



Example

Consider again T ~ S!. One can show that T{ = [F, F]. By
amenability, A\r/r < A7 /i F- Let X :=Z[1/2] N [0,1). Recall
T~ Xand T/F=X. Also T acts on X X Z x Z by

g(x,m,n) = (g(x), m+ logy g’ (x), n + log, g’ (x)).

Moreover, T/[F,F] =X x Z x Z.
Consider the following elements g,he T:

Then g and h have disjoint supports with respect to T ~ X, but
(1/2,0,0) € suppg Nsupp h (with respect to T ~ X X Z X Z).
Therefore, A7 /ir /] A A7/F and C;:T/[F,F](T) is not simple, even
thoueh it admits a uniaue boundarv map.




Let X be a I'-boundary. Given x € X, we have that C;‘r/r (N is

simple iff Fg is amenable.

7. Hence, G, F(T)

is simple.




Example

2R — R3\{0} - 2
Let P4(R) := owverh\jojaeropy: Jhen = SL3(Z) ~ P4(R)
is a topologically free boundary action (Furstenberg).
Let x = [(1,0,0)]. Since the action is topologically free, we have
% = {e}. On the other hand, for any B € SLy(Z), we have that

1 0
[O B} cr,
Therefore, SLy(Z) < T, hence 'y is not amenable. Therefore,

CF/FX(F) is not simple, although there is a unique '-map
G, p (1) = C(OT).




Given a compact I-space X, let (I, X) be the spectrum of the
I-injective envelope of C(X). In particular, there is a -equivariant
continuous map bx: 9(I', X) — X.

For example, O(I, {*}) = Ofl.

Theorem (Kawabe)

Let X be a minimal T-space. TFAE:

(i) The action T ~ (T, X) is topologically free;

(ii) There is a unique T-map ¢: C(X) x, [ — C(9(T, X)) such
that "MC(X) = IdC(X)r'

(iii) C(X) %, T is simple;

(iv) There is x € X such that for every amenable N < T there is a
net (g;) C T such that gi\g; ' converges to {e}.
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Proposition

Let X be a minimal T-space. Given a I-map
P: C(X)x T — C(I(T, X)) such that (f) = f o bx for
f € C(X), we have that

supph(m(g)) C by (intFixg), Vg eT,fe C(X)

Theorem
Let X be a minimal [-space. TFAE:
(i) The action T ~ O(T', X) is faithful;
(ii) There is a unique T-map ¢: C(X) x, I — C(X) such that
Ylcxy = Idexy and | cx(ry is a trace;
(iii) Given x € X, the stabilizer T, does not contain any non-trivial
amenable normal subgroup of T';

| \

(iv) There is x € X such that % does not contain any non-trivial
amenable normal subgroup of T.
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