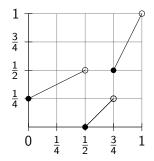
Boundary maps, germs and quasi-regular representations

Eduardo Scarparo (NTNU)

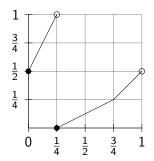
joint with Mehrdad Kalantar

The set of *dyadic rationals* is $\mathbb{Z}[1/2] := \{\frac{m}{2^n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$. Thompson's group *V* is the group of bijections *g* on [0, 1) for which there exist $t_0, \ldots, t_k \in \mathbb{Z}[1/2]$ and $n_0, \ldots, n_k \in \mathbb{Z}$ such that $0 = t_0 < \cdots < t_k = 1$ and $g|_{[t_i, t_{i+1})}$ is linear with derivative 2^{n_i} , for $i = 0, \ldots, k - 1$.

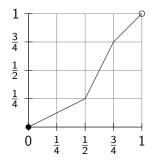
The following is an example of an element of V:



Thompson's group T is the subgroup of V consisting of bijections which, identifying [0, 1) with S^1 , are homeomorphisms on S^1 . Example:



Thompson's group F is the subgroup of T consisting of bijections which are homeomorphisms on [0, 1). Example:



Note that $F = \{g \in T : g(0) = 0\}$. Famous open problem: Is F amenable?

Given a group Γ and $\pi \colon \Gamma \to \mathcal{U}(\mathcal{H})$ a unitary representation, let $C^*_{\pi}(\Gamma) = \overline{\operatorname{span}}\{\pi(g) : g \in \Gamma\}.$

If σ is another unitary representation of Γ , we say that π is *weakly* contained in σ ($\pi \prec \sigma$) if $||\pi(a)|| \le ||\sigma(a)||$ for every $a \in \mathbb{C}\Gamma$. This is equivalent to the existence of a *-homomorphism $C^*_{\sigma}(\Gamma) \to C^*_{\pi}(\Gamma)$ such that $\sigma(g) \mapsto \pi(g)$ for every g. We say that π is *weakly equivalent to* σ if $\pi \prec \sigma$ and $\sigma \prec \pi$ ($\pi \sim \sigma$).

Given a unitary representation π , we have that $C^*_{\pi}(\Gamma)$ is simple iff for every σ such that $\sigma \prec \pi$, it holds that $\sigma \sim \pi$.

That is, $C^*_{\pi}(\Gamma)$ is simple iff π is "weakly irreducible".

Example (Quasi-regular representation)

Let Λ be a subgroup of a group $\Gamma.$ Denote by $\lambda_{\Gamma/\Lambda}$ the unitary representation of Γ defined by

$$\lambda_{\Gamma/\Lambda}(g) \colon \ell^2(\Gamma/\Lambda) o \ell^2(\Gamma/\Lambda) \ \delta_{h\Lambda} \mapsto \delta_{gh\Lambda}$$

If $\Lambda = \{e\}$, this is the usual left regular representation λ_{Γ} . Given groups $\Lambda_1 \leq \Lambda_2 \leq \Gamma$, we have that $\lambda_{\Gamma/\Lambda_2} \prec \lambda_{\Gamma/\Lambda_1}$ iff Λ_1 is co-amenable in Λ_2 , in the sense that the action $\Lambda_2 \curvearrowright \Lambda_2/\Lambda_1$ admits invariant mean. If we take $\Lambda_1 = \{e\}$, we conclude that Λ_2 is amenable iff $\lambda_{\Gamma/\Lambda_2} \prec \lambda_{\Gamma}$.

A trace on a unital C*-algebra A is a unital positive linear functional $\phi: A \to \mathbb{C}$ such that $\phi(ab) = \phi(ba)$ for every $a, b \in A$. We have that $C^*_{\lambda_{\Gamma}}(\Gamma)$ always admits a trace given by $\tau(a) = \langle a\delta_e, \delta_e \rangle$. Moreover, this trace is *faithful* (in the sense that $\tau(a^*a) = 0 \implies a = 0$). This is called the *canonical trace*. For quasi-regular representations, the situation is much different:

Example (Haagerup, Olesen)

Let $X := \mathbb{Z}[1/2] \cap [0, 1)$. Then X is V-invariant. Let $\pi \colon V \to B(\ell^2(X))$ be given by $\pi(g)\delta_x = \delta_{gx}$. Then $C^*_{\pi|_F}(F) \subsetneq C^*_{\pi|_T}(T) \subsetneq C^*_{\pi}(V) = \mathcal{O}_2$ (in particular, $C^*_{\pi}(V)$ is simple and admits no traces). Since the action of T on X is transitive, we have that $\pi|_T = \lambda_{T/F}$ (and likewise π is a quasi-regular representation of V).

Recently, there has been a lot of progress in understanding when $C^*_{\lambda_{\Gamma}}(\Gamma)$ is simple and when it admits a unique trace, although it can be difficult to determine these properties for individual examples. For example, it was shown by (Haagerup, Olesen) and (Le Boudec, Matte Bon) that Thompson's group *F* is non-amenable iff $C^*_{\lambda_{T}}(T)$ is simple.

Our initial goal was to give a conceptual explanation for why $C^*_{\pi}(V)$ is simple and has no traces, and then decide these properties for $C^*_{\lambda_{T/F}}(T)$. We were able to do this for certain unitary representations coming from dynamical systems.

Boundary actions

Let X be a compact Hausdorff space and $\Gamma \curvearrowright X$.

- Given $g \in \Gamma$, let $\operatorname{Fix}_g = \{x \in X : gx = x\}$;
- $\textbf{@} \quad \mathsf{Given} \ x \in X, \ \mathsf{let} \ \mathsf{\Gamma}_x = \{g \in \mathsf{\Gamma} : gx = x\} \ \mathsf{and}$

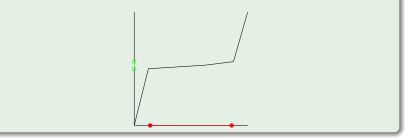
 $\Gamma^0_x := \{g \in \Gamma : g \text{ fixes an open neighborhood of } x\}.$

One can show that $\Gamma_x^0 \trianglelefteq \Gamma_x$. The action is:

- minimal if, $\forall x \in X$, $\overline{\Gamma x} = X$;
- ② faithful if, $\forall g \in \Gamma \setminus \{e\}$, Fix_g ⊊ X;
- topologically free if, $\forall g \in \Gamma \setminus \{e\}$, int $Fix_g = \emptyset$;
- strongly proximal if, given $\mu, \nu \in \operatorname{Prob}(X)$, there is a net $(g_i) \subset \Gamma$ such that $\lim g_i \mu = \lim g_i \nu$.
- a boundary if it is minimal and strongly proximal (in this case, we say that X is a Γ-boundary);
- O an extreme boundary if, given C ⊊ X closed and U ⊂ X non-empty and open, there is g ∈ Γ such that g(C) ⊂ U. It was shown by Glasner that extreme boundary implies boundary.

Example (Le Boudec, Matte Bon)

The action of T on S^1 is an extreme boundary action.



Given a group Γ , there is a Γ -boundary, denoted by $\partial_F \Gamma$ and called the *Furstenberg boundary* of Γ , which is "universal", in the sense that, given another Γ -boundary X, there is a Γ -equivariant continuous map $\partial_F \Gamma \rightarrow X$. Given C*-algebras A and B, we say a linear map $\phi: A \to B$ is completely positive if for every $n \in \mathbb{N}$ the extension $\phi^{(n)}: M_n(A) \to M_n(B)$ is positive. Example:

- Any *-homomorphism is completely positive.
- If A is unital and φ: A → B is linear positve, and either A or B are abelian, then φ is completely positive.

Given a group Γ , a Γ - C^* -algebra A is a unital C^* -algebra endowed with an action $\Gamma \frown A$ by automorphisms.

A Γ -map between Γ - C^* -algebras A and B is a Γ -equivariant unital and completely positive map $\phi \colon A \to B$.

We say A is Γ -injective if, given a Γ -equivariant injective unital *-homomorphism $\psi: B \to C$ and a Γ -map $\varphi: B \to A$, there is a Γ -map $\tilde{\varphi}: C \to A$ such that $\tilde{\varphi} \circ \psi = \varphi$:

Notice that, if A is Γ -injective, given another Γ -C*-algebra B, there is at least one Γ -map $\varphi \colon B \to A$:

Theorem (Kalantar, Kennedy)

Given a group Γ ,

- **1** $C(\partial_F \Gamma)$ is Γ -injective;
- **2** The only Γ -map $\psi \colon C(\partial_F \Gamma) \to C(\partial_F \Gamma)$ is $\mathrm{Id}_{C(\partial_F \Gamma)}$ (rigidity).

Corollary (Kalantar, Kennedy)

Let X be a Γ -boundary. There is a unique Γ -equivariant map $\mathfrak{b}_X : \partial_F \Gamma \to X$ and a unique Γ -map $\psi : C(X) \to C(\partial_F \Gamma)$. Moreover, ψ is given by $\psi(f) = f \circ \mathfrak{b}_X$, for $f \in C(X)$. Given a unitary representation $\pi: \Gamma \to B(\mathcal{H}_{\pi})$, we have that both $C_{\pi}^{*}(\Gamma)$ and $B(\mathcal{H}_{\pi})$ can be seen as Γ - C^{*} -algebras with action given by $g.a := \pi(g)a\pi(g^{-1})$. A trace $\tau: C_{\pi}^{*}(\Gamma) \to \mathbb{C}$ is a Γ -map, since $\tau(\pi(g)a\pi(g^{-1})) = \tau(a)$. Furthermore, τ can be seen as taking values into $C(\partial_{F}\Gamma)$:

$$egin{array}{l} C^*_\pi(\Gamma) o C(\partial_F\Gamma) \ a \mapsto au(a) 1_{C(\partial_F\Gamma)} \end{array}$$

Conversely, any Γ -map $\psi \colon C^*_{\pi}(\Gamma) \to C(\partial_F \Gamma)$ whose image consists of constant functions arises from a trace.

Applying $\partial_F \Gamma$ for simplicity

Fix π a unitary representation of Γ .

Suppose there is a unique Γ -map $\psi \colon C^*_{\pi}(\Gamma) \to C(\partial_F \Gamma)$ which is, moreover, faithful.

Given a surjective *-homomorphism $\rho: C^*_{\pi}(\Gamma) \to B$, we have that B can also be seen as a Γ - C^* -algebra, via

 $g.b = \rho(\pi(g))b\rho(\pi(g^{-1}))$ and, in this way, ρ is a Γ -map. By Γ -injectivity, there is a Γ -map $\phi: B \to C(\partial_F \Gamma)$:

$$C^*_{\pi}(\Gamma) \xrightarrow{\rho} B \xrightarrow{\phi} C(\partial_F \Gamma)$$

Then $\phi \circ \rho = \psi$. Since ψ is faithful, we conclude that ρ is injective. Therefore, $C_{\pi}^{*}(\Gamma)$ is simple.

Given a Γ - C^* -algebra A, a *boundary map* is a Γ -map $\psi \colon A \to C(\partial_F \Gamma)$.

Theorem (Kennedy)

 $C^*_{\lambda_{\Gamma}}(\Gamma)$ is simple iff $C^*_{\lambda_{\Gamma}}(\Gamma)$ admits a unique boundary map.

Definition

Let $\Gamma \curvearrowright X$, where X is a compact space. A groupoid representation of (Γ, X) is a pair (π, ρ) such that:

• $\pi: \Gamma \to B(\mathcal{H}_{\pi})$ is a unitary representation;

2 $\rho: C(X) \to B(\mathcal{H}_{\pi})$ is a Γ -equivariant unital *-homomorphism; 3 $\pi(g)\rho(f) = \rho(f), \quad \forall g \in \Gamma, f \in C(X)$ with supp $f \subset \operatorname{int} \operatorname{Fix}_g$. In this case, we also say that π is a groupoid representation of Γ (relative to X).

Given an action $\Gamma \cap X$, one can associate to it an étale (not necessarily Hausdorff) groupoid *G* (groupoid of germs). The term "groupoid representation" from the definition above comes from the fact that these representations are in one-to-one correspondence with representations of $C^*(G)$.

Proposition

Let $\Gamma \curvearrowright X$, where X is a compact space. The following are groupoid representations:

(i) Fix $x \in X$ and $H \leq \Gamma$ is such that $\Gamma_x^0 \leq H \leq \Gamma_x$. The pair $(\lambda_{\Gamma/H}, \mathcal{P}_x)$ is a groupoid representation, where $\mathcal{P}_x \colon C(X) \to B(\ell^2(\Gamma/H))$ (Poisson map) is given by:

$$\mathcal{P}_{x}(f) \colon \ell^{2}(\Gamma/H) \to \ell^{2}(\Gamma/H)$$
$$\delta_{gH} \mapsto f(gx)\delta_{gH}$$

 (ii) The pair (κ_ν, ρ), where ν is a σ-finite quasi-invariant measure on X, κ_ν is the Koopman representation of Γ on L²(X, ν) and ρ: C(X) → B(L²(X, ν)) is the representation by multiplication operators.

Theorem

Let X be a Γ -boundary and π a groupoid representation of Γ . Then there is a unique Γ -map $\psi \colon C^*_{\pi}(\Gamma) \to C(\partial_F \Gamma)$. Furthermore, $\psi(\pi(g)) = 1_{\mathfrak{b}^{-1}_{\chi}(\operatorname{int} \operatorname{Fix}_g)}$ for all $g \in \Gamma$.

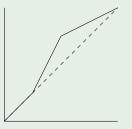
Corollary

Let X be a faithful Γ -boundary and π a groupoid representation of Γ . Then $C^*_{\pi}(\Gamma)$ admits a trace if and only if X is topologically free.

Example

Since we defined T as a group of homeomorphisms on S^1 , it is clear that $T \curvearrowright S^1$ is fatifhul.

On the other hand, the action is not topologically free:



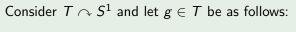
Recall that $F = \{g \in T : g(1) = 1\}$ (i.e., $F = T_1$). Therefore, $C^*_{\lambda_{T/F}}(T)$ does not admit traces.

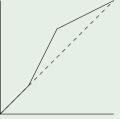
Given a group Γ , let Sub(Γ) be the set of subgroups of Γ endowed with the Chabauty topology (coming from Sub(Γ) $\subset \{0,1\}^{\Gamma}$). Given a group Γ acting on a compact space X, let Stab⁰: $X \to$ Sub(Γ) be the map $x \mapsto \Gamma_x^0$. Denote by X_0^0 the points on which Stab⁰ is continuous. Then:

$$X_0^0 = \left(\bigcup_{g \in \Gamma} \partial \operatorname{int} \operatorname{Fix}_g \right)^c;$$

- **2** if Γ is countable, then X_0^0 is dense in X;
- Solution 3 Solutio

Example





Note that $1 \in \partial$ int Fix_g . It is easy to see that $(S^1)_0^0 = S^1 \setminus \{e^{2\pi i \theta} : \theta \in \mathbb{Z}[1/2]\}.$

Corollary

Let X be a Γ -boundary and $x \in X$. If $x \in X_0^0$, then $C^*_{\lambda_{\Gamma/\Gamma^0_X}}(\Gamma)$ is simple.

Our next goal is to show that this result may fail if $x \notin X_0^0$.

Let Γ be a group acting on a set X. Given $g \in \Gamma$, let supp $g := \{x \in X : gx \neq x\}$. The following fact is behind the proof by Haagerup and Olesen that $\lambda_T \not\prec \lambda_{T/F}$.

Proposition

Let Γ be a group acting on a set X and $\pi_X \colon \Gamma \to B(\ell^2(X))$ the associated unitary representation. Given $g, h \in \Gamma$, we have that

$$\operatorname{supp} g \cap \operatorname{supp} h = \emptyset \iff (1 - \pi_X(g))(1 - \pi_X(h)) = 0.$$

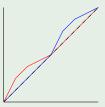
This is a useful tool for studying weak containment in the following way: Suppose we have two actions on sets $\Gamma \curvearrowright X$ and $\Gamma \curvearrowright Y$. If there are $g, h \in \Gamma$ such that $\operatorname{supp}_X g \cap \operatorname{supp}_X h = \emptyset \neq \operatorname{supp}_Y g \cap \operatorname{supp}_Y h$, then $\pi_Y \not\prec \pi_X$.

Example

Consider again $T \cap S^1$. One can show that $T_1^0 = [F, F]$. By amenability, $\lambda_{T/F} \prec \lambda_{T/[F,F]}$. Let $X := \mathbb{Z}[1/2] \cap [0, 1)$. Recall $T \cap X$ and T/F = X. Also T acts on $X \times \mathbb{Z} \times \mathbb{Z}$ by

$$g(x, m, n) = (g(x), m + \log_2 g'_{-}(x), n + \log_2 g'_{+}(x)).$$

Moreover, $T/[F, F] = X \times \mathbb{Z} \times \mathbb{Z}$. Consider the following elements $g, h \in T$:



Then g and h have disjoint supports with respect to $T \curvearrowright X$, but $(1/2, 0, 0) \in \operatorname{supp} g \cap \operatorname{supp} h$ (with respect to $T \curvearrowright X \times \mathbb{Z} \times \mathbb{Z}$). Therefore, $\lambda_{T/[F,F]} \not\prec \lambda_{T/F}$ and $C^*_{\lambda_{T/[F,F]}}(T)$ is not simple, even though it admits a unique boundary map.

Corollary

Let X be a Γ -boundary. Given $x \in X$, we have that $C^*_{\lambda_{\Gamma/\Gamma_x}}(\Gamma)$ is simple iff $\frac{\Gamma_x}{\Gamma^0_x}$ is amenable.

Example

Consider again $T \curvearrowright S^1$. Then $\frac{T_1}{T_1^0} = \frac{F}{[F,F]} = \mathbb{Z}^2$. Hence, $C^*_{\lambda_{T/F}}(T)$ is simple.

Example

Let $\mathbb{P}^2(\mathbb{R}) := \frac{\mathbb{R}^3 \setminus \{0\}}{\{v \sim \lambda v : v \in \mathbb{R}^3 \setminus \{0\}, \lambda \in \mathbb{R} \setminus \{0\}\}}$. Then $\Gamma := SL_3(\mathbb{Z}) \curvearrowright \mathbb{P}^2(\mathbb{R})$ is a topologically free boundary action (Furstenberg). Let x = [(1,0,0)]. Since the action is topologically free, we have $\Gamma_x^0 = \{e\}$. On the other hand, for any $B \in SL_2(\mathbb{Z})$, we have that

$$\begin{bmatrix} 1 & 0 \\ 0 & B \end{bmatrix} \in \mathsf{\Gamma}_x.$$

Therefore, $SL_2(\mathbb{Z}) \leq \Gamma_x$, hence Γ_x is not amenable. Therefore, $C^*_{\Gamma/\Gamma_x}(\Gamma)$ is not simple, although there is a unique Γ -map $C^*_{\lambda_{\Gamma/\Gamma_x}}(\Gamma) \to C(\partial_F\Gamma)$.

Given a compact Γ -space X, let $\partial(\Gamma, X)$ be the spectrum of the Γ -injective envelope of C(X). In particular, there is a Γ -equivariant continuous map $\mathfrak{b}_X : \partial(\Gamma, X) \to X$. For example, $\partial(\Gamma, \{*\}) = \partial_F \Gamma$.

Theorem (Kawabe)

Let X be a minimal Γ -space. TFAE:

- (i) The action $\Gamma \curvearrowright \partial(\Gamma, X)$ is topologically free;
- (ii) There is a unique Γ -map $\psi \colon C(X) \rtimes_r \Gamma \to C(\partial(\Gamma, X))$ such that $\psi|_{C(X)} = \mathrm{Id}_{C(X)}$;
- (iii) $C(X) \rtimes_r \Gamma$ is simple;
- (iv) There is $x \in X$ such that for every amenable $\Lambda \leq \Gamma_x$ there is a net $(g_i) \subset \Gamma$ such that $g_i \Lambda g_i^{-1}$ converges to $\{e\}$.

Proposition

Let X be a minimal Γ -space. Given a Γ -map $\psi \colon C(X) \rtimes \Gamma \to C(\partial(\Gamma, X))$ such that $\psi(f) = f \circ \mathfrak{b}_X$ for $f \in C(X)$, we have that

$$\operatorname{\mathsf{supp}}\psi(\pi(g))\subset \mathfrak{b}_X^{-1}(\operatorname{\mathsf{int}}\operatorname{\mathsf{Fix}}_g),\quad orall g\in \mathsf{\Gamma}, f\in \mathcal{C}(X)$$

Theorem

Let X be a minimal Γ -space. TFAE:

- (i) The action $\Gamma \curvearrowright \partial(\Gamma, X)$ is faithful;
- (ii) There is a unique Γ -map $\psi \colon C(X) \rtimes_r \Gamma \to C(X)$ such that $\psi|_{C(X)} = \operatorname{Id}_{C(X)}$ and $\psi|_{C_r^*(\Gamma)}$ is a trace;
- (iii) Given $x \in X$, the stabilizer Γ_x does not contain any non-trivial amenable normal subgroup of Γ ;
- (iv) There is $x \in X$ such that Γ_x^0 does not contain any non-trivial amenable normal subgroup of Γ .