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Questions on almost commuting matrices

Informally speaking: A, B are matrices, [A,B] is small. Are there
any exactly commuting matrices near A,B ?

‖ ‖ is the operator norm, that is ‖A‖ = sup‖x‖≤1 ‖Ax‖.
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Halmos’s questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices An,Bn ∈ Mkn(C)
satisfying

‖An‖ ≤ 1, ‖Bn‖ ≤ 1, ‖[An,Bn]‖ → 0

do there always exist sequences A′n,B
′
n ∈ Mkn(C) of self-adjoint

matrices such that

‖A′n − An‖ → 0, ‖B ′n − Bn‖ → 0, [A′n,B
′
n] = 0?

2) The same question for unitaries

NO. Voiculescu, 1983

(Sizes of matrices can grow!)
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Voiculescu’s matrices

For each n ∈ N we let ωn = exp(2πin ) and define Sn,Ωn ∈ Mn(C)
by

Sn =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0

 and Ωn =


ωn 0 · · · 0
0 ω2

n · · · 0
. . .

0 0 · · · ωn
n

 .

‖[Sn,Ωn]‖ → 0, as n→∞.

Voiculescu: Sn,Ωn are not close to any commuting pairs of
unitaries.

Exel and Loring: Sn,Ωn are not close to any commuting pairs.
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Questions on almost commuting matrices: general setting

p(1), p(2), . . . , p(N),

n ∈ N
⋃
{∞},

(
p(i)
)2

= p(i) =
(
p(i)
)∗

p(i)p(j) ≈ p(j)p(i).
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Questions on almost commuting matrices: general setting

A(1), . . . ,A(5),

(
A(i)
)∗

= A(i), ‖A(i)‖ ≤ 1,

AiAj ≈ AjAi .
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A(1), . . . ,A(5),
(
A(i)
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= A(i), ‖A(i)‖ ≤ 1,

AiAj ≈ AjAi ,
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Questions on almost commuting matrices: general setting

NC *-polynomials pj , j = 1, 2, . . ., are given.

Question: Is it true that any normal contractive matrices
A(1),A(2), . . . ,A(N), N ∈ N

⋃
∞, such that

[A(i),A(j)] ≈ 0

and
pj

(
A(1), . . . ,A(N)

)
≈ 0,

j = 1, 2, . . ., must be close to exactly commuting normal
contractive matrices exactly satisfying the same polynomial
relations?

l

C (X )
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C*-algebraic reformulation

∏
Mn(C) = {(Tn)n∈N | Tn ∈ Mn(C), sup

n
‖Tn‖ <∞}

(”noncommutative analogue” of l∞)

⊕
Mn(C) = {(Tn)n∈N | lim

n→∞
‖Tn‖ = 0}.

(”noncommutative analogue” of c0).
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C*-algebraic reformulation

Definition A C*-algebra A is matricially stable if each
∗-homomorphism from A to

∏
Mn(C)/

⊕
Mn(C) lifts:∏

Mn(C)

����
A

77

//
∏

Mn(C)/
⊕

Mn(C)

Reformulation of questions on almost commuting matrices:

For which X is C (X ) matricially stable?
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State of the art

Space X Is C (X ) matricially stable?

T2 No
(Voiculescu 83, a short proof by Exel and Loring 89)

[0, 1]2 Yes
(Lin 95, a short proof by Friis and Rørdam 96)

[0, 1]3 No
(Voiculescu 81, Davidson 85)

S2 No
(Voiculescu 81, Loring 88)

RP2 Yes
(Eilers, Loring, Pedersen 98)

1-dimensional Yes
CW-complexes (Loring 89)
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Matricial stability of C (X )

Question: For which compact metric space X is C (X ) matricially
stable?

Guess: iff dimX ≤ 2 and ?
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Work of Eilers, Loring, Pedersen

K0(A)

[p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+

[p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

K0(A) [p]− [q]

K0(A)+ [p]

Pre-order on K0(A): x ≥ y if x − y ∈ K0(A)+

Definition x ∈ K0(A) is an infinitesimal if

−[1A] ≤ nx ≤ [1A],

for all n ∈ N.

E.g. in K0(
∏

Mn(C)) there are no infinitesimals.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Work of Eilers, Loring, Pedersen

∏
Mn(C)

����
C (X )

66

//
∏

Mn(C)/
⊕

Mn(C)

K0(
∏

Mn(C))

��
K0(C (X ))

55

// K0 (
∏

Mn(C)/
⊕

Mn(C))

Observation: A liftable homomorphism has to kill infinitesimals.
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From K-theory to cohomology

Corollary (Eilers-Loring-Pedersen ’89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in
K0(C (X )) are torsion, then C (X ) is matricially stable.

Open question: Is the inverse true?

Chern character:
K0(C (X ))→ H0(X ,Q)⊕ H2(X ,Q)⊕ H4(X ,Q)⊕ . . ..

Proposition

Let X be a 2-dimensional CW-complex. If H2(X ;Q) = 0, then
C (X ) is matricially stable.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Matricial stability of C (X )

Question: For which X is C (X ) matricially stable?

Guess: iff dimX ≤ 2 and H2(X ,Q) = 0.

2 things to prove:

1) For X of dim ≤ 2, C (X ) is matricially stable ⇔ H2(X ;Q) = 0,

2) dimX ≥ 3 ⇒ C (X ) is not matricially stable.

Theorem

For X of dim ≤ 2, C (X ) is matricially stable if and only if
H2(X ;Q) = 0.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Strategy for proving that dimX cannot be ≥ 3

Lemma

If C (X ) is matricially stable and Y ⊆ X is a closed subset, then
C (Y ) is matricially stable.

Idea: for X with dimX ≥ 3 try to embed into X something
non-matricially stable.

(if X is a CW-complex, just embed S2)

Idea: for X with dimX ≥ 3 try to embed into X some Y with
dimY = 2,H2(Y ;Q) 6= 0.

Theorem

Suppose n < dimX <∞. Then there exists a closed subset A of
X such that dimA = n and Hn(A,Q) 6= 0.

Why the assumption dimX <∞?

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Matricial stability of C (X )

Question: For which compact metric X is C (X ) matricially stable?

Main theorem

Suppose dimX <∞. Then C (X ) is matricially stable if and only if
dim(X ) ≤ 2 and H2(X ;Q) = 0.

(In terms of generators and relations, this means that we solve the
questions for finite families of matrices (almost) satisfying possibly
infinitely many relations)

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in B(H)/K (H), BDF-theory answers when
it lifts to a normal operator.

Question (B. Blackadar, private communication): For which
compact subsets X ⊂ R2 does the following hold: Every normal
element of the Calkin algebra with spectrum contained in X lifts to
a normal operator in B(H)?

Theorem

Let X be a compact subset of the plane. The following are
equivalent:
(i) Any normal element of the Calkin algebra with spectrum
contained in X lifts to a normal operator;

(ii) dimX ≤ 1 and H1(X ) = 0.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Some applications

Theorem

The following are equivalent:

1) Any pointwise limit of liftable ∗-homomorphisms from C (X ) to
Q(H) is liftable itself;

2) C (X ) has the following lifting property:

B(H)

π

��
C (X )

φ
//

66

∏
Mdn/⊕Mdn j

// Q(H)
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Some applications

2) Lifting homomorphisms from the Calkin algebra

B(H)

����
C (X )

88

// B(H)/K (H)

For what X are all ∗-homomorphisms from C (X ) to the Calkin
algebra liftable?

BDF-theory deals with (lifting of) injective ∗-homomorphisms
from C (X ) to the Calkin algebra.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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Some applications

Theorem

Let X be a compact metric space and dimX ≤ 1. The following
are equivalent:

(1) All ∗-homomorphisms from C (X ) to B(H)/K (H) are liftable;
(2) Hom(H1(X ),Z) = 0.

Conjecture: The following are equivalent:
(1) All ∗-homomorphisms from C (X ) to B(H)/K (H) are liftable;
(2) dimX ≤ 1 and Hom(H1(X ),Z) = 0.

Missing ingredient (Question): Does ∞ > dimX > n imply that
there exists a closed subset Y ⊆ X with dimY = n and
Hom(Hn(Y ),Z) 6= 0?

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension
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(2) Hom(H1(X ),Z) = 0.

Conjecture: The following are equivalent:
(1) All ∗-homomorphisms from C (X ) to B(H)/K (H) are liftable;
(2) dimX ≤ 1 and Hom(H1(X ),Z) = 0.

Missing ingredient (Question): Does ∞ > dimX > n imply that
there exists a closed subset Y ⊆ X with dimY = n and
Hom(Hn(Y ),Z) 6= 0?
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Some applications

3) Blackadar’s l-closedness

Definition (Blackadar) A C ∗-algebra A is l-closed (l-open) if for
any C ∗-algebra B and any ideal I in B, the set of liftable
∗-homomorphisms from A to B/I is closed (open) w.r.t. the
topology of pointwise convergence in the set Hom(A,B/I ).

B. Blackadar: ”It seems reasonable that if X is any absolute
neighborhood retract, then C (X ) is l-closed”.

Theorem

Let X be a CW-complex. If C (X ) is l-closed, then dimX ≤ 3.
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Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen ’89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in
K0(C (X )) are torsion, then C (X ) is matricially stable.

Open question: Is the inverse true? Yes

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen ’89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in
K0(C (X )) are torsion, then C (X ) is matricially stable.

Open question: Is the inverse true? Yes

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension



Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen ’89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in
K0(C (X )) are torsion, then C (X ) is matricially stable.

Open question: Is the inverse true?

Yes
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Thank you!
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