Almost commuting matrices, cohomology, and dimension

Joint work with Dominic Enders

March 30, 2021

Informally speaking: A, B are matrices, [A, B] is small. Are there any exactly commuting matrices near A, B?

Informally speaking: A, B are matrices, [A, B] is small. Are there any exactly commuting matrices near A, B?

 $\| \|$ is the operator norm, that is $\|A\| = \sup_{\|x\| \le 1} \|Ax\|$.

Halmos's questions

Halmos 1976:

э

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

 $||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$

()

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

 $||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$

do there always exist sequences $A'_n, B'_n \in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \ \|B'_n - B_n\| \to 0, \ [A'_n, B'_n] = 0?$$

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

 $||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$

do there always exist sequences $A'_n, B'_n \in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \ \|B'_n - B_n\| \to 0, \ [A'_n, B'_n] = 0?$$

2) The same question for unitaries

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

 $||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$

do there always exist sequences $A'_n, B'_n \in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \ \|B'_n - B_n\| \to 0, \ [A'_n, B'_n] = 0?$$

2) The same question for unitaries

(Sizes of matrices can grow!)

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

 $||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$

do there always exist sequences $A'_n, B'_n \in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \ \|B'_n - B_n\| \to 0, \ [A'_n, B'_n] = 0?$$

2) The same question for unitaries NO. Voiculescu, 1983

For each $n \in \mathbb{N}$ we let $\omega_n = \exp(\frac{2\pi i}{n})$ and define $S_n, \Omega_n \in M_n(\mathbb{C})$ by

∃ ► < ∃ ►</p>

For each $n \in \mathbb{N}$ we let $\omega_n = \exp(\frac{2\pi i}{n})$ and define $S_n, \Omega_n \in M_n(\mathbb{C})$ by

$$S_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \quad \text{and} \quad \Omega_n = \begin{pmatrix} \omega_n & 0 & \cdots & 0 \\ 0 & \omega_n^2 & \cdots & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & \omega_n^n \end{pmatrix}.$$

For each $n \in \mathbb{N}$ we let $\omega_n = \exp(\frac{2\pi i}{n})$ and define $S_n, \Omega_n \in M_n(\mathbb{C})$ by

$$S_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \quad \text{and} \quad \Omega_n = \begin{pmatrix} \omega_n & 0 & \cdots & 0 \\ 0 & \omega_n^2 & \cdots & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & \omega_n^n \end{pmatrix}.$$

 $\|[S_n,\Omega_n]\| \to 0$, as $n \to \infty$.

∃ ► < ∃ ►</p>

For each $n \in \mathbb{N}$ we let $\omega_n = \exp(\frac{2\pi i}{n})$ and define $S_n, \Omega_n \in M_n(\mathbb{C})$ by

$$S_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \quad \text{and} \quad \Omega_n = \begin{pmatrix} \omega_n & 0 & \cdots & 0 \\ 0 & \omega_n^2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \omega_n^n \end{pmatrix}$$

 $\|[S_n,\Omega_n]\| \to 0$, as $n \to \infty$.

Voiculescu: S_n, Ω_n are not close to any commuting pairs of unitaries.

For each $n \in \mathbb{N}$ we let $\omega_n = \exp(\frac{2\pi i}{n})$ and define $S_n, \Omega_n \in M_n(\mathbb{C})$ by

$$S_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \quad \text{and} \quad \Omega_n = \begin{pmatrix} \omega_n & 0 & \cdots & 0 \\ 0 & \omega_n^2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \omega_n^n \end{pmatrix}$$

 $\|[S_n,\Omega_n]\| \to 0$, as $n \to \infty$.

Voiculescu: S_n , Ω_n are not close to any commuting pairs of unitaries.

Exel and Loring: S_n , Ω_n are not close to any commuting pairs.

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

$$||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$$

do there always exist sequences $A'_n,B'_n\in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \|B'_n - B_n\| \to 0, [A'_n, B'_n] = 0?$$

2) The same question for unitaries NO. Voiculescu, 1983

1) Given two sequences of self-adjoint matrices $A_n, B_n \in M_{k_n}(\mathbb{C})$ satisfying

$$||A_n|| \le 1, ||B_n|| \le 1, ||[A_n, B_n]|| \to 0$$

do there always exist sequences $A'_n,B'_n\in M_{k_n}(\mathbb{C})$ of self-adjoint matrices such that

$$\|A'_n - A_n\| \to 0, \|B'_n - B_n\| \to 0, [A'_n, B'_n] = 0?$$

YES. Lin, 1995

2) The same question for unitaries NO. Voiculescu, 1983

$$A = A^*, ||A|| \le 1,$$

$$A = A^*, ||A|| \le 1, UU^* = U^*U = 1,$$

$$A = A^*, ||A|| \le 1, UU^* = U^*U = 1, AU \approx UA.$$

-∢ ≣ ▶

$$p^{(1)}, p^{(2)}, \ldots, p^{(N)},$$

$$p^{(1)}, p^{(2)}, \ldots, p^{(N)}, n \in \mathbb{N} \bigcup \{\infty\},$$

$$p^{(1)}, p^{(2)}, \dots, p^{(N)}, n \in \mathbb{N} \bigcup \{\infty\}, (p^{(i)})^2 = p^{(i)} = (p^{(i)})^*$$

$$p^{(1)}, p^{(2)}, \dots, p^{(N)}, n \in \mathbb{N} \bigcup \{\infty\}, (p^{(i)})^2 = p^{(i)} = (p^{(i)})^*$$

 $p^{(i)}p^{(j)}\approx p^{(j)}p^{(i)}.$

()

 $A^{(1)}, \ldots, A^{(5)},$

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

$$egin{aligned} & \mathcal{A}^{(1)}, \ldots, \mathcal{A}^{(5)}, \ \left(\mathcal{A}^{(i)}
ight)^* = \mathcal{A}^{(i)}, \ \|\mathcal{A}^{(i)}\| \leq 1, \ & \mathcal{A}_i \mathcal{A}_j pprox \mathcal{A}_j \mathcal{A}_i. \end{aligned}$$

$$egin{aligned} &\mathcal{A}^{(1)},\ldots,\mathcal{A}^{(5)},\; \left(\mathcal{A}^{(i)}
ight)^{*} = \mathcal{A}^{(i)},\; \|\mathcal{A}^{(i)}\| \leq 1, \ &A_{i}\mathcal{A}_{j} pprox \mathcal{A}_{j}\mathcal{A}_{i}, \ &p(\mathcal{A}^{(1)},\ldots,\mathcal{A}^{(5)}) pprox 0. \end{aligned}$$

NC *-polynomials p_j , $j = 1, 2, \ldots$, are given.

NC *-polynomials p_j , $j = 1, 2, \ldots$, are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

NC *-polynomials p_j , j = 1, 2, ..., are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}
ight)pprox 0,$$

 $j=1,2,\ldots,$

医下颌 医下颌

NC *-polynomials p_j , j = 1, 2, ..., are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}\right)\approx 0,$$

j = 1, 2, ..., must be close to exactly commuting normal contractive matrices exactly satisfying the same polynomial relations?

NC *-polynomials p_j , $j = 1, 2, \ldots$, are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}\right)\approx 0,$$

1

C(X)

j = 1, 2, ..., must be close to exactly commuting normal contractive matrices exactly satisfying the same polynomial relations?

NC *-polynomials p_j , j = 1, 2, ..., are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}\right)\approx 0,$$

j = 1, 2, ..., must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

b 4 3 b 4 3 b

NC *-polynomials p_j , j = 1, 2, ..., are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}\right)\approx 0,$$

j = 1, 2, ..., must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

Namely, consider

$$C^*(x_1,...,x_N \mid [x_i^*,x_i] = [x_i,x_j] = 0, p_j(x_1,x_2,...) = 0)$$

b 4 3 b 4 3 b

NC *-polynomials p_j , j = 1, 2, ..., are given.

Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

 $[A^{(i)},A^{(j)}]\approx 0$

and

$$p_j\left(A^{(1)},\ldots,A^{(N)}\right)\approx 0,$$

j = 1, 2, ..., must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

Namely, consider

$$C^*(x_1,...,x_N \mid [x_i^*,x_i] = [x_i,x_j] = 0, p_j(x_1,x_2,...) = 0) \cong C(X)$$

b 4 3 b 4 3 b

C*-algebraic reformulation

• • = • • =
$\prod M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid T_n \in M_n(\mathbb{C}), \sup_n ||T_n|| < \infty\}$

• • = • • = •

$$\prod M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid T_n \in M_n(\mathbb{C}), \sup_n ||T_n|| < \infty\}$$

("noncommutative analogue" of I^{∞})

(*) * 문 * * 문 * · ·

э

("

$$\prod M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid T_n \in M_n(\mathbb{C}), \sup_n ||T_n|| < \infty\}$$
noncommutative analogue" of I^∞)

$$\bigoplus M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid \lim_{n \to \infty} ||T_n|| = 0\}.$$

★ ∃ → ★ ∃

$$\prod M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid T_n \in M_n(\mathbb{C}), \sup_n ||T_n|| < \infty\}$$
("noncommutative analogue" of I^∞)

$$\bigoplus M_n(\mathbb{C}) = \{(T_n)_{n \in \mathbb{N}} \mid \lim_{n \to \infty} ||T_n|| = 0\}.$$

("noncommutative analogue" of c_0).

∃ ► < ∃ ►</p>

$\prod_{\substack{i \in \mathcal{M}_n(\mathbb{C}) \\ i \neq i \\ \prod M_n(\mathbb{C}) / \bigoplus M_n(\mathbb{C})}} M_n(\mathbb{C})$

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

Image: A Image: A

$\prod M_n(\mathbb{C}) \\ \downarrow \\ \prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C})$

 $\prod M_n(\mathbb{C})$ $C(X) \xrightarrow{\checkmark} \prod M_n(\mathbb{C}) / \bigoplus M_n(\mathbb{C})$

Definition A C*-algebra *A* is *matricially stable* if each *-homomorphism from *A* to $\prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C})$ lifts:

()

Definition A C*-algebra *A* is *matricially stable* if each *-homomorphism from *A* to $\prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C})$ lifts:

Reformulation of questions on almost commuting matrices:

For which X is C(X) matricially stable?

Definition A C*-algebra *A* is *matricially stable* if each *-homomorphism from *A* to $\prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C})$ lifts:

Reformulation of questions on almost commuting matrices:

For which compact metric space X is C(X) matricially stable?

Space X	Is $C(X)$ matricially stable?

▲御▶ ▲ 陸▶ ▲ 陸▶

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)

▲御▶ ▲陸▶ ▲陸▶

2

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^2$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
	·

個 とくきとくきと

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^2$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^3$	No
	(Voiculescu 81, Davidson 85)

個 とくきとくきと

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^2$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^3$	No
	(Voiculescu 81, Davidson 85)
<i>S</i> ²	No
	(Voiculescu 81, Loring 88)

(*) * 문 * * 문 *

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^2$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^3$	No
	(Voiculescu 81, Davidson 85)
<i>S</i> ²	No
	(Voiculescu 81, Loring 88)
$\mathbb{R}P^2$	Yes
	(Eilers, Loring, Pedersen 98)

▶ ▲ 문 ▶ ▲ 문 ▶

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^2	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^2$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
[0, 1] ³	No
	(Voiculescu 81, Davidson 85)
<i>S</i> ²	No
	(Voiculescu 81, Loring 88)
$\mathbb{R}P^2$	Yes
	(Eilers, Loring, Pedersen 98)
1-dimensional	Yes
CW-complexes	(Loring 89)

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

(*) * 문 * * 문 *

∃ ► < ∃ ►</p>

Guess:

∃ ► < ∃ ►</p>

Guess: iff dim $X \leq 2$ and

글 🖌 🔺 글 🕨

Guess: iff dim $X \leq 2$ and **?**

∃ ► < ∃ ►</p>

• • = • • = •

$$K_0(A) \quad [p]-[q]$$

Image: A Image: A

$$K_0(A)$$
 $[p] - [q]$
 $K_0(A)_+$

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

• • = • • = •

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

Image: A Image: A

 $K_0(A) \quad [p] - [q]$ $K_0(A)_+ \quad [p]$

Pre-order on $K_0(A)$: $x \ge y$ if $x - y \in K_0(A)_+$

同 ト イヨ ト イヨ ト ヨ うくや

 $K_0(A)$ [p] – [q] $K_0(A)_+$ [p]

Pre-order on $K_0(A)$: $x \ge y$ if $x - y \in K_0(A)_+$

Definition $x \in K_0(A)$ is an *infinitesimal* if

 $-[1_A] \leq nx \leq [1_A],$

for all $n \in \mathbb{N}$.

医下颌 医下颌

-

 $K_0(A)$ [p] – [q] $K_0(A)_+$ [p]

Pre-order on $K_0(A)$: $x \ge y$ if $x - y \in K_0(A)_+$

Definition $x \in K_0(A)$ is an *infinitesimal* if $-[1_A] \le nx \le [1_A],$

for all $n \in \mathbb{N}$.

E.g. in $K_0(\prod M_n(\mathbb{C}))$ there are no infinitesimals.

= nac

 $\prod M_n(\mathbb{C})$ $C(X) \xrightarrow{} \prod M_n(\mathbb{C}) / \bigoplus M_n(\mathbb{C})$

 $K_0(\prod M_n(\mathbb{C}))$ $\mathcal{K}_0(\mathcal{C}(X)) \longrightarrow \mathcal{K}_0(\prod M_n(\mathbb{C})) \oplus M_n(\mathbb{C}))$

Observation: A liftable homomorphism has to kill infinitesimals.

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Fact (Loring): $K_0(\prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C}))$ has no torsion.

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Fact (Loring): $K_0(\prod M_n(\mathbb{C})/\bigoplus M_n(\mathbb{C}))$ has no torsion.

All infinitesimals in $K_0(C(X))$ are torsion \Rightarrow

all infinitesimals are killed $\Rightarrow C(X)$ is matricially stable

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Open question: Is the inverse true?

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Open question: Is the inverse true?

Chern character: $K_0(C(X)) \rightarrow H^0(X, \mathbb{Q}) \oplus H^2(X, \mathbb{Q}) \oplus H^4(X, \mathbb{Q}) \oplus \dots$
Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Open question: Is the inverse true?

Chern character: $K_0(C(X)) \rightarrow H^0(X, \mathbb{Q}) \oplus H^2(X, \mathbb{Q}) \oplus H^4(X, \mathbb{Q}) \oplus \dots$

Proposition

Let X be a 2-dimensional CW-complex. If $H^2(X; \mathbb{Q}) = 0$, then C(X) is matricially stable.

Question: For which X is C(X) matricially stable?

• • = • • = •

Question: For which X is C(X) matricially stable?

Guess: iff dim $X \leq 2$ and $H^2(X, \mathbb{Q}) = 0$.

伺 ト イヨ ト イヨ ト

3

Question: For which X is C(X) matricially stable?

Guess: iff dim $X \leq 2$ and $H^2(X, \mathbb{Q}) = 0$.

2 things to prove:

1) For X of dim \leq 2, C(X) is matricially stable $\Leftrightarrow H^2(X; \mathbb{Q}) = 0$,

4 E 6 4 E 6

Question: For which X is C(X) matricially stable?

Guess: iff dim $X \leq 2$ and $H^2(X, \mathbb{Q}) = 0$.

2 things to prove:

1) For X of dim \leq 2, C(X) is matricially stable $\Leftrightarrow H^2(X; \mathbb{Q}) = 0$,

2) dim $X \ge 3 \implies C(X)$ is not matricially stable.

.

Question: For which X is C(X) matricially stable?

Guess: iff dim $X \leq 2$ and $H^2(X, \mathbb{Q}) = 0$.

2 things to prove:

1) For X of dim \leq 2, C(X) is matricially stable $\Leftrightarrow H^2(X; \mathbb{Q}) = 0$,

2) dim $X \ge 3 \implies C(X)$ is not matricially stable.

Theorem

For X of dim ≤ 2 , C(X) is matricially stable if and only if $H^2(X; \mathbb{Q}) = 0$.

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X something non-matricially stable.

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X something non-matricially stable.

(if X is a CW-complex, just embed S^2)

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X something non-matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X some Y with dim $Y = 2, H^2(Y; \mathbb{Q}) \neq 0$.

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X something non-matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X some Y with dim $Y = 2, H^2(Y; \mathbb{Q}) \neq 0$.

Theorem

Suppose $n < \dim X < \infty$. Then there exists a closed subset A of X such that dim A = n and $H^n(A, \mathbb{Q}) \neq 0$.

周 ト イ ヨ ト イ ヨ ト

Lemma

If C(X) is matricially stable and $Y \subseteq X$ is a closed subset, then C(Y) is matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X something non-matricially stable.

Idea: for X with dim $X \ge 3$ try to embed into X some Y with dim $Y = 2, H^2(Y; \mathbb{Q}) \neq 0$.

Theorem

Suppose $n < \dim X < \infty$. Then there exists a closed subset A of X such that dim A = n and $H^n(A, \mathbb{Q}) \neq 0$.

Why the assumption dim $X < \infty$?

Question: For which compact metric X is C(X) matricially stable?

Joint work with Dominic Enders Almost commuting matrices, cohomology, and dimension

Question: For which compact metric X is C(X) matricially stable?

Main theorem

Suppose dim $X < \infty$. Then C(X) is matricially stable if and only if dim $(X) \le 2$ and $H^2(X; \mathbb{Q}) = 0$.

Question: For which compact metric X is C(X) matricially stable?

Main theorem

Suppose dim $X < \infty$. Then C(X) is matricially stable if and only if dim $(X) \le 2$ and $H^2(X; \mathbb{Q}) = 0$.

(In terms of generators and relations, this means that we solve the questions for *finite* families of matrices (almost) satisfying possibly infinitely many relations)

Some applications

1) Lifting normals from the Calkin algebra

• • = • • = •

Given a normal element in B(H)/K(H), BDF-theory answers when it lifts to a normal operator.

Given a normal element in B(H)/K(H), BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^2$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in B(H)?

Given a normal element in B(H)/K(H), BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^2$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in B(H)?

Theorem

Let X be a compact subset of the plane. The following are equivalent:

周 と イ ヨ と イ ヨ と

Given a normal element in B(H)/K(H), BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^2$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in B(H)?

Theorem

Let X be a compact subset of the plane. The following are equivalent:

(i) Any normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator;

< 回 > < 三 > < 三 >

Given a normal element in B(H)/K(H), BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^2$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in B(H)?

Theorem

Let X be a compact subset of the plane. The following are equivalent:

(i) Any normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator;

(ii) dim $X \le 1$ and $H^1(X) = 0$.

(日) (周) (王) (王)

Some applications

Theorem

The following are equivalent:

1) Any pointwise limit of liftable *-homomorphisms from C(X) to Q(H) is liftable itself;

2) C(X) has the following lifting property:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2) Lifting homomorphisms from the Calkin algebra

2) Lifting homomorphisms from the Calkin algebra

For what X are all *-homomorphisms from C(X) to the Calkin algebra liftable?

2) Lifting homomorphisms from the Calkin algebra

For what X are all *-homomorphisms from C(X) to the Calkin algebra liftable?

BDF-theory deals with (lifting of) **injective** *-homomorphisms from C(X) to the Calkin algebra.

Let X be a compact metric space and dim $X \leq 1$. The following are equivalent:

3 🕨 🖌 3

Let X be a compact metric space and dim $X \le 1$. The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable;

Let X be a compact metric space and dim $X \leq 1$. The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable; (2) $Hom(H^1(X), \mathbb{Z}) = 0.$

Let X be a compact metric space and dim $X \leq 1$. The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable; (2) $Hom(H^1(X), \mathbb{Z}) = 0.$

Conjecture: The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable; (2) dim $X \le 1$ and $Hom(H^1(X), \mathbb{Z}) = 0$.

Let X be a compact metric space and dim $X \leq 1$. The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable; (2) $Hom(H^1(X), \mathbb{Z}) = 0.$

Conjecture: The following are equivalent:

(1) All *-homomorphisms from C(X) to B(H)/K(H) are liftable; (2) dim $X \le 1$ and $Hom(H^1(X), \mathbb{Z}) = 0$.

Missing ingredient (Question): Does $\infty > \dim X > n$ imply that there exists a closed subset $Y \subseteq X$ with dim Y = n and $Hom(H^n(Y), \mathbb{Z}) \neq 0$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

3) Blackadar's I-closedness

Definition (Blackadar) A C^* -algebra A is *l*-closed (*l*-open) if for any C^* -algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B/I is closed (open) w.r.t. the topology of pointwise convergence in the set Hom(A, B/I).

3) Blackadar's I-closedness

Definition (Blackadar) A C^* -algebra A is *l-closed* (*l-open*) if for any C^* -algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B/I is closed (open) w.r.t. the topology of pointwise convergence in the set Hom(A, B/I).

B. Blackadar: "It seems reasonable that if X is any absolute neighborhood retract, then C(X) is l-closed".

3) Blackadar's I-closedness

Definition (Blackadar) A C^* -algebra A is *l*-closed (*l*-open) if for any C^* -algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B/I is closed (open) w.r.t. the topology of pointwise convergence in the set Hom(A, B/I).

B. Blackadar: "It seems reasonable that if X is any absolute neighborhood retract, then C(X) is I-closed".

Theorem

Let X be a CW-complex. If C(X) is I-closed, then dim $X \leq 3$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

4) Matricial stability for CW-complexes

★ ∃ ► < ∃ ►</p>

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.
4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Open question: Is the inverse true?

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_0(C(X))$ are torsion, then C(X) is matricially stable.

Open question: Is the inverse true? Yes

Thank you!