Almost commuting matrices, cohomology, and dimension

Joint work with Dominic Enders

March 30, 2021

Questions on almost commuting matrices

Informally speaking: A, B are matrices, $[A, B]$ is small. Are there any exactly commuting matrices near A, B ?

Questions on almost commuting matrices

Informally speaking: A, B are matrices, $[A, B]$ is small. Are there any exactly commuting matrices near A, B ?
$\|\|$ is the operator norm, that is $\| A\left\|=\sup _{\|x\| \leq 1}\right\| A x \|$.

Halmos's questions

Halmos 1976:

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

2) The same question for unitaries

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

2) The same question for unitaries
(Sizes of matrices can grow!)

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

2) The same question for unitaries

NO. Voiculescu, 1983

Voiculescu's matrices

For each $n \in \mathbb{N}$ we let $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$ and define $S_{n}, \Omega_{n} \in M_{n}(\mathbb{C})$ by

Voiculescu's matrices

For each $n \in \mathbb{N}$ we let $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$ and define $S_{n}, \Omega_{n} \in M_{n}(\mathbb{C})$ by

$$
S_{n}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \quad \text { and } \quad \Omega_{n}=\left(\begin{array}{cccc}
\omega_{n} & 0 & \cdots & 0 \\
0 & \omega_{n}^{2} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \omega_{n}^{n}
\end{array}\right)
$$

Voiculescu's matrices

For each $n \in \mathbb{N}$ we let $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$ and define $S_{n}, \Omega_{n} \in M_{n}(\mathbb{C})$ by

$$
S_{n}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \quad \text { and } \quad \Omega_{n}=\left(\begin{array}{cccc}
\omega_{n} & 0 & \cdots & 0 \\
0 & \omega_{n}^{2} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \omega_{n}^{n}
\end{array}\right)
$$

$\left\|\left[S_{n}, \Omega_{n}\right]\right\| \rightarrow 0$, as $n \rightarrow \infty$.

Voiculescu's matrices

For each $n \in \mathbb{N}$ we let $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$ and define $S_{n}, \Omega_{n} \in M_{n}(\mathbb{C})$ by

$$
\begin{aligned}
& S_{n}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \quad \text { and } \quad \Omega_{n}=\left(\begin{array}{cccc}
\omega_{n} & 0 & \cdots & 0 \\
0 & \omega_{n}^{2} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \omega_{n}^{n}
\end{array}\right) . \\
& \left\|\left[S_{n}, \Omega_{n}\right]\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Voiculescu: S_{n}, Ω_{n} are not close to any commuting pairs of unitaries.

Voiculescu's matrices

For each $n \in \mathbb{N}$ we let $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$ and define $S_{n}, \Omega_{n} \in M_{n}(\mathbb{C})$ by

$$
\begin{aligned}
& S_{n}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \quad \text { and } \quad \Omega_{n}=\left(\begin{array}{cccc}
\omega_{n} & 0 & \cdots & 0 \\
0 & \omega_{n}^{2} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \omega_{n}^{n}
\end{array}\right) . \\
& \left\|\left[S_{n}, \Omega_{n}\right]\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Voiculescu: S_{n}, Ω_{n} are not close to any commuting pairs of unitaries.

Exel and Loring: S_{n}, Ω_{n} are not close to any commuting pairs.

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

2) The same question for unitaries NO. Voiculescu, 1983

Halmos's questions

Halmos 1976:

1) Given two sequences of self-adjoint matrices $A_{n}, B_{n} \in M_{k_{n}}(\mathbb{C})$ satisfying

$$
\left\|A_{n}\right\| \leq 1,\left\|B_{n}\right\| \leq 1,\left\|\left[A_{n}, B_{n}\right]\right\| \rightarrow 0
$$

do there always exist sequences $A_{n}^{\prime}, B_{n}^{\prime} \in M_{k_{n}}(\mathbb{C})$ of self-adjoint matrices such that

$$
\left\|A_{n}^{\prime}-A_{n}\right\| \rightarrow 0,\left\|B_{n}^{\prime}-B_{n}\right\| \rightarrow 0,\left[A_{n}^{\prime}, B_{n}^{\prime}\right]=0 ?
$$

YES. Lin, 1995
2) The same question for unitaries NO. Voiculescu, 1983

Questions on almost commuting matrices: general setting

Questions on almost commuting matrices: general setting

$$
A=A^{*},\|A\| \leq 1,
$$

Questions on almost commuting matrices: general setting

$$
A=A^{*},\|A\| \leq 1, U U^{*}=U^{*} U=1
$$

Questions on almost commuting matrices: general setting

$$
A=A^{*},\|A\| \leq 1, U U^{*}=U^{*} U=1, A U \approx U A
$$

Questions on almost commuting matrices: general setting

$$
p^{(1)}, p^{(2)}, \ldots, p^{(N)}
$$

Questions on almost commuting matrices: general setting

$$
p^{(1)}, p^{(2)}, \ldots, p^{(N)}, n \in \mathbb{N} \bigcup\{\infty\},
$$

Questions on almost commuting matrices: general setting

$$
p^{(1)}, p^{(2)}, \ldots, p^{(N)}, \quad n \in \mathbb{N} \bigcup\{\infty\}, \quad\left(p^{(i)}\right)^{2}=p^{(i)}=\left(p^{(i)}\right)^{*}
$$

Questions on almost commuting matrices: general setting

$$
\begin{gathered}
p^{(1)}, p^{(2)}, \ldots, p^{(N)}, n \in \mathbb{N} \bigcup\{\infty\}, \quad\left(p^{(i)}\right)^{2}=p^{(i)}=\left(p^{(i)}\right)^{*} \\
p^{(i)} p^{(j)} \approx p^{(j)} p^{(i)} .
\end{gathered}
$$

Questions on almost commuting matrices: general setting

$$
A^{(1)}, \ldots, A^{(5)}
$$

Questions on almost commuting matrices: general setting

$$
\begin{gathered}
A^{(1)}, \ldots, A^{(5)},\left(A^{(i)}\right)^{*}=A^{(i)},\left\|A^{(i)}\right\| \leq 1, \\
A_{i} A_{j} \approx A_{j} A_{i} .
\end{gathered}
$$

Questions on almost commuting matrices: general setting

$$
\begin{gathered}
A^{(1)}, \ldots, A^{(5)},\left(A^{(i)}\right)^{*}=A^{(i)},\left\|A^{(i)}\right\| \leq 1, \\
A_{i} A_{j} \approx A_{j} A_{i}, \\
p\left(A^{(1)}, \ldots, A^{(5)}\right) \approx 0 .
\end{gathered}
$$

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$,

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$, must be close to exactly commuting normal contractive matrices exactly satisfying the same polynomial relations?

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$, must be close to exactly commuting normal contractive matrices exactly satisfying the same polynomial relations?

$$
\uparrow
$$

$$
C(X)
$$

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$, must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$, must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

Namely, consider

$$
C^{*}\left\langle x_{1}, \ldots, x_{N} \mid\left[x_{i}^{*}, x_{i}\right]=\left[x_{i}, x_{j}\right]=0, p_{j}\left(x_{1}, x_{2}, \ldots\right)=0\right\rangle
$$

Questions on almost commuting matrices: general setting

NC *-polynomials $p_{j}, j=1,2, \ldots$, are given.
Question: Is it true that any normal contractive matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}, N \in \mathbb{N} \bigcup \infty$, such that

$$
\left[A^{(i)}, A^{(j)}\right] \approx 0
$$

and

$$
p_{j}\left(A^{(1)}, \ldots, A^{(N)}\right) \approx 0
$$

$j=1,2, \ldots$, must be close to exactly commuting normal matrices exactly satisfying the same polynomial relations?

Namely, consider

$$
C^{*}\left\langle x_{1}, \ldots, x_{N} \mid\left[x_{i}^{*}, x_{i}\right]=\left[x_{i}, x_{j}\right]=0, p_{j}\left(x_{1}, x_{2}, \ldots\right)=0\right\rangle \cong C(X)
$$

C*-algebraic reformulation

C*-algebraic reformulation

$$
\prod M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid T_{n} \in M_{n}(\mathbb{C}), \sup _{n}\left\|T_{n}\right\|<\infty\right\}
$$

C*-algebraic reformulation

$$
\prod M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid T_{n} \in M_{n}(\mathbb{C}), \sup _{n}\left\|T_{n}\right\|<\infty\right\}
$$

(" noncommutative analogue" of I^{∞})

C*-algebraic reformulation

$$
\prod M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid T_{n} \in M_{n}(\mathbb{C}), \sup _{n}\left\|T_{n}\right\|<\infty\right\}
$$

(" noncommutative analogue" of I^{∞})

$$
\bigoplus M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid \lim _{n \rightarrow \infty}\left\|T_{n}\right\|=0\right\} .
$$

C*-algebraic reformulation

$$
\prod M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid T_{n} \in M_{n}(\mathbb{C}), \sup _{n}\left\|T_{n}\right\|<\infty\right\}
$$

(" noncommutative analogue" of I^{∞})

$$
\bigoplus M_{n}(\mathbb{C})=\left\{\left(T_{n}\right)_{n \in \mathbb{N}} \mid \lim _{n \rightarrow \infty}\left\|T_{n}\right\|=0\right\} .
$$

(" noncommutative analogue" of c_{0}).

C*-algebraic reformulation

$\Pi M_{n}(\mathbb{C})$
 $\Pi M_{n}(\mathbb{C}) / \oplus M_{n}(\mathbb{C})$

C*-algebraic reformulation

$\Pi M_{n}(\mathbb{C})$

C*-algebraic reformulation

Definition A C*-algebra A is matricially stable if each *-homomorphism from A to $\prod M_{n}(\mathbb{C}) / \bigoplus M_{n}(\mathbb{C})$ lifts:

C*-algebraic reformulation

Definition A C*-algebra A is matricially stable if each *-homomorphism from A to $\prod M_{n}(\mathbb{C}) / \bigoplus M_{n}(\mathbb{C})$ lifts:

Reformulation of questions on almost commuting matrices:
For which X is $C(X)$ matricially stable?

C*-algebraic reformulation

Definition A C*-algebra A is matricially stable if each *-homomorphism from A to $\prod M_{n}(\mathbb{C}) / \bigoplus M_{n}(\mathbb{C})$ lifts:

Reformulation of questions on almost commuting matrices:
For which compact metric space X is $C(X)$ matricially stable?

State of the art

Space X Is $C(X)$ matricially stable?

State of the art

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^{2}	No
	(Voiculescu 83, a short proof by Exel and Loring 89)

State of the art

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^{2}	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^{2}$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)

State of the art

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^{2}	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^{2}$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^{3}$	No
	(Voiculescu 81, Davidson 85)

State of the art

Space X	Is $C(X)$ matricially stable?
\mathbb{T}^{2}	No
	(Voiculescu 83, a short proof by Exel and Loring 89)
$[0,1]^{2}$	Yes
	(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^{3}$	No
	(Voiculescu 81, Davidson 85)
S^{2}	No
	(Voiculescu 81, Loring 88)

State of the art

Space X Is $C(X)$ matricially stable?

No
(Voiculescu 83, a short proof by Exel and Loring 89)
(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^{3} \quad$ No
(Voiculescu 81, Davidson 85)
(Voiculescu 81, Loring 88)
(Eilers, Loring, Pedersen 98)

State of the art

Space X Is $C(X)$ matricially stable?

No
(Voiculescu 83, a short proof by Exel and Loring 89)

$[0,1]^{2}$	Yes

(Lin 95, a short proof by Friis and Rørdam 96)
$[0,1]^{3} \quad$ No
(Voiculescu 81, Davidson 85)
No
(Voiculescu 81, Loring 88)
(Eilers, Loring, Pedersen 98)
1-dimensional
CW-complexes
(Loring 89)

Matricial stability of $C(X)$

Question: For which compact metric space X is $C(X)$ matricially stable?

Matricial stability of $C(X)$

Question: For which compact metric space X is $C(X)$ matricially stable?

Guess:

Matricial stability of $C(X)$

Question: For which compact metric space X is $C(X)$ matricially stable?

Guess: iff $\operatorname{dim} X \leq 2$ and

Matricial stability of $C(X)$

Question: For which compact metric space X is $C(X)$ matricially stable?

Guess: iff $\operatorname{dim} X \leq 2$ and ?

Work of Eilers, Loring, Pedersen

$K_{0}(A)$

Work of Eilers, Loring, Pedersen

$$
K_{0}(A) \quad[p]-[q]
$$

Work of Eilers, Loring, Pedersen

$$
K_{0}(A) \quad[p]-[q]
$$

$K_{0}(A)_{+}$

Work of Eilers, Loring, Pedersen

$$
\begin{array}{ll}
K_{0}(A) & {[p]-[q]} \\
K_{0}(A)_{+} & {[p]}
\end{array}
$$

Work of Eilers, Loring, Pedersen

$K_{0}(A) \quad[p]-[q]$
$K_{0}(A)_{+} \quad[p]$

Pre-order on $K_{0}(A): \quad x \geq y$ if $x-y \in K_{0}(A)_{+}$

Work of Eilers, Loring, Pedersen

$K_{0}(A) \quad[p]-[q]$
$K_{0}(A)_{+} \quad[p]$

Pre-order on $K_{0}(A): \quad x \geq y$ if $x-y \in K_{0}(A)_{+}$

Definition $x \in K_{0}(A)$ is an infinitesimal if

$$
-\left[1_{A}\right] \leq n x \leq\left[1_{A}\right],
$$

for all $n \in \mathbb{N}$.

Work of Eilers, Loring, Pedersen

$K_{0}(A) \quad[p]-[q]$
$K_{0}(A)_{+} \quad[p]$

Pre-order on $K_{0}(A): \quad x \geq y$ if $x-y \in K_{0}(A)_{+}$

Definition $x \in K_{0}(A)$ is an infinitesimal if

$$
-\left[1_{A}\right] \leq n x \leq\left[1_{A}\right],
$$

for all $n \in \mathbb{N}$.
E.g. in $K_{0}\left(\prod M_{n}(\mathbb{C})\right)$ there are no infinitesimals.

Work of Eilers, Loring, Pedersen

$$
C(X) \xrightarrow{\prod_{\square} M_{n}(\mathbb{C})} \prod_{n} M_{n}(\mathbb{C}) / \oplus M_{n}(\mathbb{C})
$$

Work of Eilers, Loring, Pedersen

$$
\begin{gathered}
K_{0}\left(\Pi M_{n}(\mathbb{C})\right) \\
K_{0}(C(X)) \xrightarrow{\ldots} K_{0}\left(\Pi M_{n}(\mathbb{C}) / \oplus M_{n}(\mathbb{C})\right)
\end{gathered}
$$

Work of Eilers, Loring, Pedersen

Observation: A liftable homomorphism has to kill infinitesimals.

Work of Eilers, Loring, Pedersen

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Work of Eilers, Loring, Pedersen

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Fact (Loring): $K_{0}\left(\prod M_{n}(\mathbb{C}) / \bigoplus M_{n}(\mathbb{C})\right)$ has no torsion.

Work of Eilers, Loring, Pedersen

Observation: A liftable homomorphism has to kill infinitesimals.

Theorem (Eilers-Loring-Pedersen '98)

If X is a 2-dimensional CW-complex, then this is the only obstruction!

Fact (Loring): $K_{0}\left(\prod M_{n}(\mathbb{C}) / \bigoplus M_{n}(\mathbb{C})\right)$ has no torsion.
All infinitesimals in $K_{0}(C(X))$ are torsion \Rightarrow all infinitesimals are killed $\Rightarrow C(X)$ is matricially stable

From K-theory to cohomology

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

From K-theory to cohomology

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Open question: Is the inverse true?

From K-theory to cohomology

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Open question: Is the inverse true?
Chern character:

$$
K_{0}(C(X)) \rightarrow H^{0}(X, \mathbb{Q}) \oplus H^{2}(X, \mathbb{Q}) \oplus H^{4}(X, \mathbb{Q}) \oplus \ldots
$$

From K-theory to cohomology

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Open question: Is the inverse true?
Chern character:
$K_{0}(C(X)) \rightarrow H^{0}(X, \mathbb{Q}) \oplus H^{2}(X, \mathbb{Q}) \oplus H^{4}(X, \mathbb{Q}) \oplus \ldots$

Proposition

Let X be a 2-dimensional CW-complex. If $H^{2}(X ; \mathbb{Q})=0$, then $C(X)$ is matricially stable.

Matricial stability of $C(X)$

Question: For which X is $C(X)$ matricially stable?

Matricial stability of $C(X)$

Question: For which X is $C(X)$ matricially stable?

Guess: iff $\operatorname{dim} X \leq 2$ and $H^{2}(X, \mathbb{Q})=0$.

Matricial stability of $C(X)$

Question: For which X is $C(X)$ matricially stable?
Guess: iff $\operatorname{dim} X \leq 2$ and $H^{2}(X, \mathbb{Q})=0$.

2 things to prove:

1) For X of $\operatorname{dim} \leq 2, C(X)$ is matricially stable $\Leftrightarrow H^{2}(X ; \mathbb{Q})=0$,

Matricial stability of $C(X)$

Question: For which X is $C(X)$ matricially stable?
Guess: iff $\operatorname{dim} X \leq 2$ and $H^{2}(X, \mathbb{Q})=0$.

2 things to prove:

1) For X of $\operatorname{dim} \leq 2, C(X)$ is matricially stable $\Leftrightarrow H^{2}(X ; \mathbb{Q})=0$,
2) $\operatorname{dim} X \geq 3 \Rightarrow C(X)$ is not matricially stable.

Matricial stability of $C(X)$

Question: For which X is $C(X)$ matricially stable?
Guess: iff $\operatorname{dim} X \leq 2$ and $H^{2}(X, \mathbb{Q})=0$.

2 things to prove:

1) For X of $\operatorname{dim} \leq 2, C(X)$ is matricially stable $\Leftrightarrow H^{2}(X ; \mathbb{Q})=0$,
2) $\operatorname{dim} X \geq 3 \Rightarrow C(X)$ is not matricially stable.

Theorem

For X of $\operatorname{dim} \leq 2, C(X)$ is matricially stable if and only if $H^{2}(X ; \mathbb{Q})=0$.

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Lemma
If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Lemma

If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X something non-matricially stable.

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Lemma

If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X something non-matricially stable.
(if X is a CW-complex, just embed S^{2})

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Lemma

If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X something non-matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X some Y with $\operatorname{dim} Y=2, H^{2}(Y ; \mathbb{Q}) \neq 0$.

Strategy for proving that dim X cannot be ≥ 3

Lemma

If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X something non-matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X some Y with $\operatorname{dim} Y=2, H^{2}(Y ; \mathbb{Q}) \neq 0$.

Theorem

Suppose $n<\operatorname{dim} X<\infty$. Then there exists a closed subset A of X such that $\operatorname{dim} A=n$ and $H^{n}(A, \mathbb{Q}) \neq 0$.

Strategy for proving that $\operatorname{dim} X$ cannot be ≥ 3

Lemma

If $C(X)$ is matricially stable and $Y \subseteq X$ is a closed subset, then $C(Y)$ is matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X something non-matricially stable.

Idea: for X with $\operatorname{dim} X \geq 3$ try to embed into X some Y with $\operatorname{dim} Y=2, H^{2}(Y ; \mathbb{Q}) \neq 0$.

Theorem

Suppose $n<\operatorname{dim} X<\infty$. Then there exists a closed subset A of X such that $\operatorname{dim} A=n$ and $H^{n}(A, \mathbb{Q}) \neq 0$.

Why the assumption $\operatorname{dim} X<\infty$?

Matricial stability of $C(X)$

Question: For which compact metric X is $C(X)$ matricially stable?

Matricial stability of $C(X)$

Question: For which compact metric X is $C(X)$ matricially stable?

Main theorem

Suppose $\operatorname{dim} X<\infty$. Then $C(X)$ is matricially stable if and only if $\operatorname{dim}(X) \leq 2$ and $H^{2}(X ; \mathbb{Q})=0$.

Matricial stability of $C(X)$

Question: For which compact metric X is $C(X)$ matricially stable?

Main theorem

Suppose $\operatorname{dim} X<\infty$. Then $C(X)$ is matricially stable if and only if $\operatorname{dim}(X) \leq 2$ and $H^{2}(X ; \mathbb{Q})=0$.
(In terms of generators and relations, this means that we solve the questions for finite families of matrices (almost) satisfying possibly infinitely many relations)

Some applications

1) Lifting normals from the Calkin algebra

Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in $B(H) / K(H)$, BDF-theory answers when it lifts to a normal operator.

Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in $B(H) / K(H)$, BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^{2}$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in $B(H)$?

Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in $B(H) / K(H)$, BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^{2}$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in $B(H)$?

Theorem

Let X be a compact subset of the plane. The following are equivalent:

Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in $B(H) / K(H)$, BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^{2}$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in $B(H)$?

Theorem

Let X be a compact subset of the plane. The following are equivalent:
(i) Any normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator;

Some applications

1) Lifting normals from the Calkin algebra

Given a normal element in $B(H) / K(H)$, BDF-theory answers when it lifts to a normal operator.

Question (B. Blackadar, private communication): For which compact subsets $X \subset \mathbb{R}^{2}$ does the following hold: Every normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator in $B(H)$?

Theorem

Let X be a compact subset of the plane. The following are equivalent:
(i) Any normal element of the Calkin algebra with spectrum contained in X lifts to a normal operator;
(ii) $\operatorname{dim} X \leq 1$ and $H^{1}(X)=0$.

Some applications

Theorem

The following are equivalent:

1) Any pointwise limit of liftable $*$-homomorphisms from $C(X)$ to $Q(H)$ is liftable itself;
2) $C(X)$ has the following lifting property:

Some applications

2) Lifting homomorphisms from the Calkin algebra

Some applications

2) Lifting homomorphisms from the Calkin algebra

For what X are all $*$-homomorphisms from $C(X)$ to the Calkin algebra liftable?

Some applications

2) Lifting homomorphisms from the Calkin algebra

For what X are all $*$-homomorphisms from $C(X)$ to the Calkin algebra liftable?

BDF-theory deals with (lifting of) injective $*$-homomorphisms from $C(X)$ to the Calkin algebra.

Some applications

Theorem

Let X be a compact metric space and $\operatorname{dim} X \leq 1$. The following are equivalent:

Some applications

Theorem

Let X be a compact metric space and $\operatorname{dim} X \leq 1$. The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable;

Some applications

Theorem

Let X be a compact metric space and $\operatorname{dim} X \leq 1$. The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable; (2) $\operatorname{Hom}\left(H^{1}(X), \mathbb{Z}\right)=0$.

Some applications

Theorem

Let X be a compact metric space and $\operatorname{dim} X \leq 1$. The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable; (2) $\operatorname{Hom}\left(H^{1}(X), \mathbb{Z}\right)=0$.

Conjecture: The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable;
(2) $\operatorname{dim} X \leq 1$ and $\operatorname{Hom}\left(H^{1}(X), \mathbb{Z}\right)=0$.

Some applications

Theorem

Let X be a compact metric space and $\operatorname{dim} X \leq 1$. The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable; (2) $\operatorname{Hom}\left(H^{1}(X), \mathbb{Z}\right)=0$.

Conjecture: The following are equivalent:
(1) All $*$-homomorphisms from $C(X)$ to $B(H) / K(H)$ are liftable;
(2) $\operatorname{dim} X \leq 1$ and $\operatorname{Hom}\left(H^{1}(X), \mathbb{Z}\right)=0$.

Missing ingredient (Question): Does $\infty>\operatorname{dim} X>n$ imply that there exists a closed subset $Y \subseteq X$ with $\operatorname{dim} Y=n$ and $\operatorname{Hom}\left(H^{n}(Y), \mathbb{Z}\right) \neq 0$?

Some applications

3) Blackadar's I-closedness

Definition (Blackadar) A C^{*}-algebra A is l-closed (l-open) if for any C^{*}-algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B / I is closed (open) w.r.t. the topology of pointwise convergence in the set $\operatorname{Hom}(A, B / I)$.

Some applications

3) Blackadar's I-closedness

Definition (Blackadar) A C^{*}-algebra A is l-closed (l-open) if for any C^{*}-algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B / I is closed (open) w.r.t. the topology of pointwise convergence in the set $\operatorname{Hom}(A, B / I)$.
B. Blackadar: "It seems reasonable that if X is any absolute neighborhood retract, then $C(X)$ is l-closed".

Some applications

3) Blackadar's I-closedness

Definition (Blackadar) A C^{*}-algebra A is l-closed (l-open) if for any C^{*}-algebra B and any ideal I in B, the set of liftable *-homomorphisms from A to B / I is closed (open) w.r.t. the topology of pointwise convergence in the set $\operatorname{Hom}(A, B / I)$.
B. Blackadar: "It seems reasonable that if X is any absolute neighborhood retract, then $C(X)$ is l-closed".

Theorem

Let X be a CW-complex. If $C(X)$ is l-closed, then $\operatorname{dim} X \leq 3$.

Some applications

4) Matricial stability for CW-complexes

Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Open question: Is the inverse true?

Some applications

4) Matricial stability for CW-complexes

Corollary (Eilers-Loring-Pedersen '89)

Let X be a 2-dimensional CW-complex. If all infinitesimals in $K_{0}(C(X))$ are torsion, then $C(X)$ is matricially stable.

Open question: Is the inverse true?
Yes

Thank you!

