Quantum differentials on cross product Hopf algebras

Ryan Aziz
Joint work with Shahn Majid
ArXiV 2019

Queen Mary, University of London
July 30, 2019

Prelims

Quantum Riemannian geometry by quantum groups approach :

- Differentials on an algebra A is $A-A$-bimodule Ω^{1} (space of 1-forms) :
- d : $A \rightarrow \Omega^{1}$ (differential map) s.t. $\mathrm{d}(a b)=(\mathrm{d} a) b+a \mathrm{~d} b$ (Leibniz rule)
- $\Omega^{1}=\operatorname{span}\{a d b\}$ (surjectivity)
- kerd $=k .1$ (connectedness, conditional).

■ Exterior algebra means a DGA $\Omega=\oplus_{n \geq 0} \Omega^{n}$ on A generated by $\Omega^{0}=A, \mathrm{~d} A$ with

■ $\mathrm{d}: \Omega^{n} \rightarrow \Omega^{n+1}$ s.t. $\mathrm{d}(\omega \tau)=(\mathrm{d} \omega) \tau+(-1)^{|\omega|} \omega \mathrm{d} \tau$
(graded-Leibniz rule)

- $\mathrm{d}^{2}=0$.

Prelims

$■ \Omega^{1}$ is left(resp.right) covariant if it is a left(resp.right)
A-comodule algebra with $\Delta_{L}: \Omega \rightarrow A \otimes \Omega^{1}, \Delta_{L} \mathrm{~d}=(\mathrm{id} \otimes \mathrm{d}) \Delta$ $\left(\right.$ resp. $\left.\Delta_{R}: \Omega^{1} \otimes \Omega^{1} \otimes A, \Delta_{R} \mathrm{~d}=(\mathrm{d} \otimes \mathrm{id}) \Delta\right)$.

- Ω^{1} is bicovariant if it is both left and right covariant.
- Can be extended to have Ω left/right/bicovariant.

■ [Brzeziǹski '93] Ω^{1} bicovariant $\Rightarrow \Omega$ super-Hopf algebra (\mathbb{Z}_{2}-graded)

$$
\begin{gathered}
\Delta_{*}\left|\Omega_{0}=\Delta, \quad \Delta_{*}\right| \Omega^{1}=\Delta_{L}+\Delta_{R} \\
\Delta_{*}(\operatorname{dad} b)=\Delta_{*}(\mathrm{~d} a) \Delta_{*}(\mathrm{~d} b)
\end{gathered}
$$

Motivation and Problem

- Knowing only Ω^{1} and Ω^{2}, we can build elements of noncommutative geometry (metric, connection, torsion, curvature) algebraically on the DGA.
- In nice cases, we can recover the Dirac operators as in Connes' approach but does not require it as axiom.
- Fundamental problem : there will be many Ω^{1} and Ω^{2} on a given Hopf algebra A.
- Woronowicz construction of bicovariant Ω^{1} :
$\Omega^{1} \cong A \otimes A^{+} / I ; \quad A^{+}=\operatorname{ker} \epsilon ; \quad I:$ ad-stable right ideal
- No general result known, but for some cases Ω^{1} are classified:
- coquasitriangular Hopf algebra A (Bauman, Schmidt '98)
- the Sweedler-Taft algebra $U_{q}\left(b_{+}\right)$(Oeckl '99).

Overview

We introduce a method (different from Woronowicz) to construct DGAs on all main type of cross (co) product Hopf algebras :
$■$ On double cross product $A \hookrightarrow A \bowtie H \hookleftarrow H$.
■ On double cross coproduct $A \llbracket A \bowtie H \rightarrow H$.

- On bicrossproduct $A \hookrightarrow A \bowtie H \rightarrow H$.
- On biproduct $A \leftrightarrows A \bowtie B$ (Here B is a braided Hopf algebra)

Overview

- Assumption : $\Omega(A), \Omega(H), \Omega(B)$ are strongly bicovariant exterior algebras.
- Their differentials are built by using their super version, e.g. $\Omega(A \bowtie H):=\Omega(A) \bowtie \Omega(H)$ gives a strongly bicovariant exterior algebra on $A \bowtie H$, etc.
- We do not classify all Ω^{1} but the resulting exterior algebra is natural in the sense it (co)acts on its factor differentiably.
- In this talk, we will focus on differentials on biproduct $A \subset B$.

Braided Hopf algebras

Def (Majid '90s) : Let \mathcal{C} be braided monoidal category. $B \in \mathcal{C}$ is a braided Hopf algebra if it is algebra + coalgebra + antipode $S: B \rightarrow B$ s.t.

(c)

(d)

$$
\text { e.g } \Delta(b c)=b_{\underline{(1)}} \Psi\left(b_{\underline{(2)}} \otimes c_{\underline{(1)}}\right) c_{\underline{(2)}} .
$$

Biproduct Hopf algebras

- If A is ordinary Hopf algebra and B is braided Hopf algebra in \mathcal{M}_{A}^{A} crossed module (or Drinfeld-Radford-Yetter module) category, then there is a biproduct $A \triangleright \subset B$ (or the Radford-Majid bosonisation of B) built in $A \otimes B$ with

$$
\begin{gathered}
(a \otimes b)(c \otimes d)=a c_{(1)} \otimes\left(b \triangleleft c_{(2)}\right) d \\
\Delta(a \otimes b)=a_{(1)} \otimes{b_{(\underline{1)}}^{(0)}}_{(0)} a_{(2)} b_{(\underline{(1)}}^{(\overline{1)}} \otimes b_{\underline{(2)}}
\end{gathered}
$$

for all $a, c \in A, b, d \in B$.
■ Example: $\mathbb{C}_{q}[P]=\mathbb{C}_{q}\left[G L_{2}\right] \propto \mathbb{C}_{q}^{2} \cong \mathbb{C}_{q}\left[S L_{3}\right] /\left(t^{i}{ }_{j} \mid i>j\right)$ a deformation of maximal parabolic $P \subset S L_{3}$

Super Crossed Modules

■ Let A be a super Hopf algebra, i.e. $A=A_{0} \oplus A_{1}$.
■ Let $V=V_{0} \oplus V_{1}$ be a super right A-crossed module over a super-Hopf algebra A if
$1 V$ is a super right A-module by $\triangleleft: V \otimes A \rightarrow V$
$2 V$ is a super right A-comodule by $\Delta_{R}: V \rightarrow V \otimes A$ denoted $\Delta_{R} v=v^{(0)} \otimes v^{(1)}$, such that

$$
\Delta_{R}(v \triangleleft a)=(-1)^{\left.\left|v^{(1)}\right|\left|a a_{(1)}\right|+\mid v^{(1)}\right)| | a_{(2)}\left|+\left|a_{(1)}\right|\right| a_{(2)} \mid} v^{(\overline{0})} \triangleleft a_{(2)} \otimes\left(S a_{(1)}\right) v^{(1)} a_{(3)}
$$

for all $v \in V$ and $a \in A$.

- The category \mathcal{M}_{A}^{A} of super right A-crossed modules is a prebraided category with the braiding $\Psi: V \otimes W \rightarrow W \otimes V$,

$$
\Psi(v \otimes w)=(-1)^{|v|\left|w^{(0)}\right|} w^{\overline{(0)}} \otimes\left(v \triangleleft w^{\overline{(1)}}\right)
$$

and braided if A has invertible antipode

Strongly bicovariant exterior algebras

(Majid - Tao '15) Ω is strongly bicovariant if it is :

- a super-Hopf algebra with super-degree given by the grade $\bmod 2$
■ super-coproduct Δ_{*} grade preserving and restricting to the coproduct of A
- d is a super coderivation in the sense

$$
\Delta_{*} \mathrm{~d} \omega=\left(\mathrm{d} \otimes \mathrm{id}+(-1)^{\mid} \mathrm{id} \otimes \mathrm{~d}\right) \Delta_{*} \omega
$$

Lemma (Majid - Tao '15)
Ω Strongly bicovariant $\Rightarrow \Omega$ bicovariant

Lemma

$\Omega(A), \Omega(H)$ strongly bicovariants $\Rightarrow \Omega(A \otimes H):=\Omega(A) \otimes \Omega(H)$ is strongly bicovariant on $A \otimes H$ with $\mathrm{d}^{2}=\mathrm{d}_{A} \otimes i d+(-1)^{\lceil } \mathrm{id}_{\mathrm{id}} \otimes \mathrm{d}_{H}$.

Differentiable Coaction

- Let A be Hopf algebra, $\Omega(A)$ be its exterior algebra.
- Let $B \in \mathcal{M}^{A}$ be comodule algebra, $\Omega(B)$ is A-covariant, i.e. the coaction $\Delta_{R}: \Omega(B) \rightarrow \Omega(B) \otimes A$ (denoted by $\left.\Delta_{R} \eta=\eta^{\overline{(0)}} \otimes \eta^{\overline{(1)}}\right)$ is a comodule map.
- Δ_{R} is differentiable if it extends to a degree-preserving map $\Delta_{R *}: \Omega(B) \rightarrow \Omega(B) \otimes \Omega(A)$ of exterior algebras such that

$$
\mathrm{d}_{B} \Delta_{R *}=\mathrm{d} \Delta_{R *}
$$

or explicitly

$$
\Delta_{R *} \mathrm{~d}_{B} \eta=\mathrm{d}_{B} \eta^{(\overline{0})^{*}} \otimes \eta^{\overline{(1)} *}+(-1)^{|\eta|} \eta^{\overline{(0)} *} \otimes \mathrm{~d}_{A} \eta^{\overline{(1)} *}
$$

where $\Delta_{R *} \eta=\eta^{\overline{(0)}}{ }^{*} \otimes \eta^{\overline{(1)}} \in \Omega(B) \otimes \Omega(A)$.

Differentiable action

- Let A be Hopf algebra, $\Omega(A)$ be its exterior algebra.
- Let $B \in \mathcal{M}_{A}$ be a module algebra, $\Omega(B)$ is A-covariant, i.e. the action $\triangleleft: \Omega(B) \otimes A \rightarrow \Omega(B)$ is a module map.
- The action \triangleleft is differentiable if it extends to a degree preserving map $\triangleleft: \Omega(B) \otimes \Omega(A) \rightarrow \Omega(A)$ such that

$$
\mathrm{d}_{B} \triangleleft=\triangleleft \mathrm{d}
$$

or explicitly

$$
\mathrm{d}_{B}(\eta \triangleleft \omega)=\left(\mathrm{d}_{B} \eta\right) \triangleleft \omega+(-1)^{|\eta|} \eta \triangleleft\left(\mathrm{d}_{A} \omega\right)
$$

for all $\eta \in \Omega(B), \omega \in \Omega(A)$.

Super Biproducts

Assumption :
$1 B$ is a braided Hopf algebra in \mathcal{M}_{A}^{A} s.t. they form $A \ltimes B$
$2 \Omega(B) \in \mathcal{M}_{A}^{A}$ with differentiable action and coaction
$3 \Omega(B)$ is a super braided Hopf algebra in super crossed module category $\mathcal{M}_{\Omega(A)}^{\Omega(A)}$ with d_{B} a super coderivation
Then we have super biproduct $\Omega(A) \propto \Omega(B)$

$$
\begin{aligned}
& \qquad(\omega \otimes \eta)(\tau \otimes \xi)=(-1)^{|\eta|\left|\tau_{(1)}\right|} \omega \tau_{(1)} \otimes\left(\eta \triangleleft \tau_{(2)}\right) \xi \\
& \Delta_{*}(\omega \otimes \eta)=(-1)^{\left|\omega_{(2)}\right| \mid \eta_{(1)}}{ }^{\left(\overline{0}^{*} \mid\right.} \omega_{(1)} \otimes \eta_{\underline{(1)}} \overline{(0)}^{*} \otimes \omega_{(2)} \eta_{\underline{(1)}} \overline{(1)}^{*} \otimes \eta_{\underline{(2)}} \\
& \text { for all } \omega, \tau \in \Omega(A) \text { and } \eta, \xi \in \Omega(B) .
\end{aligned}
$$

Differentials by Super Biproducts

Theorem

1 Under the assumptions above, $\Omega(A \ltimes B):=\Omega(A) \ltimes \Omega(B)$ is a strongly bicovariant exterior algebra on $A \propto B$ with differential map

$$
\mathrm{d}(\omega \otimes \eta)=\mathrm{d}_{A} \omega \otimes \eta+(-1)^{|\omega|} \omega \otimes \mathrm{d}_{B} \eta
$$

for all $\omega \in \Omega(A), \eta \in \Omega(B)$.
2 The canonical $\Delta_{R}: B \rightarrow B \otimes A \odot B$ given by
$\Delta_{R} b=b_{(1)}^{(0)} \otimes b_{(1)}^{(1)} \otimes b_{(2)}$ is differentiable, i.e it extends to $\Delta_{R_{*}}: \Omega(\bar{B}) \rightarrow \Omega(\bar{B}) \otimes \Omega(\bar{A} \propto B)$ by

$$
\Delta_{R *} \eta=\eta_{\underline{(1)}} \overline{(0)}^{\overline{0}} \otimes \eta_{\underline{(1)}} \overline{(1)}^{(1)^{*}} \otimes \eta_{\underline{(2)}}
$$

Differential on $A \triangleright<V(R)$

- Let $R \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ be q-Hecke ($P R$ has two eigen-values).
- Let $A(R)$ be an FRT algebra generated by $\mathbf{t}=\left(t^{i}{ }_{j}\right)$ with

$$
R \mathbf{t}_{1} \mathbf{t}_{2}=\mathbf{t}_{2} \mathbf{t}_{1} R, \quad \Delta \mathbf{t}=\mathbf{t} \otimes \mathbf{t}
$$

- $A=A(R)\left[D^{-1}\right], D \in A(R)$ central, grouplike.
- $\Omega(A(R))$ has

$$
\begin{gathered}
\left(\mathrm{d} \mathbf{t}_{1}\right) \mathbf{t}_{2}=R_{21} \mathbf{t}_{2} \mathrm{~d} \mathbf{t}_{1} R, \quad \mathrm{~d} \mathbf{t}_{1} \mathrm{~d} \mathbf{t}_{2}=-R_{21} \mathrm{~d} \mathbf{t}_{2} \mathrm{~d} \mathbf{t}_{1} R \\
\mathrm{~d} D^{-1}=-D^{-1}(\mathrm{~d} D) D^{-1}, \quad \Delta_{*} \mathrm{~d} \mathbf{t}=\mathrm{d} \mathbf{t} \otimes \mathbf{t}+\mathbf{t} \otimes \mathrm{d} \mathbf{t}
\end{gathered}
$$

- Let $V(R) \in \mathcal{M}^{A}$ a braided covector algebra generated by $\mathbf{x}=\left(x_{i}\right)$ with $q \mathbf{x}_{1} \mathbf{x}_{2}=\mathbf{x}_{2} \mathbf{x}_{1} R, \quad \Delta_{R} \mathbf{x}=\mathbf{x} \otimes \mathbf{t}$
- $\Omega(V(R)) \in \mathcal{M}^{\Omega(A)}$ has
$\left(\mathrm{d} \mathbf{x}_{1}\right) \mathbf{x}_{2}=\mathbf{x}_{2} \mathrm{~d} \mathbf{x}_{1} q R, \quad-\mathrm{d} \mathbf{x}_{1} \mathrm{~d} \mathbf{x}_{2}=\mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{x}_{1} q R, \quad \Delta_{R *} \mathrm{~d} \mathbf{x}=\mathrm{d} \mathbf{x} \otimes \mathbf{t}+\mathbf{x} \otimes \mathrm{d} \mathbf{t}$

Differential on $A \triangleright<V(R)$

Theorem

Let $A=A(R)\left[D^{-1}\right]$ with $R q$-Hecke and $V(R)$ the right-covariant braided covector algebra. Then $\Omega(V(R))$ is a super-braided-Hopf algebra with $x_{i}, \mathrm{~d} x_{i}$ primitive in $\mathcal{M}_{\Omega(A)}^{\Omega(A)}$ with $\Delta_{R *} \mathrm{~d} \mathbf{x}=\mathrm{d} \mathbf{x} \otimes \mathbf{t}+\mathbf{x} \otimes \mathrm{d} \mathbf{t}$ and

$$
\begin{aligned}
& \mathbf{x}_{1} \triangleleft \mathbf{t}_{2}=\mathbf{x}_{1} q^{-1} R_{21}^{-1}, \quad \mathrm{~d} \mathbf{x}_{1} \triangleleft \mathbf{t}_{2}=\mathrm{d} \mathbf{x}_{1} q^{-1} R \\
& \mathbf{x}_{1} \triangleleft \mathrm{~d} \mathbf{t}_{2}=\left(q^{-2}-1\right) \mathrm{d} \mathbf{x}_{1} P, \quad \mathrm{~d} \mathbf{x}_{1} \triangleleft \mathrm{~d} \mathbf{t}_{2}=0,
\end{aligned}
$$

and $\Omega(A \triangleright V(R)):=\Omega(A) \propto \Omega(V(R))$ with

$$
\mathbf{x}_{1} \mathbf{t}_{2}=\mathbf{t}_{2} \mathbf{x}_{1} q^{-1} R_{21}^{-1}, \quad \mathrm{~d} \mathbf{x}_{1} \cdot \mathbf{t}_{2}=\mathbf{t}_{2} \mathrm{~d} \mathbf{x}_{1} q^{-1} R,
$$

$$
\mathbf{x}_{1} \mathrm{~d} \mathbf{t}_{2}=\mathrm{d} \mathbf{t}_{2} \cdot \mathbf{x}_{1} q^{-1} R_{21}^{-1}+\left(q^{-2}-1\right) \mathbf{t}_{2} \mathrm{~d} \mathbf{x}_{1} P, \quad \mathrm{~d} \mathbf{x}_{1} \mathrm{~d} \mathbf{t}_{2}=-\mathrm{d} \mathbf{t}_{2} \mathrm{~d} \mathbf{x}_{1} q^{-1} R
$$

$$
\Delta \mathbf{x}=1 \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{t}, \quad \Delta_{*} \mathrm{~d} \mathbf{x}=1 \otimes \mathrm{~d} \mathbf{x}+\mathrm{d} \mathbf{x} \otimes \mathbf{t}+\mathbf{x} \otimes \mathrm{d} \mathbf{t} .
$$

Differential on Quantum Parabolic Group

■ For $R=R_{g l_{2}}$, then $A=\mathbb{C}_{q}\left[G L_{2}\right]$ generated by $t^{1}{ }_{1}=a, t^{1}{ }_{2}=b, t_{1}^{2}=c, t^{2}{ }_{2}=d$ with

$$
\begin{gathered}
b a=q a b, \quad c a=q a c, \quad d b=q b d, \quad d c=q c d \\
d a-a d=\left(q-q^{-1}\right) b c, \quad a d-q^{-1} b c=d a-q c b=D \\
\Delta t^{i}{ }_{j}=t^{i}{ }_{k} \otimes t^{k}{ }_{j}
\end{gathered}
$$

- Let $V(R)=\mathbb{C}_{q}^{2} \in \mathcal{M}^{\mathbb{C}_{q}\left[G L_{2}\right]}$ a two-dimensional quantum plane with $x_{2} x_{1}=q, \underline{\Delta} x_{i}=1 \otimes x_{i}+x_{i} \otimes 1$ and $\Delta_{R} x_{i}=x_{j} \otimes t_{i}^{j}$

Differential on Quantum Parabolic Group

- $\Omega\left(\mathbb{C}_{q}^{2}\right)$ has

$$
\begin{gathered}
\left(\mathrm{d} x_{i}\right) x_{i}=q^{2} x_{i} \mathrm{~d} x_{i}, \quad\left(\mathrm{~d} x_{1}\right) x_{2}=q x_{2} \mathrm{~d} x_{1} \\
\left(\mathrm{~d} x_{2}\right) x_{1}=q x_{1} \mathrm{~d} x_{2}+\left(q^{2}-1\right) x_{2} \mathrm{~d} x_{1} \\
\left(\mathrm{~d} x_{i}\right)^{2}=0, \quad \mathrm{~d} x_{2} \mathrm{~d} x_{1}=-q^{-1} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
\end{gathered}
$$

- By requiring differentiability on $\Delta_{R}: \mathbb{C}_{q}^{2} \rightarrow \mathbb{C}_{q}^{2} \otimes \mathbb{C}_{q}\left[G L_{2}\right]$, it enforces us to use the following $\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right]\right)$
da. $a=q^{2} a \mathrm{~d} a, \quad$ da. $b=q b \mathrm{~d} a, \quad \mathrm{~d} b \cdot a=q a \mathrm{~d} b+\left(q^{2}-1\right) b \mathrm{~d} a$

$$
\begin{gathered}
\mathrm{dd} . a=a \mathrm{~d} d, \quad \mathrm{~d} b . c=c \mathrm{~d} b+\left(q-q^{-1}\right) d \mathrm{~d} d, \quad \text { etc. } \\
\Delta_{*} \mathrm{~d} t^{i}{ }_{j}=\mathrm{d} t^{i}{ }_{k} \otimes t^{k}{ }_{j}+t^{i}{ }_{k} \otimes \mathrm{~d} t^{k}{ }_{j}
\end{gathered}
$$

Differential on Quantum Parabolic Group

$\Omega\left(\mathbb{C}_{q}^{2}\right)$ is a super braided Hopf algebra in $\mathcal{M}_{\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right]\right)}^{\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right]\right)}$ by

$$
\begin{gathered}
x_{1} \triangleleft\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
q^{-2} x_{1} & \left(q^{-2}-1\right) x_{2} \\
0 & q^{-1} x_{1}
\end{array}\right), \quad x_{2} \triangleleft\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\cdots \\
x_{1} \triangleleft\left(\begin{array}{ll}
\mathrm{d} a & \mathrm{~d} b \\
\mathrm{~d} c & \mathrm{~d} d
\end{array}\right)=\left(\begin{array}{cc}
\left(q^{-2}-1\right) \mathrm{d} x_{1} & \left(q^{-2}-1\right) \mathrm{d} x_{2} \\
0 & 0
\end{array}\right) \\
\mathrm{d} x_{1} \triangleleft\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{d} x_{1} & 0 \\
0 & q^{-1} \mathrm{~d} x_{1}
\end{array}\right) \\
x_{2} \triangleleft\left(\begin{array}{ll}
\mathrm{d} a & \mathrm{~d} b \\
\mathrm{~d} c & \mathrm{~d} d
\end{array}\right)=\cdots, \quad \mathrm{d} x_{2} \triangleleft\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\cdots
\end{gathered}
$$

$\mathrm{d} x_{i} \triangleleft \mathrm{~d} t^{k}{ }_{I}=0, \quad \Delta_{R} x_{i}=x_{j} \otimes t^{j}{ }_{i}, \quad \Delta_{R *} \mathrm{~d} x_{i}=\mathrm{d} x_{j} \otimes t^{j}{ }_{i}+x_{j} \otimes \mathrm{~d} t^{j}{ }_{i}$

$$
\underline{\Delta} x_{i}=x_{i} \otimes 1+1 \otimes x_{i}, \quad \Delta_{*} \mathrm{~d} x_{i}=\mathrm{d} x_{i} \otimes 1+1 \otimes \mathrm{~d} x_{i}
$$

Differential on Quantum Parabolic Group

Then (i) $\Omega\left(\mathbb{C}_{q}[P]\right)=\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right] \ltimes \mathbb{C}^{2}\right):=\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right]\right) \propto \Omega\left(\mathbb{C}_{q}^{2}\right)$ with sub-exterior algebras $\Omega\left(\mathbb{C}_{q}\left[G L_{2}\right]\right), \Omega\left(\mathbb{C}_{q}^{2}\right)$ and cross relations and super coproduct

$$
\begin{gathered}
x_{1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
q^{-2} a x_{1} & q^{-1} b x_{1}+\left(q^{-2}-1\right) a x_{2} \\
q^{-2} c x_{1} & q^{-1} d x_{1}+\left(q^{-2}-1\right) c x_{2}
\end{array}\right), \quad x_{2}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\cdots \\
\mathrm{d} x_{1} \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a \mathrm{~d} x_{1} & q^{-1} b \mathrm{~d} x_{1} \\
c \mathrm{~d} x_{1} & q^{-1} d \mathrm{~d} x_{1}
\end{array}\right), \quad \mathrm{d} x_{2} \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\cdots \\
x_{1}\left(\begin{array}{ll}
\mathrm{d} a & \mathrm{~d} b \\
\mathrm{~d} c & \mathrm{~d} d
\end{array}\right)=\cdots, \quad x_{2}\left(\begin{array}{cc}
\mathrm{d} a & \mathrm{~d} b \\
\mathrm{~d} c & \mathrm{~d} d
\end{array}\right)=\cdots \\
\Delta x_{i}=1 \otimes x_{i}+\Delta_{R}\left(x_{i}\right), \quad \Delta_{*}\left(\mathrm{~d} x_{i}\right)=1 \otimes \mathrm{~d} x_{i}+\Delta_{R *}\left(\mathrm{~d} x_{i}\right)
\end{gathered}
$$

(ii) $\Delta_{R}: \mathbb{C}_{q}\left[G L_{2}\right] \rightarrow \mathbb{C}_{q}\left[G L_{2}\right] \otimes \mathbb{C}_{q}[P]$ is differentiable
$\Delta_{R} x_{i}=1 \otimes x_{i}+x_{j} \otimes t^{j}{ }_{i}, \quad \Delta_{R *} \mathrm{~d} x_{i}=1 \otimes \mathrm{~d} x_{i}+\mathrm{d} x_{j} \otimes t^{j}{ }_{i}+x_{j} \otimes \mathrm{~d} t^{j}{ }_{i}$

Overview

■ The canonical coactions $\Delta_{R}: A \rightarrow A \otimes H \Perp A$ and $\Delta_{L}: H \rightarrow H \bowtie A \otimes H$ are differentiable, i.e. they extend to

$$
\begin{aligned}
& \Delta_{R *}: \Omega(A) \rightarrow \Omega(A) \otimes \Omega(H) \Perp \Omega(A) \\
& \Delta_{L *}: \Omega(H) \rightarrow \Omega(H) \bowtie \Omega(A) \otimes \Omega(H)
\end{aligned}
$$

making $\Omega(H)$ and $\Omega(A)$ super $\Omega(H \bowtie A)$-comodule algebras

- The canonical coaction $\Delta_{R}: H \rightarrow H \otimes A \bowtie H$ is differentiable, i.e. it extends to

$$
\Delta_{R *}: \Omega(H) \rightarrow \Omega(H) \otimes \Omega(A) \bowtie \Omega(H)
$$

making $\Omega(H)$ a super $\Omega(A \bowtie H)$-comodule algebra.

Overview

- $A \bowtie H$ acts on f.d. A^{*} as module algebra by

$$
(\phi \triangleleft h)(a)=\phi(h \triangleright a), \quad \phi \triangleleft a=\left\langle\phi_{(1)}, a\right\rangle \phi_{(2)},
$$

Similarly for a left action on H^{*}. However, for differentiability, we would need $\Omega\left(A^{*}\right)$ or $\Omega\left(H^{*}\right)$ to be specified.

Thank you for your attention

